

Article Diversity of Botryosphaeriaceae Species Associated with Grapevine Trunk Diseases in the Czech Republic

Milan Spetik ^{1,*,†}^(b), Dorota Anna Tekielska ^{1,*,†}, Akila Berraf-Tebbal ¹, Jakub Pecenka ¹, Katerina Stuskova ¹, Alla Eddine Mahamedi ²^(b) and Ales Eichmeier ¹^(b)

- ¹ Mendeleum–Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44 Lednice na Morave, Czech Republic
- ² Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, B.P 92 Vieux-Kouba, Alger 16308, Algeria
- * Correspondence: milan.spetik@mendelu.cz (M.S.); dorota.tekielska@mendelu.cz (D.A.T.)
- + Co-first author, these authors contributed equally to this work.

Abstract: During a study of *Botryosphaeriaceae* species associated with grapevine trunk diseases in the Czech Republic, a collection of 22 *Botryosphaeriaceae*-like strains were isolated from four cultivars (Blaufränkisch, Pálava, Pinot Noir, and Welschriesling) in four distinct vineyards. Based on morphology and DNA sequence data (ITS, *tub2*, and *tef*), four species were identified: *Botryosphaeria dothidea*, *Diplodia mutila*, *D. seriata*, and *Neofusicoccum parvum*. These species are reported for the first time from grapevine in the Czech Republic. Relationships between vascular lesions and particular species were highlighted in this study. *Diplodia seriata* was the most frequently isolated species, present in all four sampled cultivars, while *D. mutila* was the least frequent, present only in 'Pálava'. The cultivar Pinot Noir was the most tolerant host for *Botryosphaeriaceae* fungi.

Keywords: Botryosphaeriaceae; grapevine trunk diseases; phylogeny; taxonomy; Vitis vinifera

Citation: Spetik, M.; Tekielska, D.A.; Berraf-Tebbal, A.; Pecenka, J.; Stuskova, K.; Mahamedi, A.E.; Eichmeier, A. Diversity of *Botryosphaeriaceae* Species Associated with Grapevine Trunk Diseases in the Czech Republic. *Diversity* **2023**, *15*, 800. https://doi.org/10.3390/ d15070800

Academic Editor: Spiros Papakostas

Received: 6 June 2023 Revised: 19 June 2023 Accepted: 22 June 2023 Published: 23 June 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Grapevine (*Vitis vinifera* L.) is one of the Czech Republic's most valuable fruit crops. In 2021, registered vineyards covered an area of 16,360 hectares, producing 90,060 tonnes annually, with an estimated market value of \$77,162,000 USD [1]. During the last few decades, an increased incidence of grapevine trunk diseases (GTDs) has been reported in grape-producing countries worldwide [2,3], with estimated economical loses exceeding 1 billion dollars annually [4].

The *Botryosphaeriaceae* family comprises a diverse group of cosmopolitan fungi, responsible for dieback and canker diseases in various woody hosts, including grapevines [5]. More than 26 different *Botryosphaeriaceae* species have been associated with Botryosphaeria dieback of grapevine [6]. External symptoms of Botryosphaeria dieback on grapevine include leaf spots, leaf wilting, fruit rots, perennial cankers, cordon dieback, and sudden plant mortality, while internal wood symptoms manifest as wedge-shaped necroses and dark lines beneath the bark [7].

Plants are usually infected by fungal spores that colonize the plants through winter pruning wounds. Besides infection through pruning wounds, the presence of latent infections caused by *Botryosphaeriaceae* fungi has been well documented in nurseries during the grapevine propagation process [8–11]. It was confirmed that *Botryosphaeriaceae* fungi can live within their host as endophytes or latent pathogens that become pathogenic when their hosts are exposed to stress conditions [12,13].

Due to a lack of studies, very little is known about the incidence of *Botryosphaeriaceae* pathogens in Czech vineyards. Thus, the aim of this study was to provide a comprehensive overview of the *Botryosphaeriaceae* fungi responsible for Botryosphaeria dieback in the Czech Republic.

2. Materials and Methods

2.1. Collection and Isolation

Plant material displaying symptoms of dieback (Figure 1) and asymptomatic material, in the case of a young 3-year-old vineyard, were collected from four commercial vineyards located in the South Moravia region of the Czech Republic with the permission of landowner (Table 1). The field observation and sampling were performed in July 2019. In total, 40 grapevines (ten plants per vineyard) were sampled and immediately transported to the laboratory of Mendeleum–Institute of Genetics, Mendel University, the Czech Republic, for further processing. Trunks and arms were debarked using a sterile scalpel and cut longitudinally and transversely to identify the type and location of internal wood necrosis. Bark-less wood tissues were subjected to surface sterilization. From each tissue, wood fragments, approx. 1 cm³, were cut and surface sterilized with 1% sodium hypochlorite for ten minutes and then rinsed three times with sterile distilled water, following protocols previously described [14]. The disinfected wood fragments were cut into small chips of 5×2 mm and aseptically transferred onto Petri dishes (five chips per plate) containing potato dextrose agar (PDA, HiMedia, Mumbai, India) supplemented with 0.5 g/L streptomycin sulfate (Sigma–Aldrich, St. Louis, MO, USA). The plates were incubated at 25 °C in the dark for four weeks, and fungal growth was checked every two days. Newly developed mycelia were immediately transferred to new PDA plates and purified using hyphal tip isolation [15]. All fungal isolates were deposited in MEND-F, Fungal Culture Collection of Mendeleum, Mendel University in Brno, the Czech Republic.

Table 1. Sampled localities and sampling characterization.

Sampling	Locality	Sampling Year	Age of the Vineyards	Sampled Vines (n)	Cultivar
1.	Klentnice (48°51′27.4″ N 16°39′04.9″ E)	2019	30	10	Pálava *
2.	Pavlov (48°51′49.1″ N 16°39′23.0″ E)	2019	30	10	Blaufränkisch **
3.	Maliny (48°49'36.6″ N 16°37'29.9″ E)	2019	30	10	Pinot Noir **
4.	Maliny (48°49'34.9″ N 16°37'23.6″ E)	2019	3	10	Welschriesling *

Note: * white varieties, ** red varieties.

2.2. Morphology

Botryosphaeriaceae-like isolates were selected according to the keys provided in the study by Phillips et al. [5]. Culture characteristics were determined on PDA incubated for 7 days at 25 °C in the dark. Water agar plates (WA, HiMedia, Mumbai, India) with double autoclaved pine needles were incubated for 1–3 weeks at 25 °C with exposure to near-UV light to induce sporulation.

2.3. DNA Extraction and Amplification

Genomic DNA was extracted from 7-day-old mycelium grown on PDA at 25 °C in darkness using a NucleoSpin DNA extraction kit (Macherey-Nagel, Düren, Germany) following the manufacturer's protocol. To confirm the identity of the fungal species, fragments of three genes were amplified: internal transcribed spacer region (ITS), beta-tubulin (*tub2*), and translation elongation factor 1-alpha (*tef*). PCR was performed utilizing G2 Flexi DNA polymerase (Promega, Madison, USA), and the primers are listed in Table 2, following protocols previously described [16,17]. Resulting products were purified using NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel, Düren, Germany) following the manufacturer's protocol. Subsequently, the purified products were sequenced from both ends using the Sanger method at Eurofins Genomics (Ebersberg, Germany).

Figure 1. Typical symptoms of sampled plants. (a,b) Apoplexy. (c–g) Internal wood necroses.

Table 2. Primers used for PCR amplification and sequencing	3
--	---

Locus	Primer	Primer DNA Sequence (5'-3')	Reference
ITS	ITS1 ITS4	TCCGTAGGTGAACCTGCGG TCCTCCGCTTATTGATATGC	[18]
tef	EF1-728F EF1-986R	CATCGAGAAGTTCGAGAAGG TACTTGAAGGAACCCTTACC	[19]
tub2	T1 Bt2b	AACATGCGTGAGATTGTAAGT ACCCTCAGTGTAGTGACCCTTGGC	[20] [21]

Note: ITS, internal transcribed spacer; *tef*, translation elongation factor 1-alpha; *tub2*, beta-tubulin.

2.4. Phylogenetic Analyses

To identify the isolates, newly generated DNA sequences, together with those retrieved from GenBank, were subjected to phylogenetic analyses (Table 3). The dataset of each gene was aligned separately using the MAFFT v. 7 employing the European Bioinformatics Institute platform (EMBL-EBI, https://www.ebi.ac.uk, accessed on 1 February 2023) [22]. Obtained alignment was manually checked and edited when necessary, using Geneious Prime[®] (v.2023.0.1., Biomatters Ltd., Auckland, New Zeland). Concatenated dataset was built in Sequence Matrix v.1.8 [23], and the missing information sites were denoted by a question mark. The combined (ITS, tub2, and tef) dataset was subjected to Maximum Likelihood (ML) analyses. Phylogenetic trees were constructed using IQ-TREE 2 [24], running 1000 bootstrap replicates. The best model for ML analyses was selected according to the Akaike Information Criterion (AIC). Bayesian analyses (BI) employed MrBayes v. 3.2.7 [25,26]. The BI analyses included four parallel runs of 50 M generations starting from a random tree topology, every 1000 generations were sampled, and the first 25% of the trees were discarded as the 'burn-in'. The most suitable substitution model was determined separately for each locus using jModelTest v. 2.1.7 [27]. Trees were visualized in iTOL v. 6.7 [28] and edited in Adobe Illustrator CC 2019. The resulting trees of both methods shared a similar topology; thus, we decided to present ML trees with support values of both methods-bootstrap (BS) and posterior probabilities (PP) labelled at the nodes. Values below 0.85 (PP) and 75% (BS) support are not shown or indicated with a hyphen. The alignments and corresponding trees are available on Figshare (10.6084/m9.figshare.22837472).

Table 3. Fungal species and barcodes used in phylogenetic analyses.

Species	Strain	Host	Geographic Origin	ITS	tub2	tef
Botryosphaeria agaves	CBS 133992 ^T	Agave sp.	Thailand	JX646791	JX646841	JX646856
B. corticis	CBS 119047 ^T	Vaccinium corymbosum	United States	DQ299245	EU673107	EU017539
B. dothidea	CBS 115476 ^T	Prunus sp.	Switzerland	AY236949	AY236927	AY236898
B. dothidea	CAA859	Quercus ilex	Portugal	MK940302	MT309378	MT309403
B. dothidea	CAA938	Quercus suber	Portugal	MT237173	MT309379	MT309401
B. dothidea	CAA860	Quercus suber	Portugal	MK940295	MT309380	MT309402
B. dothidea	MEND-F-0386	V. vinifera 'Pinot Noir'	Czechia	OQ987974	OQ994785	OQ994763
B. dothidea	MEND-F-0385	V. vinifera 'Pinot Noir'	Czechia	OQ987975	OQ994786	OQ994764
B. dothidea	MEND-F-0379	V. vinifera 'Pinot Noir'	Czechia	OQ987976	OQ994787	OQ994765
B. fabicerciana	CBS 127193 ^T	<i>Eucalyptus</i> sp.	China	HQ332197	KF779068	HQ332213
B. fusispora	MFLUCC 10-0098 ^T	Entada sp.	Thailand	JX646789	JX646839	JX646854
B. pseudoramosa	CERC2001 ^T	Eucalyptus sp.	China	KX277989	KX278198	KX278094
B. qingyuanensis	CERC2946 ^T	Eucalyptus sp.	China	KX278000	KX278209	KX278105
B. ramosa	CBS 122069 ^T	Eucalyptus camaldulensis	Australia	EU144055	KF766132	EU144070
B. rosaceae	CGMCC 3.18007 ^T	_	China	KX197074	KX197101	KX197094
B. wangensis	CERC2298 ^T	Cedrus deodara	China	KX278002	KX278211	KX278107
Diplodia africana	CBS 120835 ^T	Prunus persica	South Africa	EF445343	KF766129	EF445382
D. alatafructa	CBS 124931 ^T	Pterocarpus angolensis	South Africa	FJ888460	MG015799	FJ888444
D. corticola	CBS 112546 ^T	Quercus ilex	Spain	AY259090	EU673117	EU673310
D. corticola	CBS 112549	Quercus suber	Portugal	AY259100	DQ458853	AY573227
D. corticola	CAA862	Eucalyptus globulus	Portugal	MK940298	MT309381	MT309410
D. corticola	CAA865	Pinus pinaster	Portugal	MK940296	MT309382	MT309411
D. corticola	CAA870	Quercus ilex	Portugal	MK940303	MT309383	MT309408
D. corticola	CAA875	Quercus suber	Portugal	MK940297	MT309384	MT309409
D. corticola	CAA499	Eucalyptus globulus	Portugal	MG015741	MG015800	MG015723
D. corticola	CDFA519	Quercus sp.	United States	GU799472	GU799466	GU799469
D. insularis	CBS 140350 ^T	Pistacia lentiscus	Italy	KX833072	MG015809	KX833073
D. insularis	CAA890 ^T	Eucalyptus globulus	Portugal	MK940299	MT309385	MT309406
D. intermedia	CAA147 ^T	Malus pumila	Portugal	GQ923857	MG015811	GQ923825
D. mutila	CBS 136014	Populus alba	Portugal	KJ361837	MG015815	KJ361829
D. mutila	CBS 230.30	Phoenix dactylifera	United States	DQ458886	DQ458849	DQ458869
D. mutila	CAA507	Fraxinus ornus	Portugal	MG015746	MG015816	MG015728
D. mutila	CBS 121862	Pyrus communis	Netherlands	KX464093	KX464799	KX464567
D. mutila	CAA891	Eucalyptus globulus	Portugal	MK940300	MT309386	MT309407
D. mutila	MEND-F-0366	V. vinifera 'Palava'	Czechia	OQ987977	OQ994788	OQ994766

Table 3. Cont.

Species	Strain	Host	Geographic Origin	ITS	tub2	tef
D. mutila	MEND-F-0381	V. vinifera 'Palava'	Czechia	OQ987978	OQ994789	OQ994767
D. pseudoseriata	CBS 124906 ^T	Blepharocalyx salicifolius	Uruguay	EU080927	MG015820	EU863181
D. quercivora	CBS 133852	Quercus canariensis	Tunisia	JX894205	MG015821	JX894229
D. rosacearum	CBS 141915 ^T	Eriobotrya japonica	Italy	KT956270	MG015823	KU378605
D. sapinea	CBS 393.84 ^T	Pinus nigra	Netherlands	DQ458895	DQ458863	DQ458880
D. sapinea	CAA892	Pinus pinaster	Portugal	MK940292	MT309387	MT309404
D. savinea	CAA903	Ouercus suber	Portugal	MK940312	MT309388	MT309405
D. scrobiculata	CBS 109944 ^T	\widetilde{P} inus greggii	Mexico	DO458899	DO458867	DO458884
D. seriata	$CBS 112555^{T}$	Vitis vinifera	Portugal	AY259094	DO458856	AY573220
D. seriata	MEND-F-0367	V. vinifera 'Pinot Noir'	Czechia	OQ987979	OQ994790	OQ994768
D. seriata	MEND-F-0370 ^a	<i>V. vinifera</i> 'Welschriesling'	Czechia	OQ987980	OQ994791	OQ994769
D. seriata	MEND-F-0383	<i>V. vinifera '</i> Pinot Noir'	Czechia	OQ987981	OQ994792	OQ994770
D. seriata	MEND-F-0365 ^a	V. vinifera 'Welschriesling'	Czechia	OQ987982	OQ994793	OQ994771
D. seriata	MEND-F-0363	V. vinifera 'Palava'	Czechia	OQ987983	OQ994794	OQ994772
D. seriata	MEND-F-0368	<i>V. vinifera</i> 'Blaufränkisch'	Czechia	OQ987984	OQ994795	OQ994773
D. seriata	MEND-F-0372	V. vinifera 'Pinot Noir'	Czechia	OQ987985	OQ994796	OQ994774
D. seriata	MEND-F-0369 ^a	<i>v. vinijera</i> 'Welschriesling'	Czechia	OQ987986	OQ994797	OQ994775
D. seriata	MEND-F-0382	<i>V. vinifera</i> 'Blaufrankisch'	Czechia	OQ987987	OQ994798	OQ994776
D. seriata	MEND-F-0371 ^a	V. vinifera 'Welschriesling'	Czechia	OQ987988	OQ994799	OQ994777
D. seriata	MEND-F-0378	V. vinifera 'Pinot Noir'	Czechia	OO987989	OO994800	OO994778
D. subolohosa	CBS 124132 ^T	Fraxinus excelsior	Spain	DO458887	DO458852	DO458871
Endomelanconiopsis microspora	CBS 353.97 ^T	Soil	Papua N. Guinea	EU683655	KX464893	EU683636
Meofusicoccum arhuti	CBS 116131	Arhutus menziesii	United States	AV819720	KE531793	KE531792
N arhuti	CBS 117090	Arbutus menziesii	United States	AY819724	KF531794	KF531791
N australe	CMW6837 ^T	Acacia sp	Australia	ΔV339262	ΔV339254	AV339270
N. australa	CA A010	Eucalizatus alabulus	Portugal	MK040204	MT200205	MT200422
N australa	CAA919	Eucalimtus globulus	Portugal	KT440294	KY505027	KT440973
N australa	CAA454	Eucalimtus globulus	Portugal	KT440915	KX505927	KT440975
N. hatangarum	CRS 124024T	Torminalia catanna	Cameroon	EI000607	EI000624	EI000652
N. outungurum	CD3 124924	тегтипини синирри	Califeroon	FU821025	F1900034	F1900000
N. cordaticola	CMW 14124	- Currie and stress		EU821923	EU821803	EU821893
N. coraaticola	CBS 123634	Syzygium coraatum	South Africa	EU821898	EU821838	EU821868
N. cryptoaustrale	CMW237851	Eucalyptus sp.	South Africa	FJ752742	FJ752756	FJ752713
N. cryptoaustrale	LM03	Pistacia lentiscus	-	KX505912	KX505930	KX505903
N. cryptoaustrale	BL34	Vitis vinifera	-	KJ638328	KX505931	KX505904
N. eucalypticola	CBS 115679 ¹	Eucalyptus grandis	Australia	AY615141	AY615125	AY615133
N. eucalyptorum	CBS 115791 ^T	Eucalyptus grandis	South Africa	AF283686	AY236920	AY236891
N. eucalyptorum	CAA932	Eucalyptus globulus	Portugal	MK940311	MT309396	MT309422
N. eucalyptorum	CAA511	Eucalyptus globulus	Portugal	KX505907	KX505919	KX505896
N. eucalyptorum	CAA709	Eucalyptus globulus	Portugal	KT440941	KX505920	KT441001
N. eucalyptorum	CAA713	Eucalyptus globulus	Portugal	KT440943	KX505921	KT441003
N. kwambonambiense	CBS 123639	Syzygium cordatum	South Africa	EU821900	EU821840	EU821870
N. kwambonambiense	CAA755	Eucalyptus globulus	Portugal	KT440946	KX505917	KT441006
N. kwambonambiense	CMW14155	_		EU821923	EU821863	EU821893
N. lumnitzerae	CMW41469 ^T	Barringtonia racemosa	South Africa	KP860881	KP860801	KP860724
N. luteum	CBS 110299 ^T	Vitis vinifera	Portugal	AY259091	DQ458848	KX464688
N. luteum	CAA935	Eucalyptus globulus	Portugal	MK940305	MT309397	MT309418
N. luteum	CAA628	Fraxinus excelsior	Portugal	KX505911	KX505929	KX505902
N. luteum	CMW9076	_	_	AY236946	AY236922	AY236893
N. mangiferae	CBS 118531 ^T	Mangifera indica	Australia	AY615185	AY615172	DO093221
N. manoromorum	CMW41365 ^T	Avicennia marina	South Africa	KP860859	KP860779	KP860702
N mediterraneum	CBS 121718	Fucalintus en	Greece	GU251176	GU251836	GU251308
N meditarranaum	$C\Delta\Delta 002$	Dictacia wara	United States	FU017527	KX505025	KX505000
N maditarranaum	SPAQ	Distacia lanticous	office offices	KY505010	KY505923	KY505001
N. meunerruneum	JI A7 IMI500149	1 ISIUCIU IEIIIISCUS Vaccinium commission	-	IY217210	KX500920	KYE05005
N. nonquuestium	CDC 120000T	vuccinium corymbosum	- Australia	JAZ1/019 EU201020	KABUB918	KAJUJ093
IN. OCCULULUM	CD5 120008*	Lucuryprus grunuis	Australia	EU301030	EU3394/2	EU339309
in. parvum	CIVIIV9081*	ropulus nigra	INEW Zealand	AY236943	AY236917	AI 236888
IN. puroum	CAA940	Eucuryptus groburus	Fortugal	MK940304	IVI I 309399	IVI1309421

Species	Strain	Host	Geographic Origin	ITS	tub2	tef
N. parvum	CMW9080	-	_	AY236942	AY236916	AY236887
N. parvum	CAA322	Malus pumila	Portugal	KX505906	KX505916	KX505894
N. parvum	MEND-F-0375	V. vinifera 'Pinot Noir'	Czechia	OQ987990	OQ994801	OQ994779
N. parvum	MEND-F-0376	V. vinifera 'Pinot Noir'	Czechia	OQ987991	OQ994802	OQ994780
N. parvum	MEND-F-0377	<i>V. vinifera</i> 'Blaufränkisch'	Czechia	OQ987992	OQ994803	OQ994781
N. parvum	MEND-F-0374	V. vinifera 'Pinot Noir'	Czechia	OQ987993	OQ994804	OQ994782
N. parvum	MEND-F-0373	<i>V. vinifera</i> 'Blaufränkisch'	Czechia	OQ987994	OQ994805	OQ994783
N. parvum	MEND-F-0384	V. vinifera 'Pinot Noir'	Czechia	OQ987995	OQ994806	OQ994784
N. pistaciarum	CBS 113084	_	United States	KX464187	KX464999	KX464713
N. pistaciicola	CBS 113089 ^T	Pistacia vera	United States	KX464199	KX465014	KX464727
N. ribis	CBS 115475 ^T	<i>Ribes</i> sp.	United States	AY236935	AY236906	AY236877
N. ribis	CBS 121.26	Ribes sp.	-	AF241177	AY236908	AY236879
N. umdonicola	CMW14106	_	-	EU821899	EU821839	EU821869
N. umdonicola	CMW14058	_	-	EU821904	EU821844	EU821874
N. vitifusiforme	B8	Vitis vinifera	-	KC469638	KC884951	KC884948
N. vitifusiforme	B9	Vitis vinifera	_	KX505908	KX505923	KX505898

Table 3. Cont.

Notes: ^T ex-type strain. ^a indicates strain originated from asymptomatic plant. Newly obtained strains and newly generated sequences are highligted in bold. CBS, Westerdijk Fungal Biodiversity Institute, Netherlands; CGMCC, China General Microbiological Culture Collection; CMW, the culture collection of the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria; IMI, CABI Bioscience, Eggham, the UK; MEND-F, fungal culture collection of Mendeleum, Mendel University in Brno, the Czech Republic; MFLUCC, culture collection of Mae Fah Luang University, Thailand.

3. Results

3.1. Fungal Isolation

In total, 204 isolates were obtained from the 40 sampled plants. A preliminary morphological characterization revealed 22 isolates that displayed morphological and growth characteristics consistent with the *Botryosphaeriaceae* family.

3.2. Phylogenetic Analyses

Molecular identification was performed on the 22 representative isolates, and their identity confirmed employing three-gene based (ITS, *tub2*, *tef*) phylogenetic analyses. The dataset consisted of sequences from 106 isolates (Table 3), including the outgroup *Endomelanconiopsis microspora* (CBS 353.97^T). The combined dataset contained a total of 1259 characters, including alignment gaps. Among these characters, 822 were conserved, 351 provided informative data for parsimony analysis, and 86 were unique. Detailed results for each individual gene dataset, along with the corresponding models used, can be found in Table 4. The ML/BI analyses (Figures 2 and 3) placed 11 isolates in group with the type strain of *D. seriata* (CBS 112555) with strong support of 91/0.99 (BP/pp); six isolates formed a fully supported clade with the type strain (CMW 9081) and three other *Neofusicoccum parvum* strains; three isolates were placed in group with the type strain (CBS 115476) and three other strains of *Botryosphaeria dothidea* with robust 97/1.0 (BP/pp) support; finally, two isolates were displayed in a well-supported clade 98/0.95 (BP/pp) with the type strain (CBS 121862) and three other strains of *D. mutila*.

Table 4. Detailed characteristics of phylogeny datasets.

Locus	No. of Sequences	No. of Characters	Parsimony-Informative	Constant	Unique	BI Model
ITS	134	503	113	366	24	GTR + I + G
tef	134	336	143	150	43	HKY + G
tub2	123	420	95	306	19	GTR + G

Figure 2. Maximum likelihood tree generated from the combined (ITS, *tef*, and *tub2*) *Botryosphaeriaceae* dataset. Support values of both methods–bootstrap (BS) and posterior probabilities (pp) labelled at the nodes. Values below 75% (BS) and 0.85 (pp) support are not shown or indicated with a hyphen. Asterisk represents full support. Strains obtained in this study are highlighted in bold. ^T indicates ex-type strain. The tree continues in Figure 3.

Figure 3. Maximum likelihood tree generated from the combined (ITS, *tef*, and *tub2*) *Botryosphaeriaceae* dataset. Support values of both methods–bootstrap (BS) and posterior probabilities (pp) labelled at the nodes. Values below 75% (BS) and 0.85 (pp) support are not shown or indicated with a hyphen. Asterisk represents full support. Strains obtained in this study are highlighted in bold. ^T indicates ex-type strain. *Endomelanconiopsis microspora* strain CBS 353.97^T served as an outgroup.

3.3. Species Diversity in Different Grapevine Varieties and Wood necrosis

Diplodia seriata was the most frequently isolated species (11 isolates), present in all four sampled varieties, followed by *N. parvum* (n = 6) isolated from both red varieties, *B. dothidea* (n = 3) detected only in cf. Pinot Noir, and *D. mutila* (n = 2) detected only in cf. Pálava.

Wood necroses associated with specific pathogens are displayed in Figure 4. Three different shapes of inner necrosis were observed in transverse sections of trunk and arm from symptomatic grapevines: black spots (BS); black sectorial necrosis (BSN); black central necrosis (BCN). *Botryosphaeriaceae* isolates were inhabiting mostly the BSN (35%), followed by BS and BCS with 31% and 17%, respectively. The remaining 17% of the obtained *Botryosphaeriaceae* isolates originated from asymptomatic wood tissues from the young Welschriesling vineyard.

4. Discussion

This study provides the initial comprehensive evaluation of the occurrence of *Botryosphaeri aceae* species in grapevines within Czech vineyards. Among 22 *Botryosphaeriaceae* strains obtained, four species belonging to the three genera were detected, among which *Diplodia seriata* De Not. comprised 50%, *Neofusicoccum parvum* (Pennycook and Samuels) Crous, Slippers, and A.J.L. Phillips 27%, *Botryosphaeria dothidea* (Moug.) Ces. and De Not. 14%, and *Diplodia mutila* (Fr.) Mont. 9%. These species have already been isolated from grapevines worldwide and their pathogenicity has been confirmed [29–35]. The most isolated species in the Czech Republic was *D. seriata*. This finding is in accordance with previous studies that have identified *D. seriata* as the predominant fungus associated with the decline of mature vines in Iran [36], Mexico [37], Hungary [38], and Tunisia [39].

In our study, the pathogen *D. seriata* was also isolated from the asymptomatic material from the young (3-year-old) vineyard, suggesting latent infection from propagation process in grapevine nursery. This result is consistent with previous studies that reported infection by *Botryosphaeriaceae* fungi in grapevine nurseries. Fourie et al. reported the presence of latent infection caused by *Botryosphaeriaceae* fungi in rootstock mother plants in South Africa [40]. Aroca et al. reported presence of three *Botryosphaeriaceae* fungi in grapevine propagation material in Spain, namely, *Botryosphaeria dothidea*, *Diplodia seriata*, and *Neofusicoccum parvum* [41]. Eichmeier et al. also reported the presence of the same three *Botryosphaeriaceae* fungi in young grapevine seedlings in Spain [42].

To the best of our knowledge, only two studies have been performed to date on detection of GTDs in the Czech Republic. The initial investigation was conducted by a study of Baranek et al. [43]. The authors examined two grapevine cultivars, namely, 'Chardonnay' and 'Cabernet Sauvignon', and identified a total of 21 fungal taxa. Among these taxa,

only one species, *Botryosphaeria dothidea*, was classified under the *Botryosphaeriaceae* family. Subsequently, an incidence of *Dactylonectria torresensis*, a causal agent of black-foot disease, was reported from Czech vineyards [44].

Multiple *Botryosphaeriaceae* species do not have specificity in host range and have the ability to transition from their original indigenous hosts to agricultural crops cultivated in proximity [45]. Excluding grapevine, two *Botryosphaeriaceae* spp. were recently reported causing dieback of highbush blueberry from the Czech Republic, namely, *Lasiodiplodia theobromae* and *Neofusicoccum parvum* [46,47].

5. Conclusions

This study provided an investigation of the *Botryosphaeriaceae* fungi associated with GTDs in four Czech vineyards. Four pathogenic *Botryosphaeriaceae* spp. have been identified based on phylogenetic analyses, and a correlation between fungal isolates, grapevine cultivar, and type of wood necroses was described in this study. The detection of the pathogen *Diplodia seriata* in young asymptomatic grapevine plants represents an urgent matter for Czech viticulture. Producing healthy propagation material is an essential requirement. We propose incorporating molecular detection techniques into nurseries to reveal hidden fungal infection. We also highly recommend implementing preventative treatment during the grapevine propagation process using hot water treatment [48], novel nanomaterials [49], or phenolic compounds [50].

Author Contributions: Conceptualization, A.E. and A.B.-T.; Methodology, A.B.-T.; Isolation, A.E.M., D.A.T., J.P., K.S. and M.S.; DNA extraction, D.A.T., J.P. and M.S.; Molecular work, M.S.; Phylogeny analyses, M.S.; Visualization, M.S.; Writing—Original Draft Preparation, M.S. and D.A.T.; Review and Editing, A.B.-T., A.E. and D.A.T.; Supervision, A.E.; Project Administration, M.S. and A.E.; Funding Acquisition, A.E. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding: The project was supported by the Internal Grant of Mendel University in Brno, No. IGA-ZF/2021-SI1003 and by Ministerstvo kultury, Program NAKI III: DH23P03OVV053.

Data Availability Statement: Newly generated sequences were deposited in the NCBI GenBank database under the accession numbers shown in Table 3. The alignments and corresponding trees are available on Figshare (10.6084/m9.figshare.22837472).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. FAOSTAT. Food and Agriculture Organization of the United Nations; FAOSTAT Database: Rome, Italy, 2023.
- Fontaine, F.; Gramaje, D.; Armengol, J.; Smart, R.; Nagy, Z.A.; Borgo, M.; Rego, C.; Corio-Costet, M.-F. Grapevine Trunk Diseases. A Review; OIV Publications: Paris, France, 2016; p. 24.
- Bertsch, C.; Ramírez-Suero, M.; Magninrobert, M.; Larignon, P.; Chong, J.; Abou-Mansour, E.; Spagnolo, A.; Clément, C.; Fontaine, F. Grapevine trunk diseases: Complex and still poorly understood. *Plant Pathol.* 2013, 62, 243–265. [CrossRef]
- 4. Hofstetter, V.; Buyck, B.; Croll, D.; Viret, O.; Couloux, A.; Gindro, K. What if esca disease of grapevine were not a fungal disease? *Fungal Divers*. **2012**, *54*, 51–67. [CrossRef]
- 5. Phillips, A.J.L.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The *Botryosphaeriaceae*: Genera and species known from culture. *Stud. Mycol.* **2013**, *76*, 51–167. [CrossRef]
- 6. Gramaje, D.; Úrbez-Torres, J.R.; Sosnowski, M.R. Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. *Plant Dis.* **2017**, *102*, 12–39. [CrossRef] [PubMed]
- 7. Urbez-Torres, J. The status of Botryosphaeriaceae species infecting grapevines. Phytopathol. Mediterr. 2011, 50, 5–45.
- Aroca, Á.; Gramaje, D.; Armengol, J.; García-Jiménez, J.; Raposo, R. Evaluation of the grapevine nursery propagation process as a source of *Phaeoacremonium* spp. and *Phaeomoniella chlamydospora* and occurrence of trunk disease pathogens in rootstock mother vines in Spain. *Eur. J. Plant Pathol.* 2010, 126, 165–174. [CrossRef]
- 9. Pintos, C.; Redondo, V.; Costas, D.; Aguín, O.; Mansilla, P. Fungi associated with grapevine trunk diseases in nursery-produced Vitis vinifera plants. *Phytopathol. Mediterr.* **2018**, *57*, 407–424. [CrossRef]
- 10. Carbone, M.J.; Gelabert, M.; Moreira, V.; Mondino, P.; Alaniz, S. Grapevine nursery propagation material as source of fungal trunk disease pathogens in Uruguay. *Front. Fungal Biol.* **2022**, *3*. [CrossRef]

- 11. Billones-Baaijens, R.; Ridgway, H.J.; Jones, E.E.; Jaspers, M.V. Inoculum sources of *Botryosphaeriaceae* species in New Zealand grapevine nurseries. *Eur. J. Plant Pathol.* **2013**, *135*, 159–174. [CrossRef]
- 12. Slippers, B.; Wingfield, M.J. *Botryosphaeriaceae* as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. *Fungal Biol. Rev.* 2007, 21, 90–106. [CrossRef]
- Marsberg, A.; Kemler, M.; Jami, F.; Nagel, J.H.; Postma-Smidt, A.; Naidoo, S.; Wingfield, M.J.; Crous, P.W.; Spatafora, J.W.; Hesse, C.N.; et al. *Botryosphaeria dothidea*: A latent pathogen of global importance to woody plant health. *Mol. Plant Pathol.* 2017, 18, 477–488. [CrossRef] [PubMed]
- 14. Berraf-Tebbal, A.; Mahamedi, A.E.; Aigoun-Mouhous, W.; Spetik, M.; Čechová, J.; Pokluda, R.; Baránek, M.; Eichmeier, A.; Alves, A. *Lasiodiplodia mitidjana* sp. nov. and other *Botryosphaeriaceae* species causing branch canker and dieback of Citrus sinensis in Algeria. *PLoS ONE* **2020**, *15*, e0232448. [CrossRef] [PubMed]
- 15. Jensen, A.B.; Aronstein, K.; Flores, J.M.; Vojvodic, S.; Palacio, M.A.; Spivak, M. Standard methods for fungal brood disease research. J. Apic. Res. 2019, 52, 1–20. [CrossRef]
- 16. Eichmeier, A.; Pecenka, J.; Spetik, M.; Necas, T.; Ondrasek, I.; Armengol, J.; León, M.; Berlanas, C.; Gramaje, D. Fungal Trunk Pathogens Associated with *Juglans regia* in the Czech Republic. *Plant Dis.* **2019**, *104*, 761–771. [CrossRef]
- 17. Spetik, M.; Berraf-Tebbal, A.; Gramaje, D.; Mahamedi, A.E.; Stusková, K.; Burgova, J.; Eichmeier, A. *Paecilomyces clematidis* (Eurotiales, Thermoascaceae): A new species from Clematis root. *Phytotaxa* **2022**, 559, 238–246. [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322.
- 19. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* **1999**, *91*, 553–556. [CrossRef]
- 20. O'Donnell, K.; Cigelnik, E. Two Divergent Intragenomic rDNA ITS2 Types within a Monophyletic Lineage of the Fungus *Fusarium* Are Nonorthologous. *Mol. Phylogenetics Evol.* **1997**, *7*, 103–116. [CrossRef]
- 21. Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Appl. Environ. Microbiol.* **1995**, *61*, 1323–1330. [CrossRef]
- Li, W.; Cowley, A.; Uludag, M.; Gur, T.; McWilliam, H.; Squizzato, S.; Park, Y.M.; Buso, N.; Lopez, R. The EMBL-EBI bioinformatics web and programmatic tools framework. *Nucleic Acids Res.* 2015, 43, 580–584. [CrossRef]
- 23. Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. *Cladistics* **2011**, *27*, 171–180. [CrossRef]
- 24. Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. *Mol. Biol. Evol.* 2020, *37*, 1530–1534. [CrossRef] [PubMed]
- 25. Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* **2003**, *19*, 1572–1574. [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. *Syst. Biol.* 2012, *61*, 539–542. [CrossRef]
- 27. Posada, D. jModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [CrossRef] [PubMed]
- 28. Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. *Nucleic Acids Res.* 2021, 49, W293–W296. [CrossRef] [PubMed]
- Úrbez-Torres, J.R.; Gubler, W.D. Pathogenicity of Botryosphaeriaceae Species Isolated from Grapevine Cankers in California. *Plant Dis.* 2009, 93, 584–592. [CrossRef] [PubMed]
- 30. Akgul, D.S.; Savas, N.G.; Eskalen, A. First Report of Wood Canker Caused by *Botryosphaeria dothidea*, *Diplodia seriata*, *Neofusicoccum parvum*, and *Lasiodiplodia theobromae* on Grapevine in Turkey. *Plant Dis.* **2013**, *98*, 568. [CrossRef]
- Arkam, M.; Alves, A.; Lopes, A.; Čechová, J.; Pokluda, R.; Eichmeier, A.; Zitouni, A.; Mahamedi, A.E.; Berraf-Tebbal, A. Diversity of *Botryosphaeriaceae* causing grapevine trunk diseases and their spatial distribution under different climatic conditions in Algeria. *Eur. J. Plant Pathol.* 2021, 161, 933–952. [CrossRef]
- 32. Billones-Baaijens, R.; Savocchia, S. A review of *Botryosphaeriaceae* species associated with grapevine trunk diseases in Australia and New Zealand. Australas. *Plant Pathol.* 2019, *48*, 3–18. [CrossRef]
- Yan, J.-Y.; Xie, Y.; Zhang, W.; Wang, Y.; Liu, J.-K.; Hyde, K.D.; Seem, R.C.; Zhang, G.-Z.; Wang, Z.-Y.; Yao, S.-W.; et al. Species of Botryosphaeriaceae involved in grapevine dieback in China. Fungal Divers. 2013, 61, 221–236. [CrossRef]
- Pitt, W.M.; Huang, R.; Steel, C.C.; Savocchia, S. Identification, distribution and current taxonomy of *Botryosphaeriaceae* species associated with grapevine decline in New South Wales and South Australia. *Aust. J. Grape Wine Res.* 2010, 16, 258–271. [CrossRef]
- 35. Phillips, A.J.L. *Botryosphaeria* species associated with diseases of grapevines in Portugal. *Phytopathol. Mediterr.* **2002**, *41*, 3–18. [CrossRef]
- 36. Mohammadi, H.; Gramaje, D.; Banihashemi, Z.; Armengol, J. Characterization of *Diplodia seriata* and *Neofusicoccum parvum* associated with grapevine decline in Iran. *J. Agric. Sci. Technol.* **2013**, *15*, 603–616.
- Úrbez-Torres, J.R.; Leavitt, G.M.; Guerrero, J.C.; Guevara, J.; Gubler, W.D. Identification and Pathogenicity of *Lasiodiplodia* theobromae and *Diplodia seriata*, the Causal Agents of Bot Canker Disease of Grapevines in Mexico. *Plant Dis.* 2008, *92*, 519–529. [CrossRef]

- Kovács, C.; Balling, P.; Bihari, Z.; Nagy, A.; Sándor, E. Incidence of grapevine trunk diseases is influenced by soil, topology and vineyard age, but not by *Diplodia seriata* infection rate in the Tokaj Wine Region, Hungary. *Phytoparasitica* 2017, 45, 21–32. [CrossRef]
- Chebil, S.; Fersi, R.; Bouzid, M.; Quaglino, F.; Chenenaoui, S.; Melki, I.; Durante, G.; Zacchi, E.; Bahri, B.A.; Bianco, P.A.; et al. Fungi from the *Diaporthaceae* and *Botryosphaeriaceae* families associated with grapevine decline in Tunisia. *Cienc. E Investig. Agrar.* 2017, 44, 127–138. [CrossRef]
- 40. Fourie, P.H.; Halleen, F. Occurrence of grapevine trunk disease pathogens in rootstock mother plants in South Africa. *Australas. Plant Pathol.* **2004**, *33*, 313–315. [CrossRef]
- Aroca, A.; García-Figueres, F.; Bracamonte, L.; Luque, J.; Raposo, R. A Survey of Trunk Disease Pathogens within Rootstocks of Grapevines in Spain. *Eur. J. Plant Pathol.* 2006, 115, 195–202. [CrossRef]
- Eichmeier, A.; Pečenka, J.; Peňázová, E.; Baránek, M.; Català-García, S.; León, M.; Armengol, J.; Gramaje, D. High-throughput amplicon sequencing-based analysis of active fungal communities inhabiting grapevine after hot-water treatments reveals unexpectedly high fungal diversity. *Fungal Ecol.* 2018, 36, 26–38. [CrossRef]
- Baránek, M.; Armengol, J.; Holleinová, V.; Pečenka, J.; Calzarano, F.; Peňázová, E.; Vachůn, M.; Eichmeier, A. Incidence of symptoms and fungal pathogens associated with grapevine trunk diseases in Czech vineyards: First example from a north-eastern European grape-growing region. *Phytopathol. Mediterr.* 2018, 57, 449–458. [CrossRef]
- 44. Pečenka, J.; Eichmeier, A.; Peňázová, E.; Baránek, M.; León, M.; Armengol, J. First Report of *Dactylonectria torresensis* Causing Black-Foot Disease on Grapevines in the Czech Republic. *Plant Dis.* **2018**, *102*, 2038. [CrossRef]
- Mondragón, F.A.; Rodríguez-Alvarado, G.; Gmez-Dorantes, N.; Guerra-Santos, J.J.; Fernández-Pavía, S.P. Botryosphaeriaceae: A complex, diverse and cosmopolitan family of fungi. *Rev. Mex. Cienc. Agrícolas* 2021, 12, 643–654. [CrossRef]
- 46. Spetik, M.; Cechova, J.; Eichmeier, A. First report of *Neofusicoccum parvum* causing stem blight and dieback of highbush blueberry in the Czech Republic. *Plant Dis.* **2023**. [CrossRef] [PubMed]
- Pečenka, J.; Tekielska, D.A.; Kocanová, M.; Peňázová, E.; Berraf-Tebbal, A.; Eichmeier, A. First Report of Lasiodiplodia theobromae Causing Decline of Blueberry (Vaccinium corymbosum) in the Czech Republic. Plant Dis. 2020, 105, 215. [CrossRef] [PubMed]
- Elena, G.; DI Bella, V.; Armengol, J.; Luque, J. Viability of *Botryosphaeriaceae* species pathogenic to grapevine after hot water treatment. *Phytopathol. Mediterr.* 2015, 54, 325–334. [CrossRef]
- Štůsková, K.; Pečenka, J.; Tekielska, D.A.; Špetík, M.; Bytešníková, Z.; Švec, P.; Ondreáš, F.; Ridošková, A.; Richtera, L.; Adam, V.; et al. The in vitro effects of selected substances and nanomaterials against *Diaporthe eres*, *Diplodia seriata* and *Eutypa lata*. *Ann. Appl. Biol.* 2023, 182, 226–237. [CrossRef]
- Špetík, M.; Balík, J.; Híc, P.; Hakalová, E.; Štůsková, K.; Frejlichová, L.; Tříska, J.; Eichmeier, A. Lignans Extract from Knotwood of Norway Spruce—A Possible New Weapon against GTDs. J. Fungi 2022, 8, 357. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.