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Abstract: The ability to correctly identify specimens at the species level is crucial for assessing and
conserving biodiversity. Despite this, species-specific data are lacking for many of South Africa’s
catsharks due to a high level of morphological stasis. As comprehensive and curated DNA reference
libraries are required for the reliable identification of specimens from morphologically similar species,
this study reviewed and contributed to the availability of cytochrome c oxidase subunit I (COI) and
nicotinamide adenine dehydrogenase subunit 2 (NADH2) sequences for South Africa’s catsharks.
A molecular taxonomic approach, implementing species delimitation and specimen assignment
methods, was used to assess and highlight any taxonomic uncertainties and/or errors in public
databases. The investigated species were summarised into 47 molecular operational taxonomic units
(MOTUs), with some conflicting specimen assignments. Two Apristurus specimens sampled in this
study remained unidentified, revealing the presence of previously undocumented genetic diversity.
In contrast, haplotype sharing within Haploblepharus—attributed to nucleotide ambiguities—resulted
in the delimitation of three congeners into a single MOTU. This study reveals that molecular taxon-
omy has the potential to flag undocumented species and/or misidentified specimens, and further
highlights the need to implement integrated taxonomic assessments on catsharks that represent an
irreplaceable component of biodiversity in the region.

Keywords: Pentanchidae; Scyliorhinidae; conservation; DNA barcoding; Sanger sequencing; double
peaks; heteroplasmy; introgression

1. Introduction

Catsharks are relatively small-bodied, demersal species that are globally distributed
and typically found on continental shelves and slopes in tropical to cool temperate wa-
ters [1,2]. Catsharks represent the largest group of living sharks, comprising 18 genera
and 165 species—many of which were described over the last two decades [1–3]. While
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the classification of catsharks within the order Carcharhiniformes is well defined [4,5], the
arrangement and scope of the family has historically been complex [4,6]. Since phylogenetic
inferences differ depending on the dataset analysed (i.e., morphology or DNA), phylo-
genetic relationships among catsharks remain uncertain [7]. However, Atelomycteridae
(3 genera and 13 species), Pentanchidae (12 genera and 115 species), and Scyliorhinidae
(3 genera and 37 species) are currently recognised as valid families [3,7].

The South African coastline has been appraised as a biodiversity hotspot for chon-
drichthyan species (sharks, skates, rays, and chimaeras) using three measures of species rich-
ness: the total number of species, evolutionarily distinct species, and endemic species [8,9].
The region was also highlighted as a priority area for the expansion of conservation mea-
sures, especially for threatened endemics [8,10]. Endemic species are of particular concern
as the threat status of these species is exacerbated by a high habitat specificity and restricted
geographic range [11]. South African waters are inhabited by a high number of catshark
species (a large proportion of which are endemic or near-endemic), with Pentanchidae
ranking as the second most speciose shark family in the region [12]. Although not targeted,
species-specific data are required as catsharks are reported as incidental catch by several
fisheries [13]. Additionally, range shifts and reductions in the area of occupancy—possibly
linked to climate change and habitat degradation, respectively—have been suspected for a
number of catshark species [14].

Following the recent global reassessment of the conservation status of chondrichthyan
species [15], 7 of the 16 catsharks occurring in South African waters were categorised
as threatened by the International Union for the Conservation of Nature’s (IUCN) Red
List of Threatened Species (Table S1) [14]. Despite this, many of South Africa’s catsharks
remain understudied, which is concerning as unresolved taxonomic issues still exist within
the group. For example, the genus Apristurus comprises two locally described species
(A. microps and A. saldanha); however, a taxonomic revision is currently in progress as an
additional two or three unconfirmed species may be present [12]. Substantial taxonomic
uncertainty also exists within the morphologically conserved genus Haploblepharus, which
currently comprises four recognised species: H. edwardsii, H. fuscus, H. kistnasamyi, and H.
pictus [12,16]. Prior to its description, H. kistnasamyi was thought to be a regional colour
variant of H. edwardsii [6]. Although described as morphologically distinct [17], Human [18]
reported that only 38.5% of H. kistnasamyi specimens could be correctly classified into their
observed species group based on a comprehensive set of morphometric measurements.
The requirement of a further detailed morphological and genetic study was suggested
to fully delineate H. kistnasamyi from its congeners [12,16,18]. The possible occurrence
of hybridisation among congeners, mentioned in morphological [16,18] and molecular
studies [19], further confounds specimen identification issues within Haploblepharus.

Since poorly defined species boundaries result in unreliable abundance estimates, dis-
tribution ranges, and fishery catch data [20], the first step towards biodiversity monitoring
and effective conservation is the accurate identification of specimens [21]. However, with
limited access to taxonomic expertise or the ability to examine diagnostic traits (e.g., mor-
phometrics), it has become apparent that in-field identification for some species remains
problematic [13,22]. In elasmobranchs (sharks, skates, and rays), specimen misidentification
is frequently reported due to difficulties in unambiguously identifying congeneric species
as a result of highly similar—sometimes overlapping—morphological traits [16,23–25].
Morphology-based identification methods are further compromised when examining speci-
mens at different life stages or when species display phenotypic plasticity [16,26]. In recent
years, the use of DNA sequence-based methods (e.g., DNA barcoding) has been adopted to
speed up the accurate documentation of biodiversity [27,28].

DNA barcoding assists with specimen identification and species discovery through the
use of a standardised gene region, namely, the mitochondrial cytochrome c oxidase subunit
I (COI) gene [29,30]. From an analytical perspective, DNA barcoding relies on the obser-
vation that between-species variation exceeds within-species variation—with researchers
generally implementing the use of a 2% threshold for interspecific divergence [29,31].
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However, elasmobranchs have previously been shown to have relatively low evolutionary
rates [32,33], with some shark and ray genera displaying intrageneric genetic distances of
approximately 1% [26,34,35]. The use of the fast-evolving nicotinamide adenine dehydroge-
nase subunit 2 (NADH2) gene was therefore recommended for elasmobranchs as it allows
for the discrimination of closely related species, cryptic species, species complexes as well
as geographical variants [36–40]. Although DNA-based methods were originally proposed
for the assignment of unidentified specimens to known species [29], cryptic diversity and
conflicting taxonomic hypotheses led to the development of several species delimitation
methods [41–43].

Delimitation analyses have increasingly been applied to ascertain the number of
species-level entities present within a given dataset [44], while specimen assignment meth-
ods are used to assign a query sequence from an unidentified specimen to a known
species [45]. However, reliable specimen identification is ultimately limited to the accuracy
of existing knowledge available on open-access databases such as the Barcode of Life Data
System (BOLD) [46] or GenBank® [47]. Recent studies have suggested that the use of a
molecular taxonomic approach, implementing both species delimitation and specimen
assignment methods, has proven beneficial for the maintenance and validation of DNA
reference libraries [48–51]—especially for taxonomically difficult lineages [52,53]. As such,
the aim of the current study was to review and contribute to the availability of COI and
NADH2 sequences for South Africa’s catsharks, comprising eight genera across two fam-
ilies. A combination of species delimitation and specimen assignment approaches were
subsequently used to identify and critically discuss errors occurring in public databases
which may compromise effective conservation and management of the investigated taxa.

2. Materials and Methods
2.1. Sample Collection

A total of 56 samples were collected along the South African coastline from a variety
of catshark species. Specimens were caught using rod and reel fishing gear, by hand
during snorkel surveys, or collected during research trawl surveys. Following capture,
specimens were identified using external morphology and colour patterns according to
guidelines described in Compagno et al. [54]. When possible, digital images and the sex
of each individual were recorded. Specimens were measured on a fish measuring mat at
capture site, and sharks larger than 40 centimetres (cm) in total length (TL) were tagged
with an Oceanographic Research Institute (ORI) dart tag [55]. Approximately 1 cm2 of
tissue sample was taken from the trailing edge of a dorsal fin and stored in 90% ethanol
at room temperature. Specimen and collection data, in addition to the digital images,
were uploaded to the “South Africa’s catsharks” project (Project Code: MBBSC), accessible
through BOLD.

2.2. DNA Extraction, Amplification, and Sequencing

Genomic DNA was isolated using a cetyltrimethylammonium bromide (CTAB) ex-
traction protocol [56]. The quantity and quality of extracted DNA were assessed us-
ing a NanoDrop™ ND 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). Two mitochondrial genes (COI and NADH2) were amplified for 1 to 13 individuals
per species.

The 5′ region of the COI gene was amplified using various combinations of universal
primers: FishF1 and FishR1, FishF2 and FishR2, or VF2_t1 and FR1d_t1 [57,58]. Polymerase
chain reaction (PCR) was carried out in 15 µL reaction volumes containing 1X PCR buffer,
2.5 mM MgCl2, 200 µM of deoxynucleotide triphosphates (dNTPs), 0.1 µM of each primer,
0.625 U of GoTaq® DNA polymerase (Promega, Madison, WI, USA), and ~50 ng of template
DNA. The following thermocycling conditions were used: 95 ◦C for 2 min followed by
35 cycles of 94 ◦C for 30 s, optimised annealing temperature (57 ◦C for Fish1, 53 ◦C for
Fish2, and 54 ◦C for the M13-tailed primers) for 30 s, 72 ◦C for 1 min, and a final elongation
step at 72 ◦C for 10 min.
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An ~1044 base pair (bp) fragment from the NADH2 gene was amplified using the
Ilem-Mustelus and Asn-Mustelus primers [59]. The 15 µL reaction volume consisted of 1X
PCR buffer, 2 mM MgCl2, 200 µM of dNTPs, 0.5 µM of each primer, 0.5 U of GoTaq® DNA
polymerase (Promega, Madison, WI, USA), and ~50 ng of template DNA. Thermocycling
conditions consisted of the following: 94 ◦C for 2 min, followed by 35 cycles of 94 ◦C for
30 s, 54 ◦C for 30 s, 72 ◦C for 90 s, and a final elongation step at 72 ◦C for 10 min.

Amplicons were purified using SigmaPrep™ spin columns (Sigma-Aldrich®, St. Louis,
MO, USA) following the manufacturer’s protocol. Sanger sequencing was performed
using the BigDye™ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems™, Waltham,
MA, USA) by the Central Analytical Facility (CAF) at Stellenbosch University. Sequences
were quality checked and manually edited, when required, in Geneious Prime® v2022.1.1
(https://www.geneious.com (accessed on 13 December 2022)). Trace files, primer details,
and sequence data were uploaded to BOLD and subsequently deposited on GenBank®

(Table S2).

2.3. Genetic Data Analyses

To obtain a representative dataset of catsharks that occur in South African waters,
COI and NADH2 sequences attributed to the species listed in Table S1 were retrieved from
open-access databases. To build a more comprehensive dataset for each identified genus,
a Basic Local Alignment Search Tool (BLAST; https://blast.ncbi.nlm.nih.gov/Blast.cgi
(accessed on 12 January 2023)) analysis was conducted against the GenBank® database to
identify congeneric species with >95% similarity. Subsequent analyses were carried out on
four separate datasets, one dataset per gene (COI and NADH2) for each of the two catshark
families (Table S2).

Sequences were aligned using the MAFFT v7.450 [60] algorithm as implemented in
Geneious Prime® and subsequently trimmed to ensure equal length. Sequences shorter
than the trimmed alignment lengths were excluded from downstream analyses. Previously
published sequences included in this study are listed in Table S2.

Genetic distances were calculated in MEGA v11.0.11 [61] using the p-distance model [62],
with the pairwise deletion option for the treatment of gaps and missing data. The presence
of a ‘barcode gap’—a disjunction between the levels of intraspecific and interspecific
genetic distances—was assessed by plotting the maximum intraspecific p-distance against
the nearest neighbour (NN; i.e., the closest congeneric) distance for each individual in the
dataset [63].

2.4. Species Delimitation Analyses

Species identified based on morphological characters are referred to as species, while
species delimited using DNA sequence data are referred to as Molecular Operational
Taxonomic Units (MOTUs) [64,65]. In the present study, the number of MOTUs was
inferred using five different algorithms: (a) Refined Single Linkage (RESL) as implemented
on BOLD [43], (b) Automatic Barcode Gap Discovery (ABGD) [42], (c) Assemble Species
by Automatic Partitioning (ASAP) [66], (d) Bayesian implementation of the Poisson Tree
Processes (PTP) method (bPTP) [67], and (e) PTP in its multi-rate version (mPTP) [68]. The
delimited MOTUs were considered ‘concordant’ when comprising sequences attributed
to the same species and ‘discordant’ when comprising sequences from different species.
Consensus MOTUs were assigned based on the number of species delimitation methods
that supported any given MOTU. To compare the distributions of genetic variation between
species and consensus MOTUs, intra- and inter-MOTU p-distances were estimated in
MEGA following the aforementioned methodology.

The three distance-based delimitation methods (RESL, ABGD, and ASAP) were con-
ducted using DNA sequence alignments. Barcode Index Numbers (BINs) were automat-
ically assigned to sequences deposited on BOLD using the RESL algorithm. The ABGD
(https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html (accessed on 28 January 2023))
and ASAP (https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html (accessed on 5 Febru-
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ary 2023)) delimitation methods were implemented on the relevant web servers using
default settings under the uncorrected pairwise distance model, with a relative gap width
(X) of 1.0 for the ABGD method.

The two tree-based delimitation methods (bPTP and mPTP) were performed based
on a maximum likelihood (ML) tree. Prior to analysis, datasets were adjusted to re-
tain haplotypes for each species as identified using DnaSP v6.12 [69]. Sequences from
Poroderma africanum and Holohalaelurus regani were used as outgroups for the Pentanchi-
dae and Scyliorhinidae datasets, respectively. The ML analyses were performed on the
PhyML v3.0 web server (http://www.atgc-montpellier.fr/phyml/ (accessed on 13 Febru-
ary 2023)) [70] with default settings. The best substitution model was determined based on
the Akaike Information Criterion (AIC) using the Smart Model Selection [71] software as
implemented online.

2.5. Specimen Assignment Analyses

The reliability of the datasets and the accuracy of specimen assignments were esti-
mated using the distance-based ‘best close match analysis’ (BCMA) [72] in the R package
Spider v1.5.0 [41]. The theshOpt() function was used to identify the optimal threshold
value for each dataset [73]. Considering the concerns associated with the use of distance
measures to infer specimen identity [74], an additional three specimen assignment methods
implemented in the R package BarcodingR v1.0.3 [75] were used: (a) the back-propagation
neural networks method (BP) [74], (b) the fuzzy-set based approach (FZ) [45], and (c) the
alignment-free kmer-based approach (FZKMER) [76]. To perform the specimen assign-
ments, reference libraries were constructed using a single representative that was randomly
selected for each species. A consensus assignment was considered to emerge if at least two
of the three methods were converging.

3. Results

A total of 95 sequences (52 COI and 43 NADH2) were generated from 56 specimens in
this study. Specimens were distributed as follows: Western Cape (n = 33), Eastern Cape
(n = 7), and KwaZulu-Natal (n = 16). The newly sequenced specimens were spread across
2 families, 6 genera, and 10 species, contributing ex novo sequences for 5 species. All se-
quences were in excess of 600 bp in length, with no insertions, deletions, or premature stop
codons observed. This suggests that no nuclear mitochondrial DNA segments (NUMTs)
were amplified [77], even though nucleotide ambiguities were identified in the COI and
NADH2 sequences of two Haploblepharus species (Figure 1). To address concerns surround-
ing cross-contamination, the laboratory protocol was repeated from DNA extraction to
sequence analysis—resulting in the detection of the same nucleotide ambiguities. The
integration of sequences generated in this study to those on open-access databases resulted
in 16 species with COI barcodes and 13 species with NADH2 sequences.
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3.1. Species Delimitation and Specimen Assignment Analyses within the Family Pentanchidae

The final alignment of the COI and NADH2 datasets included 241 sequences (598 bp
in length) from 27 species and 49 sequences (816 bp in length) from 16 species, respectively.
Species delimitation analyses resulted in a consensus of 21 MOTUs for the COI dataset,
with the number of delimited MOTUs varying depending on the method used (23 using
RESL and bPTP, 21 using ABGD and ASAP, and 9 using mPTP) (Figure 2a). Three methods
(ABGD, ASAP, and bPTP) supported a consensus of 10 MOTUs for the NADH2 dataset,
while only 8 MOTUs were delimited using the mPTP method (Figure 2b).
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Figure 2. Maximum likelihood tree of haplotypes identified for the family Pentanchidae based on
(a) the COI dataset and (b) the NADH2 dataset. The MOTUs obtained using species delimitation
analyses (RESL, ABGD, ASAP, bPTP, and mPTP) and the consensus analysis are indicated on the right.

Based on the COI dataset, eight species (Apristurus manis, A. pinguis, Galeus atlanti-
cus, Haploblepharus edwardsii, H. fuscus, H. pictus, Holohalaelurus regani, and Holohalaelurus
sp.) displayed lower NN distances than maximum intraspecific distances (Figure 3a).
In comparison to sequences grouped by species, consensus MOTUs showed a decrease
in maximum intraspecific distances (15.89% to 2.68%) and an increase in minimum NN
distances (0.00 to 1.84%) (Table S3). This resulted in a reduction in the number of lineages
lacking a ‘barcode gap’, as only two lineages (MOTU 9 and MOTU 12) displayed lower NN
distances than maximum intraspecific distances (Figure 3a). For the NADH2 dataset—even
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though an increase in both maximum intraspecific distances (1.01 to 2.57%) and minimum
NN distances (0.00 to 3.57%) was observed for the consensus MOTUs in comparison to the
sequences grouped by species (Table S3)—the number of lineages lacking a ‘barcode gap’
decreased (Figure 3b).
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presence of a ‘barcode gap’.

Discrepancies between the estimated number of MOTUs and the reported number
of species were largely due to MOTUs comprising haplotypes assigned to more than one
species. In some cases, this discrepancy was caused by the attribution of sequences to
provisional names (MOTU 6—Apristurus sp. C and A. sp.; MOTU 20—Holohalaelurus regani
and H. sp.). While in other cases, discordant MOTUs included specimens with conflicting
identifications in the public databases and/or species that were indistinguishable by the
delimitation methods (MOTU 1—Apristurus manis and A. melanoasper; MOTU 9 and MOTU
28—Apristurus ampliceps and A. manis; MOTU 12—Apristurus manis, A. pinguis, and A.
profundorum; MOTU 14—Galeus atlanticus and G. polli; MOTU 16 and 24—Haploblepharus
edwardsii, H. fuscus and H. pictus; and MOTU 27—Apristurus melanoasper and A. sp. AM2).
Finally, specimens reported as Apristurus manis were split among three MOTUs (MOTU 1,
9, and 12), while Apristurus pinguis (MOTU 10 and 12) and Galeus atlanticus (MOTU 14 and
15) were split into two MOTUs per species.

The BCMA conducted on the COI and NADH2 datasets, using an optimised threshold
of 1.0%, revealed that 79.0% of specimens were correctly assigned to their reported species,
while 4.8% of specimens remained unidentified (Table S4). Specimen assignment errors
amounted to 16.2% and mostly concerned species within the genera Apristurus (9.3%) and
Haploblepharus (5.5%). The reliability of the two datasets for specimen assignment was 89.8%
based on the BP and FZ methods, and 85.2% using the FZKMER approach. Probabilities
associated with each specimen assignment varied among the three methods (Table S5). It is
important to note that despite differences among the methods, a consensus emerged for all
analysed specimens, with the three methods converging in 91% of the cases.
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3.2. Species Delimitation and Specimen Assignment Analyses within the Family Scyliorhinidae

The final alignment of the COI and NADH2 datasets included 64 sequences (637 bp in
length) from 14 species and 15 sequences (887 bp in length) from 3 species, respectively.
For the COI dataset, the number of delimited MOTUs varied depending on the species
delimitation method used: 11 using RESL, 14 using ABGD, ASAP, and bPTP, and 6 using
mPTP (Figure 4a). A consensus number of 14 MOTUs was obtained from the five methods,
which was congruent with the reported number of species. Conversely, four methods
(ABGD, ASAP, bPTP, and mPTP) were unable to delimit the Poroderma species pair based
on the NADH2 dataset, resulting in a consensus of two MOTUs (Figure 4b).
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Maximum intraspecific distances ranged from 0.00 to 0.63% in the COI dataset, while
the lowest NN distance (0.60%) was found in the NADH2 dataset between Poroderma
africanum and P. pantherinum (Table S3). Nearest neighbour distances below one percent
were observed between the Poroderma species pair in both datasets; however, maximum
intraspecific distances were always lower than the distance to the NN, indicating the
presence of a ‘barcode gap’ (Figure 3c,d).

The BCMA conducted on the COI and NADH2 datasets, using an optimised threshold
of 0.4% and 1.0%, respectively, showed that 94.9% of specimens were correctly recognised
to their reported species, while 5.1% of specimens remained unidentified (Table S4). Speci-
men identification efficacy was 100% using the BP and FZ methods, and 87.9% using the
FZKMER approach. Probabilities associated with each specimen assignment varied among
the three methods (Table S5). Despite differences among the methods, a consensus emerged
for all analysed specimens.

4. Discussion

With limited access to taxonomic expertise, molecular taxonomy has gained recog-
nition as an effective tool for resolving discrepancies in species boundaries [51,52]. In
previous cases of ambiguous morphological classifications, molecular taxonomy has been
used to aid in the description of new species [34,39,40,78,79] as well as the resurrection of
synonymised species [36,38,80,81]. As comprehensive and curated DNA reference libraries
are required to accurately assign unidentified specimens to known species, one of the
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main limitations to molecular taxonomy is the presence of taxonomic misidentifications in
public databases [22,48,49]. In the current study, both species delimitation and specimen
assignment approaches were used to investigate the reliability of publicly available data
for South Africa’s catshark species.

Despite low mutation rates exhibited by the COI gene in chondrichthyans [32], DNA
barcoding has proven efficient for specimen identification in the majority of elasmobranchs
assessed [26,34,51,82]. Similarly, in the current study, the effectiveness of DNA barcoding
was demonstrated in the species delimitation analyses as 85% (represented by 35 MOTUs)
of the 41 assessed species were recovered. After reviewing the delimited MOTUs, the
number of species investigated was found to be artificially inflated by the use of provisional
names. Specimen assignment methods resolved uncertainties for two discordant MOTUs
(Apristurus ampliceps/A. manis and A. pinguis/A. profundorum) and supported the erroneous
delimitations of specimens reported as Apristurus manis, A. pinguis, and Galeus atlanticus.
This highlights the urgent need to verify the taxonomic identifications of specimens in
public databases, as misidentifications can bias data analyses and the interpretations
thereof. For example, Apristurus melanoasper was originally described from the North
Atlantic Ocean [78] and subsequently identified in the western South Pacific, Indian, and
eastern South Atlantic Oceans—representing the largest known geographical distribution
for a catshark species [83]. However, Naylor et al. [36] suggested that a detailed taxonomic
revision is required as North Atlantic Ocean specimens clustered separately to specimens
from Australia and New Zealand based on a NADH2 dataset. In this study, the presence
of A. melanoasper in the eastern South Atlantic Ocean is supported as two specimens
sampled in Namibia and reported as A. manis (HVDBF463-11 and HVDBF464-11) were
reclassified as A. melanoasper—with one sequence identical to that of the North Atlantic
Ocean specimens. Furthermore, a specimen reported as Galeus atlanticus (UKFBK223-08)
caught in the southern Algarve of Portugal was reclassified as G. polli based on both species
delimitation and specimen assignment analyses. This suggests that the distribution range
of G. polli requires further investigation as G. polli is currently described as occurring in the
Eastern Atlantic Ocean, from southern Morocco to the Northern Cape of South Africa [84].

In contrast to earlier research that recommended the use of the NADH2 gene for the
discrimination of closely related elasmobranch species [36], only 63% of the 19 investigated
species could be delimited. However, the reduced performance of the species delimitation
methods in the NADH2 datasets is likely due to intrinsic limitations of the methods as
delimitation analyses are known to be influenced by a low number of individuals sampled
per species (e.g., one sequence per nominal species within Apristurus) [85]. Additionally,
delimitation analyses perform poorly when the contrast between intra- and interspecific
variation is moderate (e.g., Poroderma africanum and P. pantherinum) [44,65–68,85]. Even
though the two Poroderma species can be readily identified based on morphological and
meristic characters [86], previous studies have reported interspecific distances that are
below commonly used species divergence thresholds [26,36]. Despite this, reliable specimen
identification was obtained in this study as interspecific variation exceeded intraspecific
variation for all specimens analysed. The presence of distinct morphological features and
absence of haplotype sharing suggests that the low level of sequence divergence within
Poroderma is most likely a result of recent speciation and/or a slow mutation rate rather
than taxonomic over-splitting.

The joint use of species delimitation and specimen assignment analyses in this study al-
lowed for the confirmation of morphological identifications for newly sequenced specimens
of Halaelurus lineatus, H. natalensis, Holohalaelurus punctatus, H. regani, Poroderma africanum,
and Scyliorhinus capensis. In contrast, species-level identifications could not be obtained for
specimens within the genera Apristurus and Haploblepharus—albeit for different reasons.
Prior to this study, no COI or NADH2 sequence data were publicly available for Apristurus
species sampled in South Africa. Although a single COI sequence is publicly available
for Apristurus saldanha (HVDB138-10), this record should be treated with caution as the
specimen was sampled in northern Namibia, which is outside of the known distribution
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range for this species [12]. Due to the limited data available, the two newly sequenced
Apristurus specimens were delimited into singleton MOTUs—revealing the presence of two
unique and previously undocumented species. Although the ongoing taxonomic revision
of Apristurus is expected to aid in clarifying the number of species-level entities present
along the South African coastline [12], the development of comprehensive DNA reference
libraries is required to improve specimen assignments which are susceptible to insufficient
taxonomic coverage and/or intraspecific genetic diversity.

For the genus Haploblepharus, the novel COI data generated in this study for H. fus-
cus and H. pictus allowed for the first assessment of genetic divergence among all four
congeners—confirming H. kistnasamyi (a cryptic species that is difficult to distinguish from
H. edwardsii) as distinct. Conversely, three morphologically distinct congeners (H. edwardsii,
H. fuscus, and H. pictus) were delimited into discordant MOTUs, and specimen assign-
ment methods returned a number of conflicting identifications. Previous studies have
reported the limitations of mitochondrial DNA in accurately delineating elasmobranch
species [24,34,87]. In recently diverged species, it is difficult to discern whether a shared
genetic variation is a result of the retention of ancestral polymorphisms (i.e., incomplete
lineage sorting) or due to gene flow following secondary contact (i.e., introgression) [88].
Steinke et al. [26] provided two possible scenarios that could result in MOTU sharing:
species may belong to monophyletic clusters separated by low sequence divergence (e.g.,
Poroderma), or haplotype sharing may occur between the species involved. In the current
study, haplotype sharing among the three Haploblepharus species was attributed to the
presence of nucleotide ambiguities.

Dudu et al. [89] advised that the presence of NUMTs (i.e., nuclear-encoded mito-
chondrial pseudogenes) should be carefully considered when detecting double peaks in
mitochondrial DNA. While NUMTs cannot be completely disregarded, no premature stop
codons were detected in this study, and all sequences were in excess of 600 bp in length [77].
Additionally, it is important to note that the ambiguous sites identified in the NADH2
gene were also present in the publicly available sequence for H. edwardsii (JQ518679) [36].
Although further investigation is required, the identified ambiguities could be regarded
as a heteroplasmic signal (i.e., the presence of multiple mitochondrial genomes in a single
individual or tissue) [90]. However, as heteroplasmy has previously been shown to resolve
to homoplasmy within a few generations [91,92], the shared characteristic of ambiguous
sites among Haploblepharus species could be explained by the occurrence of contempo-
rary hybridisation and paternal leakage (i.e., the bi-parental inheritance of mitochondrial
DNA) [77,93]. Although the inability to delineate species was not the intended outcome of
this study, the previously reported overlap of morphological features [16,18] and admixed
species clusters [19], in conjunction with the presence of nucleotide ambiguities, high-
lights the ongoing evolutionary mechanisms at play within this morphologically conserved
genus. It is important to note that the presence of heteroplasmy is mentioned herein with
caution. Additional research should explore this phenomenon in more detail as a thorough
description of the ambiguous sites may provide haplotypes that prove to be correlated with
genetically distinct groups. Considering the elevated conservation concern associated with
three of the four Haploblepharus species, further research is urgently required in order to
clarify evolutionary distinctness and distribution ranges for these species.

Despite controversies surrounding the use of DNA-based methods for the sorting of
species [94,95], species delimitation and specimen assignment approaches rely on different
theoretical frameworks [50]. In the present study, the concurrent application of the species
delimitation and specimen assignment approaches proved to be advantageous for the vali-
dation of DNA reference libraries. Additionally, the use of multiple methods allows for the
normalisation of the over- or underestimation of species-level entities as well as improved
confidence in specimen assignments [50,96]. From a practical perspective, the delimitation
of MOTUs should be used to facilitate taxonomic workflow by highlighting lineages that
require further investigation. Recent studies have illustrated that the implementation of
integrative taxonomy has streamlined procedures and aided in overcoming the taxonomic
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impediment (i.e., the decline of taxonomic expertise) [49,53]. Given the difficulties as-
sociated with morphological specimen identification, this study highlights the need for
an in-depth taxonomic revision for the genera Apristurus and Haploblepharus through the
implementation of an integrative approach. The use of molecular data in taxonomically
complicated lineages may aid in identifying morphologically distinct characters that can be
utilised for the in-field identification of specimens.

5. Conclusions

The implementation of a molecular taxonomic approach proved to be advantageous
for the curation of DNA reference libraries for South Africa’s catsharks. The requirement of
validated reference libraries is emphasised in the present study as the improved accuracy
of specimen assignments provided support for the occurrence of Apristurus melanoasper
in the eastern South Atlantic Ocean and suggests that the distribution range of Galeus
polli requires further investigation. Although taxonomic misidentifications were present
within the investigated dataset, the major limitation to South African catshark molecular
taxonomy was found to be a paucity of publicly available sequence data—especially for
the NADH2 gene. Following exhaustive searches for publicly available data, no records for
Apristurus microps and Holohalaelurus favus were found for the COI or NADH2 gene. Even
though DNA reference libraries will benefit from increased taxonomic coverage [50,51],
this study reveals that reliable molecular specimen identification could be achieved for 10
out of the 16 South African catshark species (Galeus polli, Halaelurus lineatus, H. natalen-
sis, Haploblepharus kistnasamyi, Holohalaelurus punctatus, H. regani, Cephaloscyllium sufflans,
Poroderma africanum, P. pantherinum, and Scyliorhinus capensis). Since accurate species-level
identification forms the basis of conservation assessments, this study highlights the need
for integrative taxonomic revisions of the genera Apristurus and Haploblepharus.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/d15070828/s1. Table S1: Biodiversity of catshark species occurring
in South African waters modified from Ebert et al. [12]. The conservation status of each species based
on global assessments and as categorised by the International Union for the Conservation of Nature
(IUCN), followed by the year assessed in parentheses, is indicated. Table S2: Details of the specimens
analysed in this study, including associated GenBank accession and/or BOLD Process ID numbers.
Haplotype codes are indicated for each of the four datasets (A–D). Table S3: Genetic p-distances
for catshark species and consensus MOTUs identified in four separate datasets. The numbers of
individuals (n) per species and MOTU are given. Distances (%) are given as the mean, with ranges
indicated in parentheses. Table S4: Results from the best close match analyses (BCMA) conducted on
four separate datasets. The BCMA output is highlighted in red for specimens attributed to multiple
species or when the assigned species differed from the species label. Table S5: Results of the specimen
assignment analyses conducted on four separate datasets using three methods: BP—back-propagation
neural networks, FZ—fuzzy set-based approach, and FZKMER—alignment-free kmer-based method.
Each potential identification is assigned a “bp.probability” by the BP method and an “FMF value”
by both the FZ and FZKMER methods. The number of votes indicates the number of methods that
supported the consensus assignment for each specimen. Specimen assignments are highlighted in
red when the assigned species differed from the reported identification on GenBank and/or BOLD.
References [97–106] are cited in Supplementary Materials.
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