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tubatuncell@gmail.com

2 Department of Mathematics and Science Education, Buca Faculty of Education, Dokuz Eylül University,
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Abstract: Located at the crossroads of two continents and at the southeastern edge of the Mediter-
ranean Basin, Anatolia was one of the most important Pleistocene glacial refugia in the Western
Palaearctic. As part of the Irano-Anatolian, Caucasus and Mediterranean Basin biodiversity hotspots,
this region is also home to a rich avian community including nearly 400 breeding species. Neverthe-
less, research addressing the genetic structure and diversity of local bird populations is limited, and
information on glacial refugia in this region is still scant, especially when compared to other large
Mediterranean peninsulas, namely the Balkan, Italian and Iberian ones. In this study, we contribute
to filling this gap by addressing the biogeographic pattern of four common resident songbirds—the
Eurasian blue tit (Cyanistes caeruleus), the great tit (Parus major), the Eurasian chaffinch (Fringilla
coelebs) and the Eurasian blackbird (Turdus merula)—and one endemic species—the Krüper’s nuthatch
(Sitta krueperi)—by amplifying two mitochondrial DNA genes in individuals from Anatolia (n = 329)
and comparing their sequences to those of conspecifics from the rest of their distribution range across
the western Palaearctic (n = 357) deposited in public databases. The overall genetic structure of these
species is consistent with a scenario of isolation for multiple populations in different refugia across
Anatolia and subsequent secondary contact in the wake of ice retreat, which makes this region a
hotspot of genetic diversity for both widespread and endemic avian species.

Keywords: biodiversity hotspot; biogeography; Caucasus; evolution; Irano-Anatolian; Mediterranean
basin; mitochondrial DNA; population genetics; songbirds; refugium

1. Introduction

The conservation and restoration of biological diversity at any of its levels, including
genetic diversity, is one of the main challenges for modern human societies [1,2]. The
preservation of genetic diversity is now of unquestionable and lasting relevance in the
global political agenda, as testified by well-known international mandates such as the Aichi
Biodiversity Targets (Strategic Goal C, Target 13) and the Post 2020 Biodiversity Framework
(OECD). This caused an increasing body of research to address this topic [3] and prompted
the development of specific national and international conservation programs, with a
special focus on threatened taxa and ecosystems as well as on those hosting a higher species
diversity and referred to as Global Biodiversity Hotspots [4]. While a first assessment had
led to the identification of 25 such areas worldwide [5], a recent reappraisal increased their
number up to 36 [6], 3 of which—the Mediterranean Basin, Caucasus and Irano-Anatolian
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Plateau—fall (at least partially, as in the latter case) not only in the Western Palaearctic but
also in one region in particular, Anatolia, which entirely lies within present-day Turkey. In
terms of biodiversity conservation, this is of the utmost relevance when considering that
two out of every three amphibian species, 48% of reptiles, 25% of mammals and 3% of bird
species are endemic to the Mediterranean region [7], while two of the songbird species-rich
regions of the Western Palaearctic are the Caucasus along with the mountains of southern
and eastern Anatolia [8].

There are multiple reasons behind the origin of this high species and habitat diversity,
primarily the unique palaeogeological history of this region. During the Mesozoic era, the
Pontic and the Taurus mountain ranges were occupied by the Tethys Sea. At the end of
the Cretaceous, sediments—mostly carbonates—which had been slowly but constantly
folding, uplifted as the result of continental collusion [9]. This originated present-day
rough and complex mountainous landscapes, with only 11% of Anatolia surface area
lying under 250 m above the sea level (a.s.l.) as opposed to 30% consisting of elevations
higher than 1500 m a.s.l. and 3% even higher than 2500 m a.s.l. [10]. These remarkable
altitudinal shifts account for highly different precipitation regimes, temperature ranges
and sunlight radiation variation, which makes Anatolia a region hosting one of the richest
topographic, climatic and habitat diversities in the Western Palaearctic [11]. While 1299
of 2126 total terrestrial Chordata species (of which 257 out of 568 mammals, 792 out of
954 birds, 156 out of 462 reptiles and 94 out of 142 amphibians) are found throughout
Europe and the Western Palaearctic, respectively, 778 total terrestrial Chordata species
(168 mammals, 454 birds, 125 reptiles and 31 amphibians)—corresponding to 59.9% and
36.6% of those occurring in Europe and the Western Palaearctic, respectively—are found
in Anatolia/Turkey [12]. This species diversity is also the result of Pleistocenic climatic
oscillations, with Anatolia playing—similar to the Iberian, Italian and Balkan peninsulas—a
primary role as a refugium for several species living further north, especially during the Last
Glacial Maximum (LGM) [13]. It has actually been proposed that, by that time, Anatolia
hosted multiple isolated refugia [14,15], in compliance with the refugia within refugia
model [16], which greatly affected the genetic structure of the local populations [17–19].
This is reflected by the uniqueness of native populations of fallow deer (Dama dama) [20,21],
golden jackals (Canis aureus) [22], European blind snake (Typhlops vermicularis) [17] and
common (Bufo bufo) as well as Caucasian toad (B. verrucosissimus) [23], just to list some
examples among terrestrial vertebrates.

The few demographic data available for Anatolian avian populations suggested that
some species expanded their ranges between the Last Interglacial (LIG) and the LGM,
while others did so after the LGM [14,15]. In most cases, however, neither genetic nor
demographic data are available. To contribute to filling this knowledge gap, we here
characterise the genetic diversity and reconstruct the demographic history of the Anatolian
populations of four common and one endemic western Palaearctic songbird. Specifically,
we aim to (i) compare the genetic diversity of their populations with that of conspecifics
from other regions; (ii) explore the role played by local glacial refugia in these species
during Pleistocenic climatic oscillations; and (iii) confirm that Anatolia is a hotspot of avian
genetic diversity in the Western Palaearctic.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

Four common western Palaearctic polytypic passerine species—the Eurasian blue tit
(Cyanistes caeruleus Linnaeus, 1758; n = 49), the great tit (Parus major Linnaeus, 1758; n = 61),
the Eurasian chaffinch (Fringilla coelebs Linnaeus, 1758; n = 80) and the Eurasian blackbird
(Turdus merula Linnaeus, 1758; n = 59)—and one endemic species—the Krüper’s nuthatch
(Sitta krueperi Pelzeln, 1863; n = 80)—were captured with mist nets during the breeding
season (March–June, from 2013 to 2017) in Anatolia (Figure 1). A blood sample (70 µL) was
obtained from the brachial vein of each individual and stored in 500 µL of 96% ethanol.
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Total genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, Hilden,
Germany) following manufacturers’ instructions.
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Figure 1. Sampling localities. 1. Kazdağları; 2. Lesvos Island; 3. Spil Mountain; 4. Adrasan;
5. Beydağları; 6. Burdur; 7. Kartalkaya; 8. Küredağları; 9. Yozgat; 10. Aladağlar; 11. Artvin;
12. Caucasus. See Supplementary S1 for coordinates and other details. The main mountain ranges are
also indicated.

2.2. DNA Sequencing

We amplified the partial sequence of two mitochondrial genes largely used in phylo-
geographic studies, namely the cytochrome c oxidase subunit 1 (COI; 656 bp) with primers
passerF1/passerR1 [24] and BirdF1/BirdR1 [25] along with the NADH dehydrogenase
subunit 2 (ND2; 1041 bp) with primers L5215 and H1064 [26]. PCR reactions were per-
formed in a 50 µL final volume including 1× PCR buffer (Bioron, Ludwigshafen, Germany),
100 µM dNTPs, 0.2 units of Taq DNA polymerase (Bioron), 200 ng of DNA and 5 pmol of
primers. Thermal conditions were as follows: 5 min at 94 ◦C, followed by 38 cycles of 50 s
at 94 ◦C, 40 s at 55.6 ◦C, 1 min at 72 ◦C and a final extension at 72 ◦C for 10 min. PCR prod-
ucts were sequenced on both strands at Macrogen Sequencing Facilities (Macrogen-Korea,
Seoul, Korea). Newly amplified sequences were deposited in GenBank under accession
numbers OR513143, OR513145–OR513157, OR513159–OR513161, OR513163–OR513413 and
PP811813–PP812121.

2.3. Phylogeographic Analyses

The newly amplified sequences were aligned to those from other western Palaearctic
conspecific populations retrieved from GenBank (Supplementary S1) in Geneious Prime
v.2021.2.2 [27]. For the sake of clarity, there is no consensus about the intra-Palaearctic
boundaries, with at least two main views—one traditionally excluding all of Iran from
the western Palaearctic [28] and a new one including it in its entirety (thus featuring the
Greater Western Palaearctic [29,30]). Both of these views are widely accepted, and another
has been recently proposed (see [31]). However, in this paper, we will refer to the Western
Palaearctic sensu stricto. Two separate alignments—one per gene—were produced with
the MUSCLE [32] plugin, converted into amino acid sequences and visually inspected to
check against internal start and stop codons that could indicate the occurrence of nuclear
mitochondrial pseudogenes. Haplotype list, number of polymorphic sites (S), haplotype
diversity (Hd), nucleotide diversity (π), average number of nucleotide differences (K) and
number of haplotypes (h) were obtained in DnaSP v.6 [33], which was also used for the anal-
ysis of mismatch distributions. Haplotype networks were built using the median-joining
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methods [34] implemented in popART [34,35]. Finally, the genetic differentiation among
populations was evaluated by means of ϕST and analysis of molecular variance (AMOVA)
in Arlequin v.3.5 [36], with significance assessed by performing 10,100 permutations.

2.4. Demographic History

We used MEGA v.X [37] to build Maximum Likelihood trees by selecting the best
substitution model for each species and gene separately based on the lowest BIC (Bayesian
Information Criterion) scores. We found that, for both loci, it was HKY+G+I for C. caeruleus
and S. krueperi, HKY+G for F. coelebs and T. merula and HKY for P. major. Initial tree(s)
for the heuristic search were obtained automatically by applying Neighbour Joining and
BioNJ algorithms to a matrix of pairwise distances estimated using the best model and
then selecting the topology with a superior log-likelihood value. We hence used both genes
to infer the demographic history of the target species by means of Extended Bayesian
Skyline Plot (EBSP) in BEAST2 [38]. Multiple EBSP runs relying on Markov chain Monte
Carlo (MCMC) methods were performed using the following parameters: linear models,
100 million steps, parameters sampled every 10,000 steps and a 10% burn-in. We used a
strict clock model with 0.027 substitutions/site/million years (Myr) mutation rate [39],
and the population model factor was set to 0.5 to account for a female-only contribution
to the effective population size (Ne), since all the target species exhibit male philopatry.
All other operator settings were left as default. The graphics inherent to demographic
reconstructions were generated using the plotEBSP.R script available online at https://
www.beast2.org/tutorials/ (accessed on 1 January 2023) in R Studio v.2021.09.2 [40].

3. Results

The number of samples yielding successful amplification at each locus and species are
reported in Table 1. COI and ND2 alignments consisted of 656 and 1041 bp, respectively.
No internal stop codons were found. The highest and lowest COI haplotype diversity
was found in C. caeruleus and P. major, respectively. As far as the ND2 is concerned, S.
krueperi yielded the highest diversity as opposed to C. caeruleus, which instead yielded
the lowest one (Table 1). Populations from Anatolia turned out to host a high number of
haplotypes, including several that were private to this region, at both genes and across all
the surveyed species, ranging from 28.6% to 82.6% for the COI and from 22.2% to 96.4%
for the ND2, on average (Table 1). The highest rate of private haplotypes was found in
F. coelebs (82.6%) followed by T. merula (50.0%) and P. major (46.2%) for the COI and in P.
major (36.1%), F. coelebs (36.0%) and T. merula (34.3%) for the ND2 (Figure 2). The network
analysis showed that Anatolian populations of the latter species diverged substantially
at the ND2, while C. caeruleus, P. major and F. coelebs showed a mix of private and shared
haplotypes. Common haplotypes featuring star-like topologies were found in P. major at
both loci and in F. coelebs and T. merula at the COI only (Figure 3). Pairwise ϕST values
show that all Anatolian populations differ significantly, with a few exceptions, from their
counterparts at one or both loci (Tables 1 and 2), with the most pronounced differentiations
being found between Anatolian and non-Anatolian C. caeruleus and F. coelebs populations
at the COI (ϕST = 0.59, p < 0.01) and ND2 (ϕST = 0.65, p < 0.01), respectively. When the per
species partition of genetic diversity across Anatolia was considered, we found the coastal
locations along western and southern Anatolia to stand out among the others (Figure 4 and
Supplementary Table S1).

https://www.beast2.org/tutorials/
https://www.beast2.org/tutorials/
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Table 1. Summary statistics (±SD) of genetic diversity in the studied species. COI: cytochrome c oxidase subunit 1; ND2: NADH dehydrogenase subunit 2;
Hd: haplotype diversity; π: nucleotide diversity; N: sample size; S: polymorphic sites; h: number of haplotypes; ph: number of haplotypes private to Anatolia;
WP*: Western Palaearctic except Anatolia.

COI
S

Haplotypes
Hd π (× 10−3)

ND2
S

Haplotypes
Hd π (× 10−3)

N h (%) ph N h (%) ph

Cyanistes caeruleus
Anatolia 46 9 12 (86) 4 0.82 ± 0.04 3.35 ± 0.47 49 17 4 (44) 2 0.35 ± 0.08 4.57 ± 1.16

WP* 27 12 10 (71) 9 0.86 ± 0.04 5.46 ± 0.4 10 23 7 (78) 5 0.91 ± 0.08 10.27 ± 1.64
Total WP 73 14 14 0.85 ± 0.02 5.90 ± 0.40 59 23 9 0.48 ± 0.08 5.72 ± 1.06

Parus major
Anatolia 55 9 7 (54) 6 0.27 ± 0.08 1.00 ± 0.33 61 16 16 (44) 13 0.65 ± 0.07 1.00 ± 1.00

WP* 21 24 9 (69) 6 0.76 ± 0.08 1.27 ± 2.37 89 31 23 (64) 19 0.61 ± 0.06 1.11 ± 0.18
Total WP 76 26 13 0.42 ± 0.07 5.34 ± 1.52 150 39 36 0.63 ± 0.01 1.08 ± 0.13

Fringilla coelebs
Anatolia 80 21 22 (95) 19 0.77 ± 0.05 1.85 ± 0.20 54 20 24 (67) 18 0.91 ± 0.03 2.03 ± 0.21

WP* 10 3 4 (17) 1 0.64 ± 0.15 1.46 ± 0.47 22 28 18 (50) 12 0.97 ± 0.03 3.87 ± 0.98
Total WP 90 21 23 0.75 ± 0.05 1.90 ± 0.20 76 41 36 0.92 ± 0.02 2.62 ± 0.37

Turdus merula
Anatolia 51 11 11 (79) 7 0.61 ± 0.07 1.69 ± 0.33 59 25 14 (40) 12 0.87 ± 0.03 6.05 ± 1.10

WP* 24 11 7 (50) 3 0.76 ± 0.06 2.28 ± 0.48 69 39 23 (66) 21 0.86 ± 0.03 4.72 ± 0.67
Total 75 17 14 0.67 ± 0.05 1.91 ± 0.28 128 46 35 0.92 ± 0.01 5.90 ± 0.68

Sitta krueperi
Anatolia 115 16 15 (79) 13 0.78 ± 0.02 2.25 ± 0.17 48 17 27 (96) 27 0.96 ± 0.02 3.37 ± 0.20

Lesvos Island 20 0 5 0 0.00 ± 0.00 0.00 ± 0.00 0
Caucasus 28 4 5 (26) 4 0.38 ± 0.11 0.74 ± 0.24 1 1 1 (4) 1

Total 163 18 19 0.77 ± 0.01 2.94 ± 0.13 49 20 28 0.96 ± 0.02 3.49 ± 0.22
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Table 2. Genetic differentiation ϕST between Anatolian and all other Western Palaearctic (WP) regions
of the species investigated at the COI and ND2 genes. Only sample sizes (see Table 1) larger than 5
were considered. * p < 0.01.

COI ND2

Cyanistes
caeruleus 0.57 * 0.49 *

Parus major 0.27 * 0.01
Fringilla coelebs 0.04 0.57 *
Turdus merula 0.31 * 0.34 *

Lesvos Caucasus Lesvos Caucasus

Sitta krueperi 0.29 * 0.53 * 1 1

The demographic history and mismatch distribution profiles of the five songbirds are
presented in Figure 5. While C. caeruleus shows a profile with an invariably stable Ne, those
of T. merula and S. krueperi indicate a stable size up to approximately 15–20 ka followed
by a rapid increase that becomes progressively less steep towards the present. Fringilla
coelebs and P. major population profiles appear rather different, with both seemingly starting
their expansion before 25 ka, even though the uncertainty attached with population size
estimations before 18 ka (Figure 5) calls for caution in making such statement. Mismatch
distributions were multimodal in C. caeruleus, P. major and T. merula, with no support
for demographic expansion, as opposed to F. coelebs and S. krueperi, in which these were
unimodal (Figure 5). The demographic reconstructions showed that while C. caeruleus
population size apparently experienced no change over time, in the case of P. major and F.
coelebs, it increased starting before 21 ka, which corresponds to the LGM, as opposed to the
case of T. merula and S. krueperi, in which the change occurred after the LGM.
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Figure 2. Percentage of COI and ND2 haplotypes private to Anatolia, found in Anatolia and found
in other Western Palaearctic regions (i.e., non-private to Anatolia) and not found in Anatolia in
Eurasian blue tit, great tit, Eurasian chaffinch, Eurasian blackbird and Krüper’s nuthatch (left to
right). Numbers on top of the columns indicate sample size within (left) and outside (right) Anatolia.
Pictures not to scale.
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A scale to infer the number of sequences (i.e., individuals) for each haplotype (1–308) is provided; mu-
tational steps are indicated by hatch marks. See Supplementary S1 for coordinates and other details.
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4. Discussion

Located at the intra-Palaearctic boundary, Anatolia is known for its complex topog-
raphy, different climates and rich habitat diversity, which translates into a high species
richness and high levels of endemism, hinting at its global importance for the conservation
of biodiversity [41]. In this study, five passerine species were investigated to test the hy-
pothesis that their genetic diversity might be higher than expected due to the occurrence of
multiple barriers that determined population isolation in the past prior to recolonisation
and gene flow restoration among them. Provided that the sampling of western Palaearctic
conspecific populations is far from being exhaustive, since it only relied on publicly accessi-
ble records for which sampling locality information was available, our results confirmed
the hypothesis that the entirety of Anatolia is a hotspot of avian genetic diversity.

4.1. Genetic Diversity

When looking at the two widely distributed resident species, C. caeruleus and P. major,
slightly different scenarios emerged. The haplotype and nucleotide diversity of Anatolian
C. caeruleus was high at the COI but lower at the ND2, with haplotypes private to Anatolia
in both genes (Figures 2–4) and an overall divergence of about 50% from other western
Palaearctic representatives (Table 2). This finding is in line with the sharp distinctiveness
between northern and southern European as well as western Asian populations [42].
Moreover, fine-scale genetic structure has emerged in other studies on Mediterranean C.
caeruleus populations, for which habitat type rather than physical barriers has been pointed
out as the main driver of divergence [43]. On the other hand, P. major genetic diversity
was found to be lower in Anatolia than elsewhere across its range, with local populations
being clearly distinct from all the others (Table 2). While the scenario we found for C.
caeruleus points towards the separation of different populations during the LGM and the
subsequent re-establishment of their connectivity (with habitat type possibly playing a
role in preventing complete homogenisation), the lack of a strong genetic structure within
Anatolia suggests that P. major local populations have never been completely isolated
from each other or, at least, not for long, which is also confirmed by the occurrence of a
widespread haplotype with a star-like topology (Figure 3). Concordantly, high migration
and dispersal rate have been invoked to explain the weak genetic structure found in P.
major elsewhere across its range [44].

As far as the two migratory species are concerned, F. coelebs and T. merula, both
occurring in Anatolia as both a resident throughout the entire year and winter visitor,
we also found slightly different scenarios. In F. coelebs, we expectedly found comparable
genetic diversity values across all populations, a lack of differentiation among them at
the COI and a widespread haplotype with a star-like topology, which is in line with the
seemingly high gene flow between its continental populations reflected in only subtle
phenotypic differences [45] and limited genome-wide diversity [46]. Nevertheless, ND2
genetic diversity values were higher than COI ones, with Anatolian populations being
markedly different from the others (Table 2). In T. merula, some degree of differentiation
was found at both loci, even if COI genetic diversity was lower than that of ND2, with
more haplotypes private to Anatolia, which turned out in its local populations to be well
differentiated from others in the western Palaearctic by at least 31% at both loci (Table 2).
This pattern indicates that the effect of isolation was particularly pronounced in this species,
possibly because of the long-lasting isolation suffered by its populations or the limited
gene flow between their migratory and resident counterparts. Indeed, if, on one hand, T.
merula radiation across Eurasia occurred relatively recently and rapidly [47], this points to a
limited genetic distinctiveness. On the other hand, it is known that its migratory habits vary
sharply with latitude [48], which may increase population isolation and divergence. Finally,
S. krueperi, resident to Anatolia, Caucasus and Lesvos Island (Greece), where its insular
population holds only one COI haplotype (Figure 4), is probably the species that was most
affected by past climatic oscillations among those studied here. Overall, intraspecific genetic
diversity was high (Table 2), with three COI haplogroups which are deemed to result from
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past population isolation in different refugia during the LGM, consistent with what was
previously suggested on the basis of mitochondrial and nuclear DNA markers [14]. This is
further supported by the scenario emerging on the basis of the ND2 gene, with Anatolian,
Caucasian and Lesvos Island populations sharing no haplotypes at all (Figure 1).

4.2. Conclusive Remarks

The complex scenario that emerged for the five species studied, with either one or the
other mitochondrial gene yielding higher diversity, is likely attributable to the fact that two
of them—T. merula and F. coelebs—are also seasonal visitors other than resident, which might
result in increasing genetic diversity by means of gene flow with non-resident populations.
The likely reason underlying this intraspecific variability should be investigated in the high
habitat and climate heterogeneity along with varied topography characterising Anatolia,
which accounts for different survival strategies even within the same species. As a result,
the species with the highest number of haplotypes turned out to be precisely one of those
occurring also as migratory, F. coelebs (COI 95%; ND2 44%), followed by C. caeruleus (COI
86%; 44% ND2), both of which hosted some haplotypes private to Anatolia. The high
number of haplotypes and the uniqueness of part of them in this region is certainly the
result, in addition to migration, of isolation in different refugia, as testified by the high
genetic distinctiveness characterising local populations.

Additional evidence supporting this scenario is represented by the demographic
reconstructions, showing that the population size of all the studied species except for one—
C. caeruleus—changed markedly across time. Accordingly, it has been found that there
might be suitable conditions for an increase in the population size of species inhabiting
Anatolia both before and after the LGM [49,50], pointing to this region as an important
refugium during Pleistocenic climatic fluctuations, which greatly affected population
connectivity. As an example, the decrease in sea level during the LGM caused Lesvos
Island to connect to Anatolia, which made S. krueperi colonisation from mainland possible.
The fact that the insular population hosts only one non-private haplotype is the result of
the founder effect that could not be counteracted due to the rise in the sea level, preventing
any further connection with the source population. The major role played by Anatolia as a
refugium for species that later (re-)colonised other areas, shaping present-day European
biodiversity, is well-known for non-avian taxa, this being the case of mammals such as
the brown hare (Lepus europaeus) [49] and the beech marten (Martes foina) [51] but also of
reptiles [52], insects [53,54] and plants [11,55].

Moreover, our data support the occurrence of multiple refugia within Anatolia, pri-
marily along the western and southern coasts but also the northern ones, as in the case
of C. caeruleus (and, to a certain extent, also T. merula), whose Anatolian populations host
two highly diverging ND2 haplogroups, presumably as the result of population isolation
during the LGM and secondary contact after it. The occurrence of three T. merula ND2 hap-
logroups is also in line with this scenario as well as that of private-to-Anatolia along with
widespread haplotypes, which was also found in other avian species such as the common
redstart (Phoenicurus phoenicurus) [56] (but in this case, the so-called “ghost introgression”
might also play a role cf. [57]), the house sparrow (Passer domesticus) [58] and the chukar
partridge (Alectoris chukar) [15]. The high haplotype diversity and, often, the occurrence of
multiple haplogroups in Anatolia, which was found in a number of other taxonomic groups
such as mammals [59], reptiles [60], amphibians [61] and insects [62] has been imputed
to its geographic positions favouring Pleistocene bidirectional faunal exchanges between
Europe and the Near East [63], as well as the occurrence of multiple refugia within Anatolia
underlying cryptic diversity [17,64].

Taken together, these data point to the entirety of Anatolia as an extraordinary hotspot
of avian genetic diversity in the western Palaearctic. The next step is investigating this
topic further by means of genome-wide approaches. At the same time, we advocate for
the urgent need to curb the relentless urbanisation and related land consumption that, as
already highlighted more than a decade ago, is putting Turkey’s conservation capacity at



Diversity 2024, 16, 339 11 of 14

risk [65]. For this reason, boosting the development of growing conservation ethics, which
is still in its infancy, along with transboundary conservation efforts in a country that ranks
among the top 20 largest economies [66] is a certainly a demanding yet worthwhile task for
Turkish broader society.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d16060339/s1, Supplementary Table S1. Pattern of private- (ph)
and non-private-to- (non-ph) Anatolia COI and ND2 haplotypes per species and sampling locality
(see Figure 1 for further details). Supplementary S1. List of sequences generated for this study and of
GenBank records [67–84] downloaded for comparative purposes.
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structure in a species manipulated by humans since the Neolithic: The European fallow deer (Dama dama dama). Heredity 2017,
119, 16–26. [CrossRef]
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