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Abstract: DNA replication stress is a constant threat that cells must manage to proliferate and main-
tain genome integrity. DNA replication stress responses, a subset of the broader DNA damage
response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication
forks collapse during S phase. There are many sources of replication stress, such as DNA lesions
caused by endogenous and exogenous agents including commonly used cancer therapeutics, and
difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinu-
cleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing
transcription and replication, and oncogenic stress which dysregulates replication origin firing and
fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but
if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks
may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means
to accurately restart stalled forks via homologous recombination. However, DSBs pose their own
risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress re-
sponse systems, comprising DDR signaling, fork protection, and fork processing by nucleases that
promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP,
MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication
stress factors are important in cancer etiology as suppressors of genome instability associated with
oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo-
and radiotherapeutics.

Keywords: DNA damage; replication stress; genome instability; DNA double-strand breaks; structure-
specific nucleases; DNA damage response

1. Introduction

Accurate DNA replication and proper chromosome segregation to daughter cells are
critical to maintaining genome integrity and preventing cancer. Replication of the 6.3 billion
bp of the diploid human genome during a typical eight-hour S phase requires >30,000
active origins, ~5000 of which are active at a time [1,2]. Replication forks travel in a highly
processive manner, synthesizing ~3000 bp per min, yet forks frequently encounter obstacles
that stall replisomes, causing replication stress and triggering stress responses including
the intra-S checkpoint [3], fork protection to prevent replisome dissociation or fork collapse,
and repair mechanisms that restart damaged forks. Replication stress is caused by a wide
variety of endogenous and exogenous factors. Spontaneous DNA damage is caused by
endogenous reactive oxygen species formed during cellular metabolism [4,5], misincorpo-
ration of ribonucleotides, and DNA lability [5]. DNA damage is also caused by exogenous
genotoxic chemicals, and by ionizing and non-ionizing radiation. The vast majority of
DNA lesions block replicative polymerases, necessitating lesion repair by an appropriate
repair pathway, lesion bypass (damage tolerance) by translesion DNA synthesis (TLS)
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polymerases, repriming, homologous recombination (HR) mediated template switching, or
passive rescue from an adjacent fork [6,7]. DNA lesions that block replicative polymerases
include nucleotides with broken rings, oxidized bases, and chemical adducts, as well as
single- and double-strand breaks (DSBs). DNA polymerase inhibitors and depletion of
nucleotide pools with hydroxyurea are exogenous sources that cause global replication
stress, slowing or stopping most or all replication forks [8].

Additional endogenous sources of replication stress are difficult to replicate DNA se-
quences and certain chromatin environments (e.g., G-quadraplex DNA, common fragile sites,
telomeric DNA) [9–17]. Replication stress is also caused by stable R-loops which form by
hybridization of RNA transcripts to DNA templates, especially in G-rich sequences [18–20], and
by collisions between opposing transcription and replication machinery, particularly in highly
transcribed ribosomal RNA gene arrays, fragile sites, and telomeres [21–27]. Topoisomerases
avert replication stress by preventing DNA overwinding in front of replication forks, a type
of intrinsic, topological replication stress. A recent yeast study showed that cohesin, a highly
conserved protein with essential roles in sister chromatid cohesion required for proper chromo-
some segregation, increases replication stress in centromeric and ribosomal DNA by trapping
topological stress [28]. Although cells suffer replication stress at random sites throughout the
genome due to spontaneous (or induced) DNA damage, the stress associated with difficult to
replicate sequences and challenging chromatin environments must be managed at those sites in
every S phase.

When replication forks are blocked, the initial response has two aims: (1) protect
the replication fork by stabilizing the replisome machinery, and (2) protect the fork from
nucleolytic attack [29,30]. If a blocked fork is not restarted in a timely manner, it may
be cleaved by structure-specific nucleases yielding a single-ended DSB (seDSB) that is
processed by resection nucleases to suppress misrepair by canonical non-homologous end-
joining (cNHEJ) and promote accurate fork restart by HR. This is important because cNHEJ
is the dominant DSB repair pathway in mammalian cells [31,32] and cNHEJ of seDSBs
can cause deletions and translocations that produce acentric and dicentric chromosomes
that segregate improperly in mitosis or induce breakage-bridge-fusion cycles that further
threaten genome integrity [33]. In this review we begin by discussing DDR signaling in
response to replication stress, and then describe the activities of key nucleases and co-factors
in replication fork protection, fork cleavage to seDSBs, and fork resection that together
promote accurate HR-medicated fork repair and restart. These mechanisms are crucial
for maintaining genome stability and thus preventing cancer, and they are important as
potential targets in cancer therapy.

2. DDR Signaling in Response to Replication Stress

DNA repair and DNA damage checkpoint systems minimize replication fork encoun-
ters with blocking lesions [34–36], but with a steady state of ~10,000 DNA lesions per cell
in unstressed cells [5] and ~5000 simultaneously active replisomes during S phase [2], fork
encounters with blocking lesions are unavoidable. Acute or chronic exposures to genotoxic
chemicals and radiation greatly increase replication stress, as does dysregulated replica-
tion associated with oncogenic stress [37–39]. Under normal circumstances, the leading
and lagging strand replication machines are coupled, traveling together with the MCM
(minichromosome maintenance) replicative helicase. If the leading strand polymerase
is blocked, MCM helicase may decouple and unwind DNA ahead of the fork, exposing
hundreds of bases of single-stranded DNA (ssDNA) [40,41]. As with ssDNA exposed by
5′–3′ resection of broken ends at DSBs by resection nucleases EXO1 and DNA2 (with its
cofactor BLM) [42–44], the ssDNA exposed by decoupled MCM helicase is rapidly bound
by the abundant, heterotrimeric replication protein A (RPA) (Figure 1A). RPA-bound ss-
DNA is recognized by the ATR (ataxia telangiectasia and Rad3-related) cofactor ATRIP
(ATR-interacting protein), leading to activation of ATR (Figure 1B), the central signaling
kinase of the intra-S checkpoint response [45]. In addition to ssDNA-RPA and ATRIP,
ATR activation requires several other factors including TopBP1, RAD17-RFC, and the 9-1-1
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complex. Additional, distinct ATR activation mechanisms have been described involving
NBS1, a component of the MRE11-RAD50-NBS1 (MRN) complex, and the RPA-binding
factor ETAA1 [45–47].

Figure 1. Replication Protein A (RPA) roles in replication stress responses. (A) RPA is a heterotrimer
with 14, 32, and 70 kDa subunits, each with single strand DNA (ssDNA) binding domains called OB
(oligonucleotide binding) folds. (B) Diagram of a replication fork in which the leading strand DNA
polymerase is blocked and decouples from the MCM helicase, creating ssDNA that is bound by RPA.
ATRIP recognition of ssDNA-RPA recruits and activates ATR. (C) Crosstalk among phosphatidyl
inositol 3′ kinase-related kinases (PIKKs) and cyclin dependent kinase (CDK) for phosphorylation of
serine and threonine residues in the N-terminus of RPA32. The width of each arrow is proportional
to the role that each PIKK plays in phosphorylating specific RPA32 residues. Phosphorylated RPA32
residues prime phosphorylation of other residues, indicated by arrows below.

ATR is a member of the phosphatidyl inositol 3′ kinase-related kinase (PIKK) family,
which also includes ATM and the catalytic subunit of DNA-dependent protein kinase
(DNA-PKcs). PIKKs play central roles in DNA damage responses including DSB repair,
checkpoint activation, apoptosis, suppression of transcription, and responses to telomere
dysfunction and viral infection [48,49]. Activation of each PIKK involves a specific co-
factor. The ATR interacting protein ATRIP recruits ATR to RPA-bound ssDNA, initiating
ATR activation [50]. The MRN complex and the Ku70/Ku80 heterodimer bind to frank
DSB ends, the NBS1 component of MRN recruits and activates ATM, and Ku70/Ku80
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recruits and activates DNA-PKcs [48]. Activated PIKKs are autophosphorylated, and they
phosphorylate each other and many other targets, showing various degrees of signaling
pathway crosstalk [48].

One feature of PIKK crosstalk is apparent in the phosphorylation of RPA bound to
ssDNA. RPA is a trimeric complex of 14 kDa, 32 kDa, and 70 kDa subunits with essential
roles in DNA replication, DNA repair, and DDR signaling. The N-terminus of the 32 kDa
subunit RPA32 (also called RPA2) is phosphorylated on serine and threonine residues by
all three PIKKs and cyclin dependent kinase (CDK) (Figure 1C) [51–53]. Phosphorylation
of specific RPA32 residues occurs sequentially [54], and residues modified early can prime
phosphorylation of other residues (Figure 1C) [51–53]. Following DNA damage, CDK
phosphorylates RPA32 S23 and S29, and phospho-S23 (p-S23) primes subsequent phospho-
rylation of S29, S33 (by ATR), and S4S8 (both phosphorylated by ATM and DNA-PK). These
priming effects are sometimes reciprocal; for example, ATR phosphorylation of RPA32
T21 by DNA-PK primes phosphorylation of S4S8 by ATM and DNA-PK, and vice versa
(Figure 1C). Thus, CDK phosphorylation of RPA32 initiates a positive feedback loop that
results in hyperphosphorylated RPA32, marked by pS4S8 and pT21, which is required for
certain downstream events such as apoptosis [55]. RPA-bound ssDNA has emerged as a
critical structural foundation for a variety of DDR signaling responses [54]. In addition to
its key role in ATR activation, RPA phosphorylation regulates replication in response to
stress, and it inhibits resection [56,57]. Most RPA32 phosphorylation events documented
to date reflect early DDR signaling as RPA becomes progressively phosphorylated, but in
cells stressed with the Topo I inhibitor camptothecin, S12 phosphorylation occurs one and
a half to two days after the drug is removed, and this correlates with resumption of DNA
replication, suggesting that this modification deactivates Chk1 to terminate checkpoint
arrest [51].

RPA modifications regulate cell responses to stress, at least in part, by modulating RPA
interactions with DNA and various protein partners, many of which have important DDR
signaling and DNA repair roles. For example, RPA phosphorylation reduces its affinity
for undamaged double-stranded DNA (dsDNA), but increases its affinity for damaged
dsDNA, and it regulates RPA affinity for ssDNA [58,59]. Phospho-RPA shows reduced
interactions with ATM, DNA-PK, MRN, 53BP1, and p53 [54]. Conversely, phospho-RPA
shows enhanced affinity for PRP19, an E3 ubiquitin ligase important for ATR-ATRIP
association with RPA-bound ssDNA, and represents a positive feedback system for ATR
activation [60]. Other RPA modifications, including SUMOylation and ubiquitylation,
regulate its interactions with other proteins, including the key HR factors RAD51 and
RAD52 [54]. RPA inhibitors designed to interfere with RPA binding to ssDNA or RPA
phosphorylation are being investigated as cancer chemotherapeutics, including mitigation
of tumor resistance to genotoxic chemotherapy [61,62].

Once ATR is activated in response to replication stress, it phosphorylates and acti-
vates Chk1 kinase, which then phosphorylates downstream targets including CDK which
regulates cell cycle progression. Activation of ATR and Chk1 are critical for the intra-S
checkpoint in response to replication stress. This checkpoint enhances DNA repair, pro-
motes protection of stalled replication forks, slows or stops cell cycle progression in S/G2
phases by preventing late origin firing to minimize replication fork encounters with block-
ing lesions, and activates dormant origins to rescue under-replicated DNA adjacent to
blocked or collapsed forks [45,63–65]. Defects in ATR and other replication stress factors are
implicated in many human diseases, including cancers, premature ageing, microcephaly,
growth retardation, anemia, neurodegenerative disorders, ataxia, and developmental disor-
ders [15].

Although PIKK signaling pathways display crosstalk, each PIKK has a dominant role
in specific types of DSB repair. DNA-PK and ATM coordinate repair of two-ended DSBs by
cNHEJ and HR, respectively [31,49], and ATR coordinates the replication stress response,
including HR-mediated repair of seDSBs at collapsed replication forks [45,66].
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3. Protecting and Rescuing Blocked Replication Forks

DNA replication initiates at origins in a complex, highly regulated process involving
assembly of pre-replication complexes and licensing factors that ensure DNA is replicated
only once per cell cycle [67]. For this reason, there is a premium on protecting replisomes
at stalled replication forks to prevent replisome dissociation and fork collapse. Stalled
forks are protected by a plethora of repair and replication factors, including RIF1, which
inhibits end resection, the MRN-interacting protein MRNIP, the TLS suppressor USP1 which
regulates PCNA via de-ubiquitination, HR proteins (RAD51, BRCA1, BRCA2, FANCD2),
and RADX which regulates RAD51 [30,68–73]. Cells with defects in any of these fork
protection factors are hypersensitive to replication stress.

Maintaining replisomes to protect stalled forks often involves fork regression to a
‘chicken foot’ structure that resembles four-way branched Holliday junctions of HR reac-
tions (Figure 2A) [29]. Chicken foot structures have a one-ended DSB that at least initially
includes ssDNA to which the HR factors RAD51, BRCA1, BRCA2, and the RAD51 paralogs
(RAD51B/C/D and XRCC2/3) are recruited [74], although HR factors appear to play
distinct roles in HR and fork protection [75]. Recent evidence indicates that fork reversal
proceeds in two phases. Limited reversal is catalyzed by helicase-like chromatin remodel-
ing proteins SMARCAL1, HLTF and PICH, the structure-specific nuclease ZRANB3, and
RAD51 [29]. PICH has branch migration activity that helps extend fork reversal, which
induces topological strain, thus extensive reversal requires topoisomerase IIα (TopoIIα) to
relieve the strain. TopoIIα is SUMOylated by ZATT, and SUMO-TopoIIα then recruits PICH
which branch migrates the four-way structure to further extend the reversed fork [29,76].
RAD51, BRCA1, and BRCA2 protect reversed forks from nuclease attack by MRE11, EXO1,
DNA2, and MUS81 [77–79]. Part of the fork protection response involves histone methyla-
tion at stalled replication forks by EZH2, as this chromatin modification regulates MUS81
recruitment and subsequent nucleolytic attack of the protected fork [80]. It was recently
shown that the WRN interacting protein WRNIP also protects reversed forks from nucle-
olytic attack [81]. Presumably seDSBs at protected forks are prevented from engaging in
cNHEJ with other DSBs, i.e., seDSBs at other stressed forks or ends of frank, two-ended
DSBs, to avert genome rearrangements. In cells with defects in any of these fork protection
factors, reversed forks are rapidly degraded, accounting for their hypersensitivity to agents
that induce replication stress. It has been hypothesized that extensive fork reversal is
important to promote fork restart via HR [29,76]. In this model, extensive fork reversal
allows sufficient end resection of seDSB ends to establish a functional RAD51-ssDNA
nucleoprotein filament to drive HR restart. Forks reversed to a limited extent, by contrast,
are preferentially restarted by RECQ1-mediated branch migration to achieve the same goal
(Figure 2A).

There are several other mechanisms that repair and restart blocked replication forks,
some of which bypass the blocking lesion. A blocked fork may be passively rescued
by replication from an existing fork, or by checkpoint-activation of an adjacent dormant
origin [65], replisomes may transiently switch templates to bypass a lesion, lesions may
be bypassed by error-prone translesion DNA synthesis (TLS) polymerases, or a new fork
may be established downstream of the blocking lesion by repriming by PRIMPOL and
PRIM1 [6,64,82–87]. An advantage of this set of fork rescue pathways is that they do not
create seDSBs and thus eliminate the threat of large-scale genome rearrangement due to
cNHEJ-mediated seDSB misrepair. A disadvantage is that these leave behind unrepaired
lesions (template switching) or a segment of under-replicated DNA (repriming), or they
induce mutations (TLS). If stressed forks are rescued by an adjacent fork, the associated
delay poses the risk that the stalled fork will reconfigure into toxic, branched structures
catalyzed by HR factors [88].
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Figure 2. Replication fork protection and restart. (A) Replication forks blocked by a DNA lesion
(red star), or stalled by polymerase inhibitors or hydroxyurea, may reverse to a chicken foot, in
two steps as shown. RAD51, BRCA2 and other factors protect the seDSB of the reversed fork from
nucleolytic attack. Reversed forks may be restarted by RECQ1-mediated branch migration, or by
RAD51-mediated strand invasion. (B) MUS81-EME1 cleaves four-way Holiday junctions, 3′ flaps, and
stalled replication forks, which causes fork collapse to a seDSB. MUS81-EME2 cleaves stalled forks
to create seDSBs. (C) seDSBs at collapsed replication forks are resected to expose ssDNA which is
bound by RAD51 to catalyze HR-mediated fork restart, analogous to break-induced replication (BIR).

The threats to genome integrity due to mutation, under-replicated DNA, and delayed
restart can be avoided by engaging another set of fork restart mechanisms initiated when
forks are cleaved by structure-specific endonucleases MUS81 or EEPD1. Similar to fork restart
involving a chicken foot intermediate, fork cleavage restart mechanisms also create seDSBs. The
roles of these fork cleavage nucleases and other nucleases/co-factors that contribute to restarting
stressed replication forks via HR are described in the following sections.

4. MUS81: An Ancient Structure-Specific Nuclease Involved in HR and Restart of
Stressed Replication Forks

MUS81 is a structure-specific 3′ endonuclease in the XPF 3′ endonuclease family that
cleaves a variety of branched DNA structures including 3′ flaps and Holliday junctions.
Yeast Mus81 was first discovered in 2000 in a two-hybrid screen for proteins that interacted
with the RAD54 HR protein and was named for the sensitivity of Mus81-defective cells
to methyl methanesulfonate and UV light [89]. Mus81-defective yeast also have a severe
meiotic HR defect that together with its interaction with RAD54 suggested an important
role in HR [89]. Indeed, yeast Mus81 and its Eme1 cofactor resolve Holliday junctions
and human MUS81 cleaves four-way (Holliday) junctions and 3′ flap structures [90,91]
(Figure 2B). In human cells, MUS81 with its EME1 cofactor resolves Holliday junctions
in HR intermediates [92–95], and reversed forks that resemble Holliday junctions [96]. In
contrast, MUS81 with its EME2 cofactor cleaves blocked replication forks, causing fork
collapse to a seDSB [97–99] (Figure 2B). The seDSB is apparently resected to allow formation
of a RAD51-ssDNA nucleoprotein filament that catalyzes fork restart by a mechanism that
resembles break-induced replication (BIR) [100], although the resection nuclease(s) involved
in processing MUS81-cleaved forks are not known (Figure 2C). Yeast Mus81 also mediates
resolution of structures in G2/M that arise when blocked forks are rescued by converging
forks to complete DNA replication [101].

MUS81 is an important DDR factor and a relevant tumor marker. MUS81 defects
sensitize cells to various genotoxic chemicals [102,103], and it was recently shown that inhi-
bition of MUS81 sensitizes HR-proficient cancer cells to the PARP1 inhibitor, olaparib [104],
an agent commonly used to treat cancers with HR defects, such as BRCA1- and BRCA2-
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defective breast cancers [105,106]. This suggests that inhibiting the HR functions of MUS81
is synthetically lethal with PARP inhibition, analogous to the synthetic lethality of PARP
inhibitors in BRCA- and other HR-defective cells. This finding also suggests that MUS81
inhibition may be an alternative means to sensitize HR-proficient (i.e., BRCA-wildtype)
tumors to PARP inhibitors [104]. MUS81 may also underlie an important cancer diagnostic.
MUS81 was found to cleave DNA in prostate cancer cells, inducing cytosolic DNA that
serves as a prostate tumor marker and promotes STING-dependent immune recognition to
drive host rejection of tumor cells in vivo [107]. Interestingly, MUS81 foci correlated with
cytosolic DNA levels that may reflect MUS81 cleavage of stressed replication forks [107]
caused by oncogenic stress [39]. As noted above, BRCA1/2 help protect reversed replica-
tion forks, but in cells with BRCA2 defects, MUS81 is essential for cellular resistance to
replication stress and proper chromosome segregation [108]. Because of their fork protec-
tion defect, reversed forks in BRCA2-defective cells are susceptible to nucleolytic attack by
MRE11 in a reaction initiated by the CtIP nuclease, causing hypersensitivity to replication
stress. In these BRCA2-defective cells, stressed fork rescue requires MUS81 cleavage to
effect fork restart by an HR mechanism resembling BIR [78]. These findings suggest a treat-
ment strategy for BRCA-defective cells in which this MUS81 fork restart pathway is blocked
to enhance tumor killing by replication-stress inducing chemotherapy [78]; this strategy
might provide similar benefits with radiotherapy. The roles of MUS81 in cancer depend
on the tumor genetic background. Unlike its protective role in BRCA-defective tumors,
MUS81 mediates chromosome shattering and apoptosis in cancer cells with microsatellite
instability and a defect in the Werner syndrome helicase WRN [109].

Chk1 inhibitors have been explored as cancer chemotherapeutics, but these agents
often cause severe side effects. In a recent study [110], Chk1 inhibition increased under-
replicated DNA and mitotic defects, including anaphase bridges and intermediates of
mitotic DNA synthesis (termed MiDAS). MiDAS completes replication of regions that
fail to fully replicate during S phase as a result of replication stress, i.e., at common
fragile sites [111,112]. MUS81-EME1 was shown to cleave nascent DNA generated during
mitosis in response to insufficient nucleotide pools to maintain MiDAS, and this promoted
chromosome instability but did not affect cell survival. In contrast, MUS81-EME2, which
normally promotes fork restart, mediates cell death in Chk1-inhibited cells [110]. It was
therefore suggested that caution be exercised with Chk1 inhibitors as such treatments may
kill certain tumor cells, but those that survive may display chromosomal instability [110].
Such treatments could therefore promote progression of surviving tumor cells to a more
aggressive state or increase the risk of secondary tumors [113,114].

5. EEPD1: A 5′ Structure-Specific Endonuclease That Complements the 3′
MUS81 Nuclease

EEPD1 (endo- exonuclease phosphatase domain protein 1) has a DNase I-like nuclease
domain and a DNA binding domain with two helix–hairpin–helix motifs similar to those
in prokaryotic RuvA2. As with MUS81, cells with defective EEPD1 are hypersensitive to a
variety of genotoxic chemicals and radiation, and replication stress induces chromosome
aberrations and mitotic catastrophe [115,116]. iPOND (isolation of proteins on nascent
DNA) is a technique that reveals proteins associated with replication forks, including
replisome components and proteins recruited to stressed forks [117,118]. iPOND analysis
demonstrated that EEPD1 is recruited to stalled replication forks, and similar to MUS81,
EEPD1 cleaves fork structures in vitro, and stalled replication forks in vivo (Figure 3) [115].
Once EEPD1 cleaves stalled replication forks, it promotes EXO1-mediated resection of
the resulting seDSB to block cNHEJ and promote HR-mediated fork restart [115,116,119].
Resection defects are seen in EEPD1-defective cells at both stressed replication forks and
frank DSBs, and these defects suppress ATR activation and downstream stress responses
including induction of γH2AX and Chk1 activation [115]. Replication stress is associated
with rapid cell division (i.e., due to oncogenic stress or during embryonic development),
and EEPD1 knockdown causes severe developmental defects during early vertebrate de-
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velopment [120]. Unlike MUS81, which evolved ~1.5 billion years ago, EEPD1 arose much
later, appearing in chordates and early vertebrates ~500 million years ago. Interestingly,
this corresponds to the period in evolution where genome size underwent two successive
doublings [121]. It is tempting to speculate that the original MUS81 stressed fork cleavage
system required additional assistance to manage increased replication stress associated
with genome expansion, and this selective pressure gave rise to EEPD1. Another advantage
to EEPD1 is that it is a 5′ nuclease and therefore it cleaves the opposite strand at stalled forks
as that cleaved by the MUS81 3′ nuclease. Although cleavage of either strand produces
seDSBs that can initiate HR-mediated fork restart, these distinct restart mechanisms may
have different restart kinetics. As shown in Figure 3, MUS81′s 3′ endonuclease activity
cleaves the template strand for leading-strand synthesis, whereas EEPD1′s 5′ endonuclease
activity cleaves the template strand for lagging-strand synthesis. This polarity difference
means that the seDSB end produced by MUS81 is forced to invade the lagging strand du-
plex, which remains discontinuous until Okazaki fragment maturation is complete. Strand
invasion by MUS81 seDSBs may not be successful until they are resected enough to allow
invasion into a mature lagging strand duplex. In contrast, EEPD1 fork cleavage allows the
resected seDSB end to invade the (continuous) leading strand duplex, which requires less
resection and therefore may provide a faster fork restart mechanism. There is evidence that
even relatively short delays in fork restart can result in genome instability [115,120,122,123],
probably because such delays increase the chance that stalled forks will be remodeled into
toxic HR intermediates [6,88]. Hence, EEPD1 may have been selected during evolution
because it provided an alternative and potentially faster fork restart mechanism to comple-
ment the ancient MUS81 mechanism, and thus help manage increased replication stress
associated with larger genomes. Another reason EEPD1 may have provided a selective ad-
vantage during vertebrate genome evolution is because EEPD1 interacts with and recruits
the EXO1 resection nuclease to seDSBs at collapsed replication forks, thereby promoting
accurate fork restart by HR [119].

Inactivating mutations in EEPD1 are not seen in cancers, but EEPD1 is overexpressed
in subsets of cancers of the brain, breast, colon, cervix, kidney, skin, lung, prostate, head and
neck, and uterus [124]. This pattern of few/no mutations and relatively common overex-
pression is reminiscent of other important DDR factors, such as RAD51, and may reflect the
critical nature of replication stress responses to cancer cell survival. Indeed, cancer cells face
greater replication stress than normal cells due to dysregulated replication associated with
oncogenic stress, nutrient deprivation, hypoxia, attacks by the immune system, and stress
associated with genotoxic cancer treatments [17]. Thus, EEPD1 overexpression probably
provides a selective advantage to tumor cells, and it may be an important contributor to
tumor resistance to therapies that induce replication stress. As noted above, inhibition of
MUS81 and BRCA defects are synthetically lethal with PARP1 inhibitors, [108,125]. BRCA
defects are also synthetically lethal with defects in the RAD52 HR protein [126,127]. Im-
portantly, BRCA-RAD52 synthetic lethality is suppressed by defects in EEPD1 [128], thus
EEPD1 activities at stressed replication forks, and/or during HR repair of frank DSBs,
apparently generate intermediates that require processing by either BRCA1/2 or RAD52 to
prevent cell death. These findings suggest that although inhibition of RAD52 may provide
benefits to patients with BRCA-defective tumors, therapeutic resistance may develop by
downregulation or inactivation of EEPD1.
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Figure 3. Distinct mechanisms of fork cleavage by MUS81 and EEPD1. (Left) The 3′ MUS81 nuclease
cleaves the leading template strand, producing a seDSB that must be resected to load RAD51. This
strand is forced to invade the lagging strand duplex, but strand invasion and reestablishment of the
fork may be obstructed if the invasion occurs in the region of immature Okazaki fragments. Fork
restart may be delayed until further resection allows invasion into a region with fully mature Okazaki
fragments, and/or by delaying invasion until maturation is complete. (Right) By cleaving the lagging
strand template, EEPD1 avoids this problem as invasion will always occur in the continuous leading
strand duplex.

6. Metnase: A Recently Evolved Nuclease-Protein Methyl Transferase That Promotes
Replication Fork Restart

Metnase evolved ~50 million years ago when a Mariner transposon integrated down-
stream of a SET protein methylase, and subsequent genetic changes fused the SET and
nuclease domains [129]. Metnase is a structure-specific nuclease with numerous genome sta-
bilization functions including promotion of cNHEJ, chromosome decatenation, and restart
of stressed replication forks [130–132]. Although defects in the Metnase nuclease delay
replication fork restart [123] and Metnase cleaves replication fork structures in vitro [133],
Metnase does not cleave stalled forks in vivo like MUS81 and EEPD1 [116]. These findings
suggest that Metnase nuclease functions in a later step in replication fork restart, such as
trimming flaps in HR-mediated fork repair intermediates [116]. The Metnase protein methy-
lase targets histone H3 K36 to promote recruitment of cNHEJ factors Ku and NBS1 [134],
Metnase automethylation regulates its chromosome decatenation function [135], and its
methylase also plays an as yet undefined role in promoting restart of stressed replication
forks [122]. Metnase is phosphorylated by Chk1, and this modification promotes cNHEJ,
but suppresses replication fork restart [136]. Indeed, Metnase regulates Chk1 stability,
suggesting a feedback loop between Metnase and Chk1 that coordinates DNA repair and
checkpoint processes [137].
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7. Other Nucleases with Known or Potential Roles in Replication Stress Responses:
CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG,
and FEN1

CtIP is a nuclease with important roles in the regulation and initial resection of frank
DSBs in collaboration with MRE11 [43,138]. However, MRE11 must be restrained from
degrading reversed replication forks [72,139]. In the context of reversed forks CtIP has a
nuclease (and MRE11) independent role that protects reversed forks from nucleolytic attack
by DNA2 [140]. This CtIP function is even more important in cells with diminished fork
protection due to BRCA1 defects, suggesting CtIP as a novel therapeutic target to augment
genotoxic cancer therapy of tumors with BRCA1 defects [140]. In a recent study CtIP was
shown to be regulated by SUMOylation, a constitutive modification in S phase cells, and
this modification was shown to be important for both CtIP roles in resection and in fork
protection [141]. This raises the possibility of targeting the CtIP SUMO modification to
augment cancer therapy.

EXO1, and DNA2 with its BLM cofactor, are responsible for extensive resection of frank
DSB ends, exposing long ssDNA tracts that are first bound by RPA to trigger checkpoint
responses as discussed above, before RPA is replaced by RAD51 for HR-mediated DSB
repair. Resection also appears to be important at reversed replication forks to recruit RAD51,
BRCA1/2 and other fork protection factors. At stressed forks cleaved by EEPD1, there is
direct evidence that EEPD1 recruits EXO1 to ensure resection of the seDSB and accurate,
HR-mediated fork restart [119]. Although Metnase doesn’t cleave stressed forks, it also
recruits EXO1 to promote resection of seDSBs at cleaved forks [133]. There is as yet no direct
evidence that MUS81 similarly recruits EXO1 and/or DNA2-BLM to seDSBs; if MUS81
lacks this function, this is another likely selective advantage provided by the late-evolving
EEPD1 and Metnase proteins.

The SLX4 scaffold protein interacts with many proteins, including three structure-
specific nucleases, MUS81-EME1, XPF-ERCC1, and SLX1. These complexes mediate a
broad range of DNA transactions that promote genome stability [142]. The SLX1 structure-
specific nuclease with its SLX4 co-factor cleaves a variety of branched DNA structures
in vitro, it contributes to genome stability by processing branched intermediates during HR,
and it promotes inter-strand crosslink repair and telomere maintenance [142–144]. SLX4
also associates with the XPF-ERCC1 structure-specific nuclease and like SLX1-SLX4, this
complex also cleaves a variety of branched DNA structures in vitro [142]. XPF-ERCC1 are
involved in nucleotide excision repair and inter-strand crosslink repair, and it was recently
shown that XPF-ERCC1 is important for DSB repair by HR when substrates form secondary
structures, such as AT-rich and G-quadraplex sequences [145]. Although these types of
structures can arise during HR repair of frank DSBs and at stressed replication forks, the
roles of SLX1 and XPF-ERCC1 in replication stress responses are poorly understood. A
recent study implicated both XPF and Artemis (which has nucleolytic roles in cNHEJ) in
rapid cleavage of stressed replication forks, although siRNA knockdown of XPF, Artemis,
or both proteins had relatively minor effects on the speed and efficiency of replication fork
restart [146].

XPG and FEN1 are flap endonucleases with roles in nucleotide excision repair and HR.
In addition to its primary role in suppressing replication stress by repairing bulky lesions,
XPG was shown to have a non-catalytic role in promoting HR through interactions with
RAD51, BRCA1, BRCA2, and PALB2, and the HR defect in XPG-mutant cells causes genome
instability and decreases fork restart after HU-induced replication stress [147]. FEN1,
named for its flap endonuclease activity, also has 5′ exonuclease and gap endonuclease
activities, and is involved in Okazaki fragment maturation, base excision repair, HR, and
processing of stalled replication forks [148,149].

8. Perspectives

Despite the major advances in molecular characterization of tumors that inform tar-
geted cancer therapies, the majority of cancer patients still receive non-targeted, genotoxic
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chemo- or radiotherapy, and these genotoxins universally cause replication stress. This has
stimulated drug development efforts to augment chemo- and radiotherapy with agents
that block general DDR signaling, such as inhibitors of ATM and ATR [150–152], as well as
HR factors and replication stress nucleases (Table 1). Characterizing expression levels of
MUS81, EEPD1, and Metnase may help illuminate tumor resistance to traditional thera-
peutics and inform personalized treatments, such as higher genotoxin doses to counteract
the enhanced replication stress resistance associated with overexpression of these nucle-
ases. Because of the central nature of DNA replication in cell division, replication stress
responses also provide a rich environment for the development of targeted, synthetic lethal
treatment strategies [34]. Increasing our understanding of DDR factors that specifically
regulate replication responses, including the structure-specific nucleases discussed here, is
likely to drive new approaches that exploit tumor dependence on specific replication stress
response factors.

Table 1. Functions and inhibitors of key replication stress nucleases and co-factors.

Protein Biochemical Activities Biological Functions Inhibitor References

RPA Binds ssDNA, ATRIP, and
itself

DNA replication and repair; activates ATR through
ATRIP binding to RPA-bound ssDNA; replaced by

RAD51 on ssDNA during HR
[61,62,153–155]

MRE11 DSB end binding, 3′-5′

exonuclease, endonuclease
Early DSB sensor, ATM activation, promotes cNHEJ,

initiates resection for HR [156–158]

CtIP Endonuclease Promotes limited resection by MRE11 [159,160]
EXO1 5′-3′ exonuclease Extensive end resection [161] *
DNA2 5′-3′ exonuclease Extensive end resection [162,163]

BLM 3′-5′ helicase Unwinds DNA structures during HR, promotes
resection by DNA2 [164–167]

RAD51 Strand invasion (recombinase) Binds dsDNA, ssDNA and itself, catalyzes HR [168–173]

MUS81-EME2 3′ structure specific
endonuclease Cleaves stalled forks, promotes fork restart [174]

EEPD1 5′ structure specific
endonuclease

Cleaves stalled forks, promotes fork restart and fork
resection by EXO1 None †

Metnase
5′ structure specific

endonuclease, protein
methylase

Cleaves stalled forks, promotes fork restart and fork
resection by EXO1 [175]

SLX1-SLX4 5′ structure specific
endonuclease

Cleaves branched structures, promotes HR, crosslink
repair, and telomere maintenance None †

XPF-ERCC1 5′ structure specific
endonuclease

Nucleotide excision repair, inter-strand crosslink
repair, HR (replication stress?) [176,177]

* EXO1 activity inhibited indirectly by diallyl disulfide through reduced protein levels. † These proteins have
been inhibited by using siRNA knockdown.
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