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Abstract: Melanoma is a highly aggressive type of skin cancer. Metastatic melanoma tumors have
historically featured a particularly poor prognosis and have often been considered incurable. Recent
advances in targeted therapeutic interventions have radically changed the landscape in metastatic
melanoma management, significantly increasing the overall survival of patients. Hyperactive BRAF
is the most common mutational event found in metastatic melanoma and its inhibition has proven to
be a successful approach in a number of patients. Unfortunately, initial tumor retreat is followed by
relapse in most cases, highlighting the elusiveness of finding a widely effective treatment. Melanoma
tumors often carry a particularly high number of mutations in what is known as a high level of inter-
and intra-patient tumor heterogeneity, driving resistance to treatment. The various mutations that are
present in these tumors, in addition to impacting the root cause of the malignancy and the potential
for therapeutic interventions, have also been known to arise during tumor clonal evolution leading
to the establishment of drug resistance, a major issue in melanoma management.
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1. Introduction

Skin cancer is the most common of all cancers. The three main types are basal cell car-
cinoma, cutaneous squamous cell carcinoma and melanoma. Whereas melanoma accounts
for roughly 2% of skin cancer diagnoses, it is the most aggressive form of skin cancer [1].
Although melanoma is not exclusively confined to the Caucasian population, as it can
affect people of all ethnicities, it is more commonly diagnosed in fair-skinned individuals
with a history of sun exposure. Its incidence has been rising during the past few decades,
increasing by circa 3% annually from 1982 to 2011 [2]. From 2006 to 2015, the rate increased
among men and women ages 50 and older by 3% per year in the United States [3]. The
melanoma incidence rate is projected to continue rising, as long as there are no significant
improvements regarding sun-seeking and tanning behavior and use of protective clothing
or sunscreen [4].

Metastatic melanoma historically exhibited a particularly poor prognosis with a me-
dian survival period of 6–9 months and an overall survival of 10–15% in patients treated
with dacarbazine as in 2008 [5,6]. However, great advances have been made in recent years
in the management of metastatic melanoma. Approximately 35% of cutaneous melanomas
express programmed death ligand-1 (PD-L1) [7]. Treatment with the immune checkpoint
inhibitor targeting programmed death-1 (PD-1), nivolumab, increased the overall survival
to 73% at 1 year and 51% at 3 years [8]. Ninety-five percent of melanomas are cutaneous
melanoma. However, ocular, mucosal, genitourinary, meningeal and gastrointestinal
melanomas can occur [1].

In this review, we are presenting insights on what are the most widespread events
arising in BRAF-mutant cutaneous melanoma that confer an evolutionary advantage to the
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tumors and that need to be identified as key targets for effective long-lasting management
of this predominant subtype of cutaneous melanomas.

2. The Melanoma Genome

One of the signature characteristics of the cancer genome is the high number of
alterations that it contains—both genetic and irreversible or epigenetic and reversible. A
crucial event in tumorigenesis is the establishment of driver mutations. These genetic
lesions drive cancer formation and give a selection advantage to a determined cell lineage
during cancer development, followed by the subsequent clonal expansion of that lineage [9].
The field of cancer genomics aims to identify the genetic and epigenetic targets behind
tumorigenesis, making use of various testing platforms as tools for the discovery of somatic
mutations involved in tumorigenesis. These are tumor DNA sequencing platforms such as
conventional single-gene Sanger sequencing and pyrosequencing, but also whole-genome
and whole-exome sequencing [10]. The identification of somatic mutations and tumor
evolution events are crucial for prognostic and therapeutic purposes, an effort that is
especially arduous in melanoma.

Melanoma exhibits a broad inter-patient heterogeneity due to several factors including
a particularly rich variety of initiating events. Melanoma tumor genomes are notoriously
unstable and carry the highest mutational burden among all cancers [11]. Exposure to UV
can trigger the formation of photoproducts that distort the DNA helix, generating C > T and
CC > TT transitions, namely UV-fingerprint mutations, which contribute to >90% of all non-
synonymous single nucleotide variants (nsSNVs) in melanoma [12]. BRAF is a human gene
that encodes the protein called B-Raf which belongs to the RAF family of serine/threonine
protein kinases. The most frequent mutation found in cutaneous melanoma is the hotspot
BRAFV600E somatic mutation, present in approximately 50% of tumors, that results in a
hyperactive BRAF-MAPK pathway [13]. NRAS somatic mutations are the second major
mutation, found in 28% of cutaneous melanoma tumors. Interestingly, hotspot BRAF and
NRAS mutations are mutually exclusive [11,14].

In addition to the exposure to UV radiation in susceptible populations, the most
important risk for the development of cutaneous malignant melanoma is the number
of melanocytic nevi. Nevi are a benign clonal proliferation of melanocytic cells with a
heterogeneous genetic background [15]; 20–30% of melanomas arise from preexisting
nevi [16]. Congenital nevi have been reported to feature a high prevalence of BRAF
mutations [17,18], while other studies have pointed to NRAS mutations [19,20]. A reason
for this discrepancy is the study methodology. Nevus size and whether its origin is
congenital or acquired after birth are factors that mark different nevi subpopulations that
need to be taken into consideration for the analysis of genetic alterations. In fact, genetic
characterization of large/giant congenital nevi shows that they feature NRAS and not
BRAF mutations [21]. A majority of nevi are acquired after birth. However, individuals
with fair skin and a propensity to sunburn are more prone to developing nevi during their
lifetime. In one study, 78% of all acquired nevi studied had a BRAF mutation, whereas
NRAS was mutated in only 6% of cases [22].

In light of the high frequency of BRAF mutations in nevi, it is clear that this mutation
is not sufficient to drive melanomagenesis. Nevi carrying mutated BRAF eventually
undergo oncogene-induced senescence, involving increased expression of the p16 cell cycle
inhibitor of kinase 4A (p16INK4A) [23]. p16INK4A and p14 alternate reading frame protein
(p14ARF) are tumor suppressor proteins encoded by the cyclin-dependent kinase inhibitor
2A (CDK2A) gene, which is crucial for controlling cell cycle arrest. p16INK4A has been
found to be frequently silenced epigenetically in BRAF-mutated melanomas; however, it
was not sufficient to drive melanoma transformation in vitro, suggesting that other genes
are involved in bypassing BRAF-induced senescence [24]. Mutations occurring in other
tumor suppressors, such as the phosphatase and tensin homolog (PTEN) and tumor protein
53 (TP53), have been found in advanced invasive primary melanomas [25].
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Another gene that has been associated with an increased risk of developing melanoma
is melanocortin 1 receptor (MC1R), which is highly polymorphic in the Caucasian popu-
lation [26]. Several MC1R loss-of-function germline variant alleles have been associated
with red hair, fair skin and freckling, which fail to stimulate cAMP production in response
to α-MSH signaling to induce melanin production [27,28]. Furthermore, an increased risk
of skin melanoma has been found for carriers of some of these variants, such as Val60Leu,
Arg151Cys, and Arg160Trp [29].

3. The BRAF–MEK–ERK Highway to Melanoma

The Ras–Raf–MEK–ERK pathway is one of the most studied intracellular signaling
cascades. It consists of a series of proteins that communicates an extracellular stimulus
from a cell surface receptor to the nucleus of the cell. Small peptides, namely mitogens,
bind to receptors in the cell membrane, triggering phosphorylation of the cytoplasmic
domain of the receptor. This allows the GDP-bound Ras protein to exchange its GDP for
GTP. Subsequently, GTP-bound Ras can modify the conformation of the Raf protein, which
leads to activation of Raf. Raf is a family of serine/threonine kinases, found to be mutated
in many types of human cancers. Ras-induced activated Raf forms homo- or heterodimers
with other proteins like kinase suppressor of Ras (KSR) [30], and then recruits downstream
mitogen-activated protein kinase kinase (MAPKK), which is phosphorylated and, in turn,
phosphorylates MAPK/ERK. Phosphorylated extracellular signal-regulated kinase (ERK)
is active and modulates the activity of transcription factors that are involved in cell cycle
regulation or the translation of mRNA to proteins. MAPK activation phosphorylates 40S
ribosomal protein S6 kinase (RSK), which in turn phosphorylates ribosomal protein S6
(RPS6) [31]. RPS6 induces the translation of proteins involved in the regulation of glucose
homeostasis, cell growth and proliferation [32]. RSK can also directly regulate transcription
factors such as c-MYC through phosphorylation [33].

3.1. BRAF

The Raf protein features a catalytic domain with kinase activity and an N-terminal
regulatory domain that contains the Ras-binding activating domain and a cysteine-rich
domain responsible for autoinhibition of the catalytic domain [34,35]. The basis of this self-
regulatory mechanism is common to the three different members of the Raf family—A-Raf,
B-Raf and C-Raf [36,37]. However, these proteins are differentially regulated at the level of
post-translational modifications, which has an impact on their autoinhibitory activity [38].
Whereas B-Raf is constitutively phosphorylated at serine 445 [39] and is more readily
activated by Ras [40], A-Raf and C-Raf need supplementary phosphorylation of activating
residues and dephosphorylation of inhibitory residues in order to display full catalytic
activity [41].

As stated before, hyperactivating BRAF mutations are extremely common in metastatic
melanomas. Over 90% of these BRAF mutations are at codon 600, and over 90% of these
are the single nucleotide mutation BRAFV600E. The second most frequent mutation is
BRAFV600K in about 5% of cases [13]. Hyperactive BRAF is able to continue the signaling
cascade independently of RAS activation and is functional as a monomer [41]. The homolo-
gous mutations of the ARAF or CRAF genes are rare events in human cancer, since these
proteins do not share the constitutively phosphorylated residues occurring in B-Raf. The
BRAFV600E mutation causes a higher basal kinase activity of this protein and makes it a
key player in tumorigenesis [42].

To this date, there is no effective cure for metastatic melanoma, although great ad-
vances have been made with the development of immunotherapy [43] and targeted thera-
pies using BRAF-MAPK inhibitors such as vemurafenib, which disrupts the B-Raf/MEK
step of the pathway with a higher affinity when the V600E mutation in BRAF is present [44].
However, a broad interpatient heterogeneity and a variety of initiating events in the onset
of melanoma lead to drug resistance and therapy failure in the majority of cases. Dacar-
bazine is a chemotherapeutic agent that methylates guanine, causing the DNA strands
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to stick together and thus preventing cell division [6]. Until recently, dacarbazine has
been the most widely used treatment for metastatic melanoma with unsatisfactory re-
sults [45]. The knowledge of the melanoma signature BRAFV600E mutation propelled
the development of targeted therapies using BRAF pathway inhibitors, such as vemu-
rafenib [44] and dabrafenib [46]. BRAF inhibitors provided striking anti-tumor responses
and have been a breakthrough in the treatment of metastatic melanoma. However, the
response to the treatment is short (average 7 months) and the tumors progress as resistance
develops [47–50].

A study addressing the evolution of tumors under BRAF inhibition (BRAFi) ther-
apy identified several subsets of genes involved in leukocyte extravasation—G-protein
coupled receptor (GPCR), cAMP and PKA signaling—as the most significantly altered path-
ways in cells that have undergone BRAFi treatment, compared to the parental untreated
cell line [51]. Similarly, overexpressing GPCR pathway-related genes in melanoma cells
conferred resistance to BRAFi [52].

Another study found that among MAPK-reactivating mechanisms, NRAS mutations
were detected in 18% of progressive tumors, KRAS mutations in 7%, BRAF amplification
in 19% and mutant BRAF alternative splice variants in 13% of progressive tumors [53].
A subset of melanoma cells resistant to BRAFi with vemurafenib expressed a 61 kDa
variant of the BRAFV600E protein, the p61BRAFV600E, lacking exons 4–8 which include
the Ras-binding domain, and render the protein able to dimerize in a Ras-independent
manner [54]. A MEK1-activating mutation and CDKN2A loss were also detected at a lower
proportion. As a whole, among all the samples studied featuring progressive disease, a
reactivation of the MAPK pathway as a mechanism of resistance to BRAFi was found at a
70% frequency (Table 1). Moreover, the study identified that PI3K–PTEN–AKT pathway
mutations constituted a second core acquired resistance pathway at a 22% frequency that
overlapped with the MAPK core pathway. This study also showed that the mutational
signature of the progressive tumors has a reduction in C > T transitions as well as an
attenuated dipyrimidine motif, indicating non-UV-related DNA damage [53].

Table 1. Incidence of MAPK-reactivating events in patient samples upon BRAF inhibition therapy.

MAPK-Reactivating
Event Ref. Sample Incidence (Count) Incidence (%) Comments

NRAS mutation [52] Progressive tumors after
vemurafenib treatment 13/71 18% G12D/R, G13R,

Q61K/R/L

NRAS mutation [53] Biopsies from
BRAFi-resistant patients 4/19 21%

Mutually exclusive
with BRAF splicing

variants

KRAS mutation [52] Progressive tumors after
vemurafenib treatment 5/71 7% G12C, G12R, Q61H

BRAF amplification [52] Progressive tumors after
vemurafenib treatment 11/57 19% 2–15 fold

BRAF splice mutants [52] Progressive tumors after
vemurafenib treatment 6/48 13% Deletion exons 2–8,

2–10, 4–8

BRAF splice mutants [53] Biopsies from
BRAFi-resistant patients 6/19 32%

Deletion of exons
4–10 (1), exons 4–8, (1),
exons 2–8 (1), or exons

2–10 (3)

MEK1 [52] Progressive tumors after
vemurafenib treatment 2/71 3% K57N, C121S

CDKN2A loss [52] Progressive tumors after
vemurafenib treatment 3/44 7% ---
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3.2. PI3K-PTEN-AKT

Unexpectedly, a fraction of BRAF-mutated metastatic melanoma patients does not
respond to BRAFi. Studying the genetic background of those tumors that display an
intrinsic resistance to this treatment would be beneficial to understand what mechanisms
of tumor evolution may confer resistance to BRAFi and increased tumor fitness. Turajlic
and colleagues analyzed the genomes of five metastatic BRAFV600E (all T > A, p.V600E)
melanoma lesions in one patient who presented an intrinsic resistance to vemurafenib.
Their results showed pre-vemurafenib ubiquitous GNAQ mutation that sustained ERK
activity and PTEN frame-shift deletion that was associated with AKT hyperactivation [55],
features that are consistent with a common intrinsic mechanism of resistance. They also
observed a mixture of cells with distinct genomic and phenotypic features, suggesting
that, while the tumors may have all evolved from a common metastatic progenitor, some
sites have acquired additional genomic alterations after disease dissemination, including
chromosome 18 loss, which is linked to chromosomal instability [56], and where the
secondary effects of treatment with the DNA damaging agents cisplatin and decarbazine
cannot be excluded [55].

Shi and colleagues pointed likewise to a rewired signaling landscape after BRAFi,
involving the PI3K–PTEN–AKT axis. Analysis of 100 tumor samples from 44 patients that
were resistant to vemurafenib or dabrafenib, a MEK inhibitor, found upregulating genetic
alterations within the PI3K–PTEN–AKT axis in 22% of those tumors that progressed. These
included AKT1/3 mutations and copy number increases [53].

Additionally, it has been shown that PI3K and MEK inhibitors synergized to block the
growth of the tumor cells, suggesting that this might be an efficient approach in a subset
of patients whose disease has followed this pattern of acquired resistance. IGF-1R/PI3K
signaling was found to be upregulated in BRAFi-resistant cells. The absence of mutations
and alterations in copy number in IGF-1R suggests that its persistent activity is likely
regulated at the post-transcriptional level. The combined use of IGF-1R/PI3K and MEK
inhibitors led to cytotoxicity in these melanoma cells resistant to BRAFi [57].

3.3. NRAS

The RAS GTPase NRAS, when active, can stimulate proliferation and survival, but also
apoptosis, differentiation, and interactions between cells or between cells and extracellular
matrix [58]. Second only to BRAF, NRAS is the most commonly mutated gene in melanoma.
In particular, a striking 13–25% of all melanoma tumors carry a specific mutation in codon 61
of NRAS [59,60], which is associated with high tumor aggressiveness [59]. Mutated NRAS
remains bound to GTP and is constitutively active [61,62], leading to hyperactivation of the
BRAF/MAPK and PI3K/AKT/mTOR pathways. In melanocytes with normal copies of
NRAS, the activation of the MAPK pathway is achieved through its effector BRAF. However,
in the case of melanocytes with mutated NRAS, this takes place through the action of the
CRAF effector, which renders BRAF inhibitors ineffective in this type of melanoma [63,64].
Surprisingly, combined treatment with BRAF/MAPK and PI3K inhibitors has yielded
limited success in clinical trials [65]. MEK inhibitors have been suggested as possible
treatment. However, they are more effective in patients that have already undergone
immunotherapy [66]. Another theoretical possibility would have been the use of CRAF
inhibitors; unfortunately, this resulted in a rapid switch to BRAF signaling [67]. The
combined use of BRAF and CRAF inhibitors originated resistant cells in which MEK was
strongly activated via ARAF [68]. As a consequence of this, several different approaches
have been tried combining MEK inhibitors with cell cycle inhibitors or drugs that target
the NRAS pathway. At this moment, there are promising in vivo results for the combined
use of MEK inhibitors with inhibitors of cyclin CDK4/6 [69]. Further investigation in
determining the downstream mechanisms directed by NRAS signaling would prove crucial
to a large fraction of melanoma patients with a particularly poor prognosis associated with
increased tumor thickness, mitotic rate and lymph node colonization [70].
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3.4. mTOR

Another player that has been linked to the BRAF-dependent landscape of cutaneous
melanoma tumors is the mammalian target of rapamycin complexes (mTOR). The mTOR
protein is a serine/threonine kinase that forms an integral part of two distinct complexes,
the mTORC1/2, that can sense a rich variety of stimuli and signaling inputs and regulate
the synthesis of mRNA, cellular growth, proliferation and autophagy, among several other
cellular processes [71–73]. ERK1/2 downstream of the hyperactive BRAF/MAPK pathway,
a hallmark in melanoma tumors, can phosphorylate RSK which, in turn, activates mTORC1
in melanoma cells and its downstream targets, promoting increased protein translation,
growth and proliferation [74]. A role of mTORC1/2 in bypassing oncogene-induced
senescence has been described, suggesting that combined inhibition of the BRAF/MAPK
pathway and mTORC1/2 could be effective under certain conditions [75]. On a similar note,
another study showed that BRAFV600E mutation and CDKN2A loss were not sufficient
to drive melanomagenesis in a mouse model, as this leads to repression of the PI3K–AKT
axis, oncogene-induced senescence (OIS) and growth arrest. In contrast, the melanocytes
that underwent transformation exhibited increased mTORC1 and AKT-mTORC2 signaling,
suggesting that mTORC1/2 activation is a mechanism used by tumor cells to bypass BRAF-
induced senescence and trigger progression [76]. Dysregulation of mTORC1 has an impact
on the signaling mechanisms affecting tumor progression, which defines the complex as
an oncogene that may be relevant in several types of cancer. Nonsynonymous mutations
have been suggested in 2–3% of all cancers and 4–7% of all cutaneous melanomas [11,77],
whereas increased activity of the Akt/mTOR axis has been observed in about 70% of
melanoma metastases [78], suggesting the importance of this pathway in advanced tumor
progression. Of note, rapamycin-mediated inhibition of mTOR failed to induce cell death
of BRAF/MEK-inhibition-resistant cells. However, when rapamycin was administered in
combination with a PI3K inhibitor, the mTOR-inhibition-dependent upregulation of AKT
was prevented, leading to cell death [79], suggesting that inhibiting the PI3K–AKT pathway
could be a viable approach to induce cell death in mTOR-elevated tumors.

3.5. MITF: Directing the Melanoma Orchestra

The microphthalmia-associated transcription factor (MITF) was first discovered due to
coat color mutations in mice [80]. MITF belongs to the basic helix-loop-helix leucine zipper
(bHLHZip) family of transcription factors. Mice that are deprived of MITF cannot produce
melanocytes [81]. Mutations at the mouse Mitf locus result in pigmentation defects of the coat,
small eyes and deafness. Moreover, mast cell defects have also been recognized for certain
Mitf alleles [82]. Therefore, it is regarded as the master regulator of the melanocytic lineage as
it is required for the development, growth and survival of melanocytes, where it regulates
the expression of various differentiation and cell cycle progression genes [83,84]. MITF is
an evolutionarily conserved transcription factor subject to differential splicing, thus being
expressed as multiple isoforms that differ in their first exon and promoter usage [85]. In most
isoforms, the initial variable exon is spliced onto the exon 1B1b and then continues with exons
2–9 that include all the functionally important motifs necessary for protein dimerization and
transactivation ability [86]. The shortest isoform, termed MITF-M, which is the predominant
isoform in melanocytes, contains a short exon 1 M directly spliced onto exons 2–9 [85].

The other isoforms of MITF have been described in a variety of cell types, including
osteoclasts, natural killer cells, macrophages, mast cells, B cells, and cardiac muscle cells.
MITF-MC is expressed in bone marrow-derived mast cells [82]. MITF-D is mostly expressed
in the human retinal pigment epithelium (RPE) [87], while MITF-A, MITF-B, MITF-E and
MITF-H are more ubiquitous [84]. In the RPE, A, D, H and M isoforms of MITF have
been detected at comparable levels [88], in contrast with other studies that reported that
MITF-M is not expressed in RPE cell lines [89]. Whether these different isoforms have tissue-
restricted functions is not well known. MITF-MC has been shown to selectively activate
the promoter of the gene encoding the mouse mast cell protease 6 (Mmcp6) and to fail to
activate the pigmentation-related gene tyrosinase (TYR), known to be a target of MITF in
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melanocytes, as shown by gene transactivation assays [90]. MITF-H has been shown to have
a greater transactivation potential than MITF-M in cardiac cells, suggesting that the activity
of MITF in the heart is isoform-specific [91]. Moreover, two isoforms of MITF called (+) and
(−) exist, differing in exon 6a. The (+) isoform of MITF encodes six additional amino acids
between Leu185 and Thr186, upstream of the DNA-binding basic domain [92,93]. Both the
MITF-M and MITF-H isoforms have been found to be expressed as (−) and (+) versions,
although it is possible that this could be the case for all the MITF isoforms [94]. Interestingly,
the (+) isoform that includes the extra exon 6a exhibits a strong inhibitory effect on DNA
synthesis [92]. Furthermore, isoform quantification across melanoma samples revealed
that differential expression is dependent on MEK1–ERK2 activation and that MITF (−)
expression is enriched in a subset of metastatic melanomas [95]. Interestingly, a PAX3-
mediated upregulation of MITF was identified as a driver of an early non-mutational
mechanism of drug resistance in response to long-term BRAF and MEK inhibition [96].

MITF has also been termed as a lineage “addiction” oncogene with a role in acquired
drug resistance (Table 2). Focal amplification of MITF has been described in 10% of
primary melanomas and over 15% of metastatic melanomas, in addition to having an
association with decreased 5-year survival [97]. A patient with a tumor relapse-associated
focal amplification of MITF has been reported [98]. MITF can cooperate with hyperactive
mutant BRAFV600E in transforming human melanocytes in vitro; however, elevating the
expression of MITF has been shown to display anti-proliferative effects [99]. These two
seemingly contrasting observations respond to two different mechanisms. On one hand,
MITFhigh melanomas display greater resistance to BRAF/MEK-inhibition-targeted therapy
by overcoming the cytotoxic effects of the inhibitors [100], by means of increasing the
expression of anti-apoptotic and pro-survival genes when compared to control cells [98].
On the other hand, hyperactive BRAF lowers the expression of MITF to basal levels that
might be required for the survival of melanoma cells [99]. It could be hypothesized that a
genomic amplification of MITF counteracts the BRAF-induced reduction of MITF which
is required for sustaining melanoma survival, without impairing proliferation and clonal
expansion. These findings indicate that MITF presents a finely tuned control in melanoma
cells and that its role in melanoma is complex and needs further investigation. A model for
MITF function as a rheostat has been proposed, wherein different levels of expression of
MITF dictate phenotype outcome in melanoma [101]. This model says that the level of MITF
activity determines cellular function. Long-term depletion of MITF drives senescence in
melanoma cells [102], impairing DNA replication, mitosis and genomic stability [96]. Low
expression has been associated with an invasive phenotype, whereas intermediate levels
promote proliferation, and high expression of MITF activates a differentiation-associated
cell cycle arrest via an increase in cyclin-dependent kinase inhibitors, leading to a non-
proliferating phenotype with elevated differentiation [103,104] (Figure 1).
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Additionally, the E318K germline mutation of MITF has been associated with increased
risk of melanoma. The mutant protein can delay BRAFV600E-induced senescence in human
melanocytes, concomitant with decreased expression of p16INK4A. This role of MITFE318K
in bypassing BRAF-induced senescence may be the underlying mechanism that favors
melanomagenesis in familial or sporadic melanoma [105]. Interestingly, this variant has
been found to abrogate SUMOylation of K316 [106,107]. SUMOylation of MITF is known
to render it less active transcriptionally. The receptor activator of NF-kappa B ligand
(RANKL)/p38 pathway phosphorylates MITF at Ser307 in osteoclasts, which allows a
SUMO protease to deSUMOylate Lys316 of MITF [108]. This enables MITF to recruit
cofactors FUS (fused in sarcoma protein) and Brahma-related gene 1 (BRG1) to form a
complex that stimulates transcription in these cells [108,109].

Table 2. MITF-driven mechanisms of drug resistance in melanoma tumors.

MITF-Driven Resistance
Mechanism Ref. Effect Comments

PAX3-mediated upregulation
of MITF [96] Drug resistance in response to

BRAF/MEK inhibition -

MITF focal amplification [97–100] Associated with tumor relapse and
resistance to BRAF/MEK inhibition

Counteraction of BRAF-induced
reduction of MITF

E318K mutation of MITF [105–107] Bypass of BRAF-induced
senescence

E318K MITF variant increases its
transcriptional activity

MITF-mediated upregulation
of BCL2A1 [110] Reduced apoptosis of melanoma

cells

Combined treatment with BRAF and
BCL2A1 inhibitors increase apoptosis

and reduce tumor volume

BRN2-mediated
downregulation of MITF [111] Promotes migration and cell

survival

Intratumor heterogeneity with
proliferative or invasive cell

subpopulations

The BCL2A1 locus, a member of the BCL2 family of anti-apoptotic proteins, has been
found to be amplified in ~30% of melanomas. Interestingly, BCL2A1 expression is directly
regulated by MITF in the melanocytic lineage. BRAFi therapy in melanoma was found
to be less effective in the BCL2A1high context, whereas combined treatment with a BCL2
inhibitor yielded increased apoptosis and reduced tumor volume [110].

BRN2 (also known as POU3F2 or N-Oct-3) is a transcription factor that plays a significant
role in melanoma. BRN2 represses MITF expression, marking two distinct subpopulations of
melanoma cells that highlight melanoma tumor heterogeneity [111]. As the master regula-
tor of the melanocytic lineage and an oncogene important for melanoma survival, motility,
oxidative stress and DNA repair [104], modulating MITF is likely to be crucial in control-
ling tumor proliferation and a relevant target of future research in melanomagenesis. In
contrast, melanoma cells expressing BRN2 are more migratory and feature a more invasive
phenotype [111]. BRN2 has also been linked to melanoma cell survival as elevated BRN2
expression correlated with increased cell survival and resistance to cell death signals [112]. As
a consequence, the role of BRN2 in promoting invasive aggressive phenotypes of melanoma
indicates that understanding the downstream effectors of BRN2 and their mechanism of action
could lead to identifying targets of interest and the development of novel therapeutics.

4. Final Remarks

BRAF is the most commonly mutated gene found in metastatic melanomas and, thus,
BRAFi has been established as the first targeted therapeutic approach against this highly
lethal form of cancer. Unfortunately, most of the patients that undergo BRAF inhibition
treatment relapse and although novel combination therapies that include immunotherapy
are radically changing the landscape, as of today, no current therapy has robustly proven
to extend survival beyond the 5-year mark in more than 50% of these patients. This is,
in part, due to a variety of acquired drug-resistance mechanisms that arise and confer
an evolutionary advantage to the tumors that harbor them (Figure 2). It is an important
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consequence and feature of the clonal nature of cancers—the geographical and temporal
variation in tumor composition [113]. Spatial heterogeneity has been demonstrated in
several tumor types and BRAF-mutant melanomas are no exception, often harboring an
especially complicated genetic background triggered by UV-related DNA damage and able
to elaborate multiple resistance mechanisms simultaneously. Therefore, when considering
targeted therapy in melanoma treatment, it is crucial to fully understand the genetic
landscape comprising all the intra- and inter-tumor heterogeneity. This is further entangled
with “non-genetic” mechanisms, such as BRAF alternative splicing [114], that contribute to
BRAF-targeting therapy resistance but have not been discussed in this review. As a remark
on this complexity, it has been shown in a melanoma patient that progressing melanoma
tumors followed a branched evolution and that this clonal diversification is associated with
an increased mutational burden, but the extent of genetic diversification of the progressive
tumors was, interestingly, not co-linear with the timing of clinical emergence [53]. It is a
challenging effort to identify the BRAF resistance-associated genetic lesions, taking into
account the extreme genetic heterogeneity present in melanoma patients, but one that would
prove crucial for the management of this predominant subtype of cutaneous melanomas.
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