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Abstract: The present article describes an experimental study towards the examination of human
visual behavior during the observation of unmanned aerial vehicles (UAVs) videos. Experimental
performance is based on the collection and the quantitative & qualitative analysis of eye tracking
data. The results highlight that UAV flight altitude serves as a dominant specification that affects
the visual attention process, while the presence of sky in the video background seems to be the less
affecting factor in this procedure. Additionally, the main surrounding environment, the main size
of the observed object as well as the main perceived angle between UAV’s flight plain and ground
appear to have an equivalent influence in observers’ visual reaction during the exploration of such
stimuli. Moreover, the provided heatmap visualizations indicate the most salient locations in the
used UAVs videos. All produced data (raw gaze data, fixation and saccade events, and heatmap
visualizations) are freely distributed to the scientific community as a new dataset (EyeTrackUAV)
that can be served as an objective ground truth in future studies.
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1. Introduction

Unmanned aerial vehicles (UAVs) constitute fully or semi-autonomous aircrafts, equipped with
several types of sensors (e.g., digital video sensor, infrared cameras, hyper-spectral sensors, etc.) [1].
UAVs represent one of the main types of air drones while they may vary widely in terms of their size,
configuration, and mission capabilities [2]. Despite the fact that the first attempts of unmanned aircraft
systems (in general) development were connected to military purposes, nowadays drones are used in
several applications [3]. More specifically, drones can be used in a huge variety of domains, such as
videography, disaster management, environmental protection, pilot training, mailing, and delivering
services. Extensive reviews of the available drones’ applications are well documented in several recent
studies [2–4].

Among the existing UAVs applications, these connected with surveillance tasks can be considered
as the most “perspective” and the most (at the same time) “controversial” ones [4]. In general,
surveillance systems may serve either as “forensic” monitoring systems, having as aim the detection
of non-normal situation (based on video retrieval information processes), or as “predictive” ones,
detecting and analyzing pre-alarm signals [5]. These processes are mainly implemented through
video-based analyses, while video surveillance systems are characterized by a set of abilities, which
include the detection of objects’ presence in the field of view (FOV), as well as their classification
(including their activities) [6]. Over the last years, several applications and techniques have been
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proposed towards the process of visual moving target tracking based on computer vision algorithms [7].
The higher goal of visual surveillance systems can be associated with the process of interpretation of
existing patterns connected with moving objects of the FOV [8].

When considering the aforementioned requirements of visual surveillance systems, as well
as their relative low cost, UAVs may serve as the basic platforms for surveillance data collection
(e.g., images, videos etc.). Surveillance systems are mainly based on image sequences (videos) that
are collected by stable or moving cameras towards supporting moving object detection algorithms [9].
Among them, videos collected by typical (small) UAVs meet several challenges, including camera
motion, variety of camera and object distances (connected also with flight altitude), environmental
background, etc. [10]. When considering that the majority of surveillance systems’ abilities (based on
computer vision techniques) aim to simulate human visual behavior [11], understanding how UAVs
videos are perceived by human vision could deliver critical information towards such systems’
improvement. Additionally, the examination of visual perception during the observation of UAVs
videos may shed more light about how people react on such products supporting at the same time the
process of UAVs’ flights designing for different types of applications. Especially, UAVs’ applications
that require online monitoring processes of the produced videos by observers (and not by automatic
processes based on computer vision techniques) could be critically benefited by such investigations.
Indicative examples of this kind of applications can include monitoring processes during rescue
activities and activities where immediate response of an operator is required (e.g., physical disaster),
as well as the supervision of big and critical infrastructures and/or of large scale events.

The study of human visual behavior requires the implementation of testing procedures using
realistic visual stimuli in the context of the examined field, while, for the design of such stimuli,
representative cases have to be selected. For example, in a recent research study presented
by Dupont et al. [12] where how people perceive different landscapes was examined, landscape
photographs with discriminated rural-urban gradient (rural, semi-rural, mixed, semi-urban, & urban)
were selected. Therefore, surveying the process of visual exploration in UAVs videos requires the
utilization of indicative databases, including different environments, different types of UAVs capturing
angles, different UAVs altitudes, etc. The majority of the available databases containing aerial video
datasets (e.g., [13–17] etc.) have been designed for computer vision purposes, and especially for objects
and events detection processes. The main moving objects of such databases are mainly corresponded
to humans and cars while in some cases bikes or boats have this role. Their main environment is
semi-urban and the available videos may differ in viewing angles (i.e., altitude of video capturing),
as well as in the available image sequences resolution. Additionally, the available videos in the existing
aerial datasets are taken either from fixed point(s) with specific FOV (fixed camera(s) position(s)) or by
(onboard) UAV cameras.

A recent research study presented by Gunzov et al. [18], examining the visual search behavior
in complex and simulated UAV task environments for training purposes, considers four different
types of visual search procedures; target-specific training, cue training, visual scanning training, and
control training stimuli. Although the main goals of this study were connected to training procedures,
its results highlight the importance of visual search examination towards the optimal effectiveness of
design process (in this study related to target training detection). Hence, it becomes obvious that the
need of further experimentation on such stimuli (UAVs videos) is considered to be very important.

Visual attention constitutes a complex process that is activated during the observation of visual
stimuli. Several theories and models have been developed over the last decades in order to explain its
basic functions. More specifically, the traditional approaches suggest that visual attention is focused
on specific regions [19] or in multiple non-contiguous areas of the visual field [20]. Additionally,
more recent work highlights that it is directly influenced by discrete objects of the visual field [21].
These regions act as spotlights that may indicate the salient units of a visual scene. Salient locations
are referred to areas of the screen that are dominant and “pop-out” from their surroundings during
visual process [22]. There are two basic mechanisms that influence the process of visual attention;
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“bottom-up” and “top-down”. Connor et al. [22] describe that “bottom-up mechanisms are thought to
operate on raw sensory input, rapidly and involuntarily shifting attention to salient visual features of
potential importance”, while “top-down mechanisms implement our longer-term cognitive strategies”.
Hence, during a free viewing procedure (without any visual task required to be completed), among
the several mechanism, “bottom-up” ones is activated in a preattentive stage [23] of vision. On the
other hand, once a visual search procedure is required, based on a specific visual task (e.g., searching
for a specific object, or counting elements on a visual scene etc.), a “top-down” process is performed.
During a “top-down”, several factors (e.g., nature of the performed task, type of the visual scene,
expertise level etc.) may have a direct influence [24].

Visual attention is directly connected with the performed eye movements while the validation
of computational visual attention models is based on the collection of gaze data [25]. Human eyes
make successive movements during the observation of a visual scene. The basic eye movement is
related to fixation events. During a fixation event, eyes are relative stationary in a position of the visual
field, while the period that corresponds to a specific fixation is characterized by several miniature
movements including tremors, drifts and microsaccades [26]. Considering fixations as particular
points on the visual scene having a specific duration, saccades events correspond to the performed
movements among these points. Additionally, smooth pursuits correspond to the eye movements
during the observation of a moving object of a visual scene. However, the detection of smooth pursuits
among eye tracking protocols constitutes a major challenge, since it is much more complicated and
error prone process than detecting fixation events based on typical fixation detection algorithms [27].

The method of recording and analyzing the eye movements (so called “eye tracking”) of observers
during the exploration of visual stimuli constitutes one of the most valuable experimental techniques,
since it provides subjective and quantitative results that are related to the visual procedure [28].
More specifically, eye movement analysis is based on the computation of the fundamental metrics of
fixations and saccades as well as in several derived analysis metrics [29,30], while it also supported by
different types of visualization methods [31]. Moreover, nowadays several existing tools are distributed
as open source projects (see for example a list presented by Krassanakis et al. [32]) supporting the full
analysis of eye tracking data in simple steps (e.g., LandRate toolbox [33]). At the same time, several
recent studies based on eye movement analysis extend the typical examination of two-dimensional
(2D) visual stimuli by examining visual stimuli with dynamic content (i.e., video) under specific tasks
or not (e.g., [34–38]).

The aim of the present study is to examine how people perceive UAVs videos characterized by a
set of different and representative parameters. These parameters are connected with the UAV’s flight
altitude, the main surrounding environment, the presence of sky in the background, as well as the
main perceived angle between UAV flight plane and ground. An experimental study, which is based
on eye movement analysis methods, is designed and performed in order to highlight the influence of
the examined parameters, as well as the most salient locations during the observation of this type of
visual stimuli. Additionally, the present study aims to deliver a new dataset (EyeTrackUAV) of eye
tracking data, which may serve as the ground truth for possible future studies.

2. Methodology

2.1. Experimental Design

2.1.1. Visual Stimuli

The process of the experimental stimuli design was based on the use of multiple videos adapted
from the UAV123 Database [15]. UAV123 is an up-to-date dataset containing UAV videos captured in
several environments (cities, parks, sea, virtual environments, etc.). Additionally, different types of
objects (people, cars, bikes, boats, etc.) are depicted in the available videos of this database. Considering
also that this dataset is (mainly) consisted of high resolution videos, it can be served as a quite suitable
source of representative UAV videos. Hence, taking also into account that the total duration of the
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experimental process must be kept relatively short in order to eliminate possible errors due to observers’
fatigue, a part of the videos (totally 19 different videos) was selected from the aforementioned database.
At the same time, this selection was made on the basis that different and representative specifications
characterize the selected videos. More specifically, videos specifications were identified qualitatively
(by watching all available videos of the database) based on the main UAV altitude, the main presented
(surrounding) environment, the size of the main presented object (for the cases where it was obvious
there was a dominant object during the video), the presence of sky (at least once during the video),
as well as the main (perceived) angle between UAV flight and ground plane. Hence, this information
constitutes a product of human annotation (made by authors) and it is not a result of a computation.
The specifications of the selected videos are presented in Table 1.

Table 1. Specifications of the selected videos from the UAV123 dataset.

ID Video
Name

No
Frames

Duration
(sec, 30 FPS)

UAV
Altitude
(main)

Environment
(main)

Object Size
(main)

Sky
Presence

Main Perceived Angle
between UAV Flight
Plane and Ground

1 truck1 463 15.43 low,
intermediate road big, medium true vertical-oblique

2 car6 4861 162.03 low to high roads,
buildings area big to small true vertical-oblique-horizontal

3 car4 1345 44.83 high to
intermediate roads small to

medium false oblique-horizontal

4 person14 2923 97.43 intermediate beach medium false oblique

5 wakeboard10 469 15.63 intermediate to
low sea medium to big true oblique

6 person3 643 21.43 low to
intermediate

green place
(grass) big to medium false oblique

7 car8 2575 85.83 low,
intermediate

parking,
roundabout,

roads,
crossroads

big, medium true oblique

8 group2 2683 89.43 intermediate beach medium
(3 persons) false oblique

9 building5 481 16.03 high (very high) port, buildings
area

not clear object
without

considering
the annotation

true oblique

10 car10 1405 46.83 intermediate,
high roads medium, small true oblique-vertical

11 person20 1783 59.43 low to very low building area bit to very big true oblique-vertical

12 boat6 805 26.83 high to low sea small to big true vertical

13 person13 883 29.43 low square place
(almost empty) big false oblique

14 boat8 685 22.83 high to low sea, city small, medium true oblique-vertical

15 car7 1033 34.43 intermediate roundabout medium false oblique

16 bike3 433 14.43 intermediate building, road small true oblique

17 car13 415 13.83 very high
buildings area,
road network,

sea
very small false horizontal-oblique

18 person18 1393 46.43 very low building area very big true vertical

19 car2 1321 44.03 high roads,
roundabout small false horizontal

Additionally, some basic statistics for the selected videos are presented in Table 2 in comparison
with the complete UAV123 dataset. For the computation of the statistics that are related to video
durations (Tables 1 and 2), the specific frame rate of 30 frames per second (FPS) is considered (this value
is also reported by UAV123 dataset description [15]).
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Table 2. Basic statistics of the selected set of videos in comparison with UAV123 dataset.

Basic Statistics

Percentage (duration) of the complete dataset ~23%
Percentage (number) of the complete dataset ~21%
Number of videos 19
Total number of frames 26,599
Total duration ~887 s (14:47 min)
Average duration ~47 s
Standard deviation (duration) ~38 s
Min video duration ~14 s
Max video duration ~162 s

In Figure 1, an indicative frame of each selected video is illustrated in order to highlight
the variability (in terms of existing differences in the presented environment) among the
experimental videos.
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Figure 1. Sample frames of the 19 different videos selected from the UAV123 database [15] and used as
visual stimuli in the performed experimental study. The selected names of all videos are the same with
these provided by the original source.

The experimental process was performed in five successive sets (the duration of each set
corresponds to approximately 3 min) in order to ensure the accuracy of the collected data (calibration
and validation process were implemented for each set, see also Section 2.1.4 for further description).
All videos were presented randomly in their native resolution (1280 × 720 px (720p)); for each observer,
a unique dataset was produced by concatenating the corresponding sequences. Since the resolution of
the used monitor was higher (see Section 2.1.2) than the resolution of videos, a grey frame (R:198, G:198,
B:198, see also Section 2.1.2.) was placed around each video in order to fill the gap in the monitor.
Moreover, before the presentation of each video, a sequence of grey frames (R:198, G:198, B:198, see also
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Section 2.1.2.) with a duration of 2 s was presented for avoiding possible biases that are produced by
the observation.

2.1.2. Equipment and Software

The EyeLink® 1000 Plus (SR Research Ltd., Ottawa, ON, Canada) eye tracker system was used
during the experimental process. Binocular gaze data were collected with a recording frequency of
1000 Hz while the eye tracker system was used in remote mode (using a 25 mm camera lens and
without using any head stabilization mechanism or chinrest). Hence, normal (not abrupt) observers’
head movements were allowed during the observation of the experimental visual stimuli. The spatial
accuracy of the eye tracker system, as reported by the manufacturer for the selected mode (remote),
lies in the range 0.25◦–0.50◦ of visual angle. Additionally, the selected eye tracker equipment is fully
compatible with corrective eyeglasses and contact lenses.

For visual stimuli presentation, a typical 23.8 inches computer monitor (DELL P2417H) was
used with a display area that corresponds to 527.04 (horizontally) × 296.46 (vertically) mm, full
HD resolution (1080p); 1920 × 1080 px at 60 Hz, and 6 ms response time. The stimuli monitor
was calibrated using the i1 Display Pro (X-Rite®) device while the whole experimental process
was performed following ITU recommendation bt.500-13 [39], in particular constant ambient light
conditions (36 cd/m2 corresponding to 15% of 240 cm/m2, which is the maximum monitor brightness).
Additionally, the distance between observer and stimuli monitor was stable during the experimental
process and equal to approximately (depended on each observer) 1 m. This distance was selected
following the suggestion provided by eye tracker’s manufacturer (the distance between display
monitor and observer has to correspond at least to 1.75 times of monitor’s width for the proper
function of the eye tracker) as well as the recommendation provided by ITU bt.710-4 [40]; observation
distance has to be equal to 3xH, where H corresponds the screen height when considering the value of
acuity threshold of human vision that corresponds to approximately one minute of the visual angle.
Moreover, the distance between stimuli display monitor and eye tracker camera was equal to 43 cm.

The whole experimental process was programmed in MATLAB software (MathWorks®) using
Eyelink toolbox [41] (included in Psychophysics Toolbox Version 3 (http://psychtoolbox.org/))
towards the communication between eye tracker’s installed PC and display PC. For videos presentation,
the open source MPC-HC (https://mpc-hc.org/) media player was selected, since this software
constitutes a quite lightweight and customizable player (the communication between experimental
script and video player manipulation was achieved using relative in-house (LS2N) MATLAB functions).
Moreover, light conditions were fully controlled using another in-house (LS2N) MATLAB script,
installed in a separated PC. Furthermore, for the purposes of data synchronization based on the
corresponding time stamps (between gaze data and video player) and synchronized data export from
the recorded files, appropriate scripts were developed in Python, while the whole statistical analysis as
well as the production of heatmap visualizations (see Section 2.2) based on the collected eye tracking
data were performed in MATLAB. Finally, the generation of visual stimuli videos based on the existing
sequences was implemented using the multimedia framework FFmpeg (https://www.ffmpeg.org/).

The overall orientation/geometry of the equipment used for the performance of the experimental
study is depicted in Figure 2. Totally three different PCs supported the performance of the experimental
process, including eye tracker’s system, display, and light conditions controlling PC (stimuli (display)
monitor position was placed in front of all the rest of the equipment avoiding the distraction of
observer’s FOV during the experimental process).

2.1.3. Observers

In total, fourteen observers participated in the experimental study, ten males (71%) and four
females (29%) with an average age of 25.4 (±3.8). The dominant eye for the twelve of them (86%)
corresponded to the right one, while two participants (14%) had the left eye as their dominant one.

http://psychtoolbox.org/
https://mpc-hc.org/
https://www.ffmpeg.org/
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All observers were volunteers (Master/PhD students and staff members of LS2N Laboratory, University
of Nantes) with normal or corrected to normal (wearing correction eyeglasses or contact lenses) vision.
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Figure 2. Overall orientation/geometry of the equipment used for the performance of the experimental study.

2.1.4. Experimental Process

All of the observers were asked to participate in an experimental study where their eye movements
will be recorded during the observation of some video (dynamic) stimuli on a typical computer monitor
(without giving any information about the contents of the presented videos to avoid possible biases).
The eye tracking equipment was set up for each observer separately in order to ensure the optimal
accuracy of the recorded data. More specifically, the eye tracker’s camera angle was configured
accordingly (without affecting the distance between camera and observer) for the optimal detection of
the head and the eyes of the observer. Before each experimental part, observers were calibrated with
eye tracker system using a typical nine-points process. For all observers, the process of calibration was
validated by accepting deviation values for all validated points around the fovea range (~1◦ of visual
angle). For the cases that observer’s calibration validation failed, calibration process was repeated.
All visual stimuli (videos) were presented under free viewing conditions (without any visual task to
complete). Additionally, all observers were asked to provide anonymously their information reported
in the Section 2.1.3. The total duration of the experimental process corresponded to a period of less
than 30 min approximately (depending on the duration spent on observer’s configuration as well as
observer’s calibration and calibration’s validation process).

2.2. Data Analysis

2.2.1. Fixation Detection

For the computation of fixation events, all the collected gaze points were initially transformed into
the coordinate system of the raw sequences (1280 × 720 px, with an origin in the up-left corner of the
video). Therefore, after the transformation of gaze points, negative gaze coordinates, or coordinates
higher than 1280 px horizontally and 720 px vertically correspond to observations outside the range
of the presented stimuli. The identification of fixations among the produced eye tracking protocols
was based on the implementation of EyeMMV’s fixation detection algorithm [32]. This algorithm
belongs to the family of I-DT (dispersion-based) detection algorithms and considers both spatial
(implemented into two steps where the second parameter serves as a spatial noise removal filter) and
temporal parameters. More precisely, two spatial parameters (t1, t2) are used in order to describe the
spatial distribution (t1) of gaze points during a fixation event and to serve as a spatial noise removal
filter (t2), while temporal parameter refers to the minimum fixation duration. Since the used eye
tracking equipment is quite accurate and also considering that the eye tracking data were collected
in remote mode (without using chinrest), the selected spatial threshold is implemented in one step
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(t1 = t2) following the approach described in Krassanakis et al. [42]. Specifically, when considering the
corresponding reported values in previous studies [42–47], the selected spatial threshold was selected
to be equal to 1o of the visual angle. Additionally, although Manor and Gordon [48] suggest as optimal
duration threshold in free viewing tasks the value of 100 ms, in the presented study the selected
value for the temporal parameter corresponded to 80 ms. This threshold was selected considering
the minimum reported value (in general) for the analysis of eye tracking studies [49,50]. Moreover,
since the temporal parameters of EyeMMV’s algorithm serves as a simple filter that considers only
the temporal threshold, selecting the lower reported value makes feasible to detect fixations with
smaller durations.

The performance of the fixation detection algorithm was based on the use of the binocular gaze
data, produced as the average value between left and right eye [51]. For the cases where the gaze
point position was captured for only the one (left or right) from both eyes, the corresponding gaze
coordinates were used in order to feed the fixation detection algorithm.

2.2.2. Eye Tracking Metrics

The analysis of eye tracking data was based on the calculation of specific eye tracking metrics that
were derived by the fundamental metrics of fixations and saccades, as well as by the basic derived
metric of scanpath [33]. Saccades events were calculated based on the computation of fixation points
positions (saccades correspond to the transition movements among fixations) while the sequence
between fixations and saccades composed the derived scanpaths. Based on findings produced by
previous studies [29,30], the following eye tracking metrics were considered suitable and computed
for all combinations of videos and observers:

• Normalized Number of Fixations Per Second
• Average Fixations Duration (ms)
• Normalized Scanpath Length (px) Per Second

The selected metrics may indicate critical information about the efficiency of extracting
information during the visual search process [29,30]. Number of fixations and scanpath length were
considered as normalized values (computed “per second”) in order to be comparable in videos with
different durations.

2.2.3. Data Visualization

Except from the quantitative analysis based on eye tracking metrics that are described above,
collected data were also processed qualitatively. Heatmap visualizations were produced for all
examined videos while considering the gaze data collected from all observers and based on the method
described in the study by Krassanakis et al. [32]. According to this method, either raw data or fixation
point data can be used for the generation of a heatmap, which indicates the most salient locations
during the observation of a visual scene. For the purposes of the presented study, binocular raw gaze
data were used in order to produce heatmap visualization for each frame of each video. The original
function for heatmaps generation of EyeMMV toolbox [32] was modified in order to produce grayscale
images (maximum number of different intensities values: 256). The appropriate parameters required
for heatmap generation were selected based on the range of the fovea [52] and the selected experimental
setup described in Section 2.1 (grid size (gs): 1 px, standard deviation (sigma): 32 px (0.5o of the visual
angle), kernel size (ks): 6*sigma) (see [32] for further details about the function of these parameters).

3. Results

3.1. Quantitative Analysis

Eye tracking metrics were calculated for all observers and all presented videos. In Table 3,
the average values, as well as their standard deviations, are presented for each video separately.
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Table 3. Average (AVG) values and standard deviations (STD) for all eye tracking metrics for each
unmanned aerial vehicle (UAV) video separately.

UAV Video truck1 car6 car4 person14 wakeboard10 person3 car8 group2 building5 car10
Eye Tracking Metric AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

Normalized Number
of Fixations Per Second 2.41 0.33 1.91 0.27 1.55 0.23 1.68 0.38 1.14 0.40 1.67 0.48 1.92 0.36 1.85 0.32 2.35 0.56 1.83 0.49

Average Fixations
Duration (ms) 386 64 489 100 624 99 583 169 922 300 593 178 495 113 524 93 431 192 566 226

Normalized Scanpath
Length (px) Per Second 594 167 401 94 273 64 403 100 256 152 367 127 433 118 405 98 556 177 381 147

UAV Video person20 boat6 person13 boat8 car7 bike3 car13 person18 car2
Eye Tracking Metric AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

Normalized Number
of Fixations Per Second 2.00 0.26 1.60 0.37 1.51 0.40 1.49 0.48 1.93 0.49 2.26 0.59 2.52 0.35 1.82 0.25 1.97 0.23

Average Fixations
Duration (ms) 477 74 623 177 671 217 691 237 531 197 443 158 370 60 518 94 482 68

Normalized Scanpath
Length (px) Per Second 516 107 348 120 357 131 322 151 453 127 471 189 574 207 455 84 448 78

Moreover, the overall averages and their standard deviations of all eye tracking metrics taking into
account the values produced for all UAV videos and all observers were calculated. The corresponding
results are depicted in Table 4.

Table 4. Overall (for all UAV videos and all observers) averages (AVG) and their standard deviations
(STD) of all eye tracking metrics.

Eye Tracking Metric AVG STD
Normalized Number of Fixations Per Second 1.86 0.35
Average Fixations Duration (ms) 548 127
Normalized Scanpath Length (px) Per Second 422 94

Moreover, box plots (Figures 3–5) were generated for each eye tracking metric in order to highlight
the existing variation among the examined UAV videos. The provided box plots depict the minimum
(down edge of the dashed line of the box), the maximum (up edge of the dashed line of the box) of the
corresponding interquartile ranges and the median (red line in the box) values, the 25th (down edge
of the blue box) and the 75th (up edge of the blue box) percentiles, as well as data outliers (red “+”).
Outliers correspond to the values that are more than 1.5 times the interquartile range.Drones 2018, 2, 36 10 of 19 
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Additionally, all combinations of UAV videos were compared for all eye tracking metrics in order
to indicate the corresponding pairs with statistically significant differences. The comparison was based
on the implementation of the non-parametric Kruskal-Wallis test. More specifically, the pairs with
statistical differences (p < 0.005) are presented in Table 5.

In order to examine the influence of the different specifications (Table 1) of the UAV videos
that served as the experimental stimuli in the visual process (during videos observation), for each
significant pair, the existing differences (in specifications) were identified and the percentage of the
pairs that differentiated according to each feature was calculated. This process was implemented for
all metrics with significant different (p < 0.005) pairs. This p-value (p < 0.005) was selected in order to
ensure the higher possible confidence on the statistically different pairs. The results of this analysis are
presented in Figure 6. As an example for further explaining the presentation of the results visualized
in Figure 6, according to the metric “Normalized Number of Fixations Per Second”, the 94.4% of the
pairs with significant differences (p < 000.5) were characterized by different UAV altitudes.

The percentages (illustrated in Figure 6) produced by all metrics may indicate the affection of
the examined UAV specifications in the process of visual observation of UAV videos. In Table 6, the
average percentage values, as well as their standard deviations, were calculated and presented towards
pointing out the type of specifications’ differences that produce significant statistical different pairs
that are based on the implemented eye tracking metrics.
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Table 5. Pairs with statistical differences (p < 0.005) for all eye tracking metrics.

No
Cases

“Normalized Number
of Fixations Per Second”

“Normalized Average
Fixations Duration”

“Normalized Scanpath
Length Per Second”

1 [truck1] [car4] [truck1] [car4] [truck1] [wakeboard10]
2 [truck1] [wakeboard10] [truck1] [wakeboard10] [truck1] [boat8]
3 [truck1] [boat6] [truck1] [person13] [car4] [building5]
4 [truck1] [person13] [truck1] [boat8] [car4] [person20]
5 [truck1] [boat8] [car4] [building5] [car4] [car13]
6 [car4] [building5] [car4] [car13] [wakeboard10] [building5]
7 [car4] [car13] [wakeboard10] [building5] [wakeboard10] [person20]
8 [person14] [car13] [wakeboard10] [person20] [wakeboard10] [car13]
9 [wakeboard10] [building5] [wakeboard10] [bike3]
10 [wakeboard10] [person20] [wakeboard10] [car13]
11 [wakeboard10] [bike3] [person3] [car13]
12 [wakeboard10] [car13] [boat6] [car13]
13 [person3] [car13] [person13] [car13]
14 [building5] [person13] [boat8] [car13]
15 [building5] [boat8]
16 [boat6] [car13]
17 [person13] [car13]
18 [boat8] [car13]
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Table 6. Average percentage values and standard deviations of the percentages of different UAV video
specification differences produced by all metrics.

UAV Altitude
(main)

Environment
(main)

Object Size
(main)

Sky
Presence

Main Perceived Angle
between UAV Flight
Plane and Ground

Average percentage value 92.1% 64.6% 68.8% 37.8% 68.3%
Standard deviation 2.9% 8.1% 8.9% 5.9% 2.7%
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3.2. Qualitative Analysis

The produced heatmap visualizations indicate the most salient locations of the UAVs video used
as visual stimuli in the experimental procedure. Several remarks can be summarized based on the
observation of these heatmaps. Despite the fact that the observation of the experimental stimuli was
performed under free viewing conditions (without any visual task that has to be completed), observers
tend to pay attention in the main moving object (or objects) of the scene (i.e., vehicles, person, human
group, or boat) independently from its (or their) specific characteristics (e.g., color difference, shape,
etc.). Additionally, although for the majority of the cases it was quite clear that there was a dominant
moving object, observers’ attention was also drawn to other moving objects of the scenes (e.g., vehicles,
humans, bikes, birds etc.). Moreover, except from the moving elements of the scenes, observers’
attention was also allocated to locations with special characteristics; places with remarkable color or
shape differences comparing to the surrounding environments (e.g., big trees, buildings, etc.), objects
with edges or non uniform shape (e.g., buildings), objects that have a relatively bigger area than others
(e.g., infrastructures in a beach area), as well as to specific objects which transfer written or pictorial
information (e.g., street signs, labels etc.). Furthermore, heatmaps indicated that observers tend to
gaze the shadow of the UAV in the cases (characterized by lower UAV’s flight altitude) it is visible in
the captured scene. In Figure 7, several sample frames of the produced heatmaps are depicted in order
to highlight some of the cases mentioned above.
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Figure 7. Sample (frames) heatmap visualizations; attention is drawn in a moving object (car) and in a
street label (a), in an object of the scene with different color (red) from the surrounding environment (b),
in a warning (road) sign with different color (yellow) from the surrounding environment (c), in the
main and other moving objects (cars) as well as in street signs (d), in human actions (e), in human
faces (f), in UAV’s shadow (g), and in buildings with a different shape than the surrounding ones (h).

3.3. Dataset Distribution

The collected raw gaze data, as well as the analyzed fixation and saccade events were organized
in a new dataset, called EyeTrackUAV, which is freely distributed to the scientific community via
anonymous FTP at ftp://ftp.ivc.polytech.univ-nantes.fr/EyeTrackUAV. Additionally, EyeTrackUAV
contains all the heatmap visualizations that were produced in the framework of the presented study.

ftp://ftp.ivc.polytech.univ-nantes.fr/EyeTrackUAV
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4. Discussion and Conclusions

The outcomes produced by the computation of the average eye tracking metrics values (Table 4)
considering gaze data of all observers during the observation of all examined UAV video may constitute
characteristic evidences about how people observe this special type of stimuli and can be served as an
objective ground truth for possible comparison with other types of dynamic stimuli. The robustness of
the produced values is also validated by considering that the standard deviations that are connected
with the majority of the reported values are, in general, small, despite the huge variability of the
observed UAV videos. Additionally, among the reported metrics’ values, the metrics derived by fixation
events pose some interesting results. In particular, the results show a high number of fixation events
per second (1.86 ± 0.35) which in general may indicate less efficient searches [29,30,53]. Although the
performed experiment implemented under free viewing conditions and considering that expertise and
familiarity may have a critical role in visual search procedures (see for example the studies presented
by Jarodzka et al. [54] and Stofer & Che [55]), this result seems to be reasonable since the observers
who participated in the experimental study were not familiar with UAV videos (e.g., operators of
surveillance systems, etc.).

Furthermore, fixations durations are directly linked with the perceived complexity as well as
with the level of information depicted in an observed visual scene [56], while their range mainly lies
between 150 ms and 600 ms [57]. The average value computed in the presented study corresponds
to 548 ms (±127 ms). Bylinskii et al. [56] mention that fixations longer than 300 ms are encoded in
memory, which means that the observation of UAV videos corresponded to conscious and meaningful
fixation events, indicating at the same time the amount of the available information in such stimuli.
This outcome is also authorized taking into consideration that the average fixation duration calculated
in the present study is higher than this reported during other visual process activities, such as silent and
oral reading, visual search and scene perception, music reading, and typing [58]. Moreover, another
explanation of this high value may be connected with the nature of the specific videos; in the majority
of the cases, UAV’s camera focused on a specific object. Except from the cases that UAV altitude is high
(or very high), it is quite obvious that there is a specific object for observation. This issue is rational,
since the used dataset (UAV123) has been mainly developed for computer vision purposes connected
with object detection algorithms. At the same time, the observation of the moving point objects is also
confirmed while considering the qualitative analysis of the generated heatmaps.

Moreover, the video datasets used for the performance of the experimental study can be ranked
based on the calculated eye tracking metrics values presented in Table 3. The outcome of this ranking
process is summarized and presented in Table 7.

Table 7 is directly connected with the metrics produced for each video and compared qualitatively
through the visualization of box plots depicted in Figures 3–5. Table 7 can only serve as a first
benchmark for possible differences (based on the specific eye tracking metrics) among the used video
datasets. Although that the extraction of a general result based on Table 7 is difficult, the performed
statistical comparison that is presented in Section 3.1 may reveal the types of videos (e.g., car, person
etc.) as well as the types of videos pairs with significant differences which are more frequent than others
based on each metric. Hence, considering the statistically different pairs according to “Normalized
Number of Fixations Per Second” metric (Table 5), the most frequent video types correspond to the
categories “person”, “truck”, & “wakeboard” while the most frequent pair types are these of “boat-car”,
“person-car”, and “truck-boat”. For the case of “Average Fixations Duration” metric (Table 5), “truck”
and “wakeboard” are the most frequent video types, while the most frequent pairs are these of
“boat-car” and “person-car”. Finally, despite that the frequency of all different pair types highlighted
for the case of “Normalized Scanpath Length Per Second” metric (Table 5) is equal (nine different
unique pairs), the different video types that observed having statistical differences correspond to the
categories of “car”, “truck”, and “wakeboard”. Among the ranked videos, an interesting point is
highlighted considering the metrics of the video “wakeboard10”. More specifically, this video seems to
have the longest “Average Fixations Duration” while at the same time the lowest values corresponded
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to the metrics of Normalized Number of Fixations Per Second” and “Normalized Scanpath Length Per
Second”. This outcome is also validated by the box plots presented in Figures 3–5. This finding can
be explained by the nature of this specific video. More specifically, it depicts a human in the sea area,
while UAV seems to approach human’s position moving on a line direction generated by a specific
(UAV) starting position and the position of the human. All of the aforementioned reported outcomes
are characterized by consistency, since both most frequent types of UAV videos and type of pairs have
common categories for these metrics.

Table 7. Ranking (from the higher to lower value) each video dataset used for the experimental process
based on the calculated values of all eye tracking metrics.

Normalized Number of
Fixations Per Second

Average Fixations
Duration (ms)

Normalized Scanpath Length (px)
Per Second

car13 wakeboard10 truck1
truck1 boat8 car13

building5 person13 building5
bike3 car4 person20

person20 boat6 bike3
car2 person3 person18
car7 person14 car7
car8 car10 car2
car6 car7 car8

group2 group2 group2
car10 person18 person14

person18 car8 car6
person14 car6 car10
person3 car2 person3

boat6 person20 person13
car4 bike3 boat6

person13 building5 boat8
boat8 truck1 car4

wakeboard10 car13 wakeboard10

Moreover, the influence of different UAV videos features is examined within the presented study
(Figure 6 and Table 6). The reported results suggest that the main UAV video altitude constitutes a
leading factor that affects how people observe this type of visual stimuli. Considering that, in different
scales of observation (produced by different UAV altitudes), the amount of information that is available
to the observer may be remarkably varied, this result is considered as a logical one. On the other hand,
the presence of sky seems to be the less affecting parameter during the observation process. A possible
explanation of this effect can be given when considering that the sky constitutes a background
and hence a less important object of a natural scene. Similar outcome is also reported in previous
experimental studies based on qualitative experiments (e.g., [59]). Additionally, the different UAV
specifications based on main surrounding environment, the main size of the observed object, as well
as the main perceived angle between UAV’s flight plane and ground appear to have an equivalent
impact on observers’ visual attention. Considering recent research studies in the field of landscape
perception [12,60], the influence of the main surrounding environment in the process of visual attention
is well know. Although the experimental stimuli used in these studies were based on landscape
photographs, they are also based on eye movement analysis while their produced outcomes meet
several similarities with the corresponding results of the presented study. More specifically, the results
of the experimental study that was presented by Dupont et al. [60] showed that landscapes with
different degrees of “openness” and “heterogeneity” might have a direct influence in the produced
visual patterns. Moreover, Dupont et al. [12] concluded that the “urbanization level” of an observed
landscape is highly correlated with the perceived visual complexity reported by analysis of eye tracking
data. At the same time, the outcome related to the impact of the different size (of the main observed
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object) in visual attention is consequent, since this feature is considered as one of the “undoubted
guiding attributes” of visual attention [61]. Another interesting finding is that, when comparing with
the parameters of main surrounding environment as well as this of the main object size, the perceived
UAV angle seems to have an equivalent influence in the process of visual observation.

Critical effects are also revealed by the qualitative analysis of the collected eye tracking data. In
particular, heatmap visualizations demonstrate that observers’ attention, even in a free viewing task, is
drawn in scene objects which are characterized by the element of motion as well as in other features
of the observed field of view with heterogenic elements. This result can be explained by taking into
consideration the well known preattentive attributes of human vision, while it is also compatible
with the existing literature related to the “bottom-up” saliency and visual attention modelling process
(e.g., [62]). More specifically, such attributes (so called “basic” or “preattentive” features) are available
in a primary stage of vision and they are able to guide the selective visual attention process in a
“bottom-up” way [63]. Additionally, the drawn of attention in specific buildings or infrastructures
(e.g., with different shapes than others) during the observation of different landscapes has also been
observed in previous studies (e.g., [64]). Eventually, the examination of the produced heatmaps
indicates that observers are able to detect multiple actions that may be presented in a UAV video
(e.g., an action of a group of pedestrian when a main human object is presented in a scene). A recent
experimental study that was presented by Wu et al. [65] reports the ability of human visual system
to monitor simultaneously at least two different events occurring on a visual stimulus. Even though
the fact that this research study was based on different types of experimental stimuli, it constitutes
important evidence that suggests that the mechanism of visual attention is not just based on a simple
focus point, validating at the same time the observed patterns reported in the presented study.

The outcomes that are reported in the presented study could be substantially considered towards
the design of surveillance systems based on the human observation of UAV videos either in a real time
or in post processing scenario. Such surveillance systems may be used in several domains. Typical
examples include the supervision of critical infrastructures (e.g., buildings, industrial areas, etc.) and
sensitive ecosystems (e.g., forests), or monitoring processes (e.g., traffic). The importance of these
systems is obvious when considering their direct influence in human safety, and cultural or ecological
protection procedures.

Finally, although that recent experimental studies validate that low cost eye tracking devices can
be used for scientific purposes (see e.g., [66–68]), the raw gaze data, which are distributed through
the EyeTrackUAV dataset, have been collected with one of the most precise and accurate eye trackers,
serving as a robust ground truth for future studies.

5. Future Outlook

The present study constitutes, to the best of our knowledge, a first attempt to monitor human
visual behavior process during the observation of UAVs videos visual stimuli towards understanding
the leading factors that may influence this procedure. Although that the examination of human visual
behavior during the observation of UAVs videos stimuli can be based on the exploitation of different
solutions, an existing database (UAV123) was used for the purposes of the presented study. Such
solutions may include the capturing of new UAV videos or the production of virtual demos using
simulation and/or geographic information tools. Despite that in both cases stimuli design process
could be more effective, the use of an existing and up-to-date database, such as UAV123, allows the
future comparison of the produced results with existing data (e.g., annotated objects) connected to other
purposes (e.g., computer vision). However, this work can be expanded. For example, the examination
of the affecting factors is based on the main characteristics of the tested videos while considering that
these features are uniform during each video. In a next step, the methodological approach could be
based on specific UAV characteristics given to each frame of each video. Additionally, the presented
methodological framework can be used in order to examine the visual behavior under the performance
of specific visual tasks that are connected either to surveillance or other similar purposes. Moreover,
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further experimentation can be performed with other visual stimuli taking also into consideration
observers with different level of expertise (e.g., novices and experts). Additionally, the collected eye
tracking data, distributed through EyeTrackUAV dataset, can be used as the ground truth towards the
development of dedicated visual saliency models that will be able to predict human visual reaction
during the observation of this type of visual stimuli.
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