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Abstract: Food security is one of the burning issues in the 21st century, as a tremendous population
growth over recent decades has increased demand for food production systems. However, agricultural
production is constrained by the limited availability of arable land resources, whereas a significant
part of these is already degraded due to overexploitation. In order to get optimum output from the
available land resources, it is of prime importance that crops are monitored, analyzed, and mapped
at various stages of growth so that the areas having underdeveloped/unhealthy plants can be
treated appropriately as and when required. This type of monitoring can be performed using
ultra-high-resolution earth observation data like the images captured through unmanned aerial
vehicles (UAVs)/drones. The objective of this research is to estimate and analyze the above-ground
biomass (AGB) of the wheat crop using a consumer-grade red-green-blue (RGB) camera mounted on a
drone. AGB and yield of wheat were estimated from linear regression models involving plant height
obtained from crop surface models (CSMs) derived from the images captured by the drone-mounted
camera. This study estimated plant height in an integrated setting of UAV-derived images with a
Mid-Western Terai topographic setting (67 to 300 m amsl) of Nepal. Plant height estimated from the
drone images had an error of 5% to 11.9% with respect to direct field measurement. While R2 of
0.66 was found for AGB, that of 0.73 and 0.70 were found for spike and grain weights respectively.
This statistical quality assurance contributes to crop yield estimation, and hence to develop efficient
food security strategies using earth observation and geo-information.

Keywords: wheat; remote sensing; AGB; crop yield; estimation; crop monitoring; consumer drone;
digital camera
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1. Introduction

Food security is one of the burning issues in the 21st century [1,2]. The world, with an ever-growing
population, has increased demands on food production systems [1]. However, agricultural production
is inadequate due to the limited availability of arable land resources that are degraded due to
overexploitation, and it poses a threat to food security to a significant part of the society since it limits
the yield of the crops, compels farmers to apply more inputs, and may ultimately force the farmers to
abandon the agricultural land [3]. In a bigger picture scenario, the problem is further worsened by
global changes such as climate change [4,5], land use/land cover change [6–8], and desertification [7,9].
Although the production has been increased by the use of efficient technologies and high yielding
varieties of various cereals, low-income countries like Nepal lag behind in these areas. So, to get the
optimum output from the limited resources, it is of prime importance that crops are monitored, analyzed,
and mapped at various stages of growth so that the areas affected by underdeveloped/unhealthy plants
can be treated properly and as early as possible [10]. The focus of this research was wheat (Triticum spp.)
which is the third most important cereal crop, after rice and maize, in Nepal. However, the average
productivity of wheat is very low as compared to developed countries [11]. A number of aspects make
planning and managing wheat crop using satellite images quite challenging in Nepal. First, the average
farm size in Nepal is 0.46 ha [12], which limits the applicability of openly/freely available satellite
imagery at the farm level to derive meaningful above-ground biomass (AGB) estimates. Second,
like many cereal crops, wheat has a short lifespan of approximately five months. This short lifespan
makes meaningful monitoring very expensive. Third, most of the wheat-growers are small-holder
farmers who generally lack the resources to recover from a wrong decision. Hence, there is an urgent
need to use efficient technologies in monitoring wheat crops and estimate yields for developing
adaptation strategies and mitigating adverse effects.

Currently, two main types of satellite remote-sensing data, namely optical imagery and synthetic
aperture radar (SAR), have been widely used to estimate the plant characteristics and thus relate it
to AGB, yield, crop management, and optimization. However, the operational use of these satellite
data at a farm level is difficult due to their limited spatial and spectral resolutions. Further, the
longer revisit frequency of satellite sensors, resulting in products with a lack of temporal availability
is another concern in operational use. Recently some researchers have attempted to acquire higher
spatial resolution farm level light detection and ranging (LiDAR) data [13–15]. One of the advantages
of LiDAR data is 3-D representations of plants that provide a precise crop surface model (CSM)
estimate [13–15]. However, LiDAR scanners are costly [13] and the availability of these datasets are
limited for the areas of interest in low-income countries. Therefore, a high-resolution digital camera
mounted on an unmanned aerial vehicle (UAV), or commonly known as a drone, can also be used
for generating CSM [16,17]. UAVs, sometimes referred to as remotely-piloted aerial systems (RPAS)
or unmanned aerial systems (UAS), are one of the emerging tools to be used for small-scale remote
sensing [18–20].

AGB is one of the important parameters that helps to assess and estimate yield, crop health,
nutrient supply, nitrogen nutrient index (NNI), and management practices [21]. Therefore, regular
monitoring of crop AGB helps to inform the farmers and practitioners to make informed decisions at
the appropriate time. Crop AGB and yield can be estimated through crop parameters such as plant
height [10,15,16,22–25], leaf area index (LAI) [10,26], and vegetation indices [10,16,24,26]. Plant height,
which is either measured at ground level or obtained using photogrammetric techniques such as crop
surface models (CSMs) [15,16,23,25], can be used to estimate the AGB. Plant height is highly suitable for
AGB estimation as it can be easily measured for barley [10], paddy rice [15], black oat [25], and sugar
beet [23]. Similarly, a strong correlation exists between plant height and grain yield in barley, oat and
wheat [14], and in oilseed rape, winter rye, winter wheat, and grassland [22]. Studies have found
that black oat AGB can be estimated using the plant height that is derived from RGB images acquired
with a drone which can be derived from CSMs [25]. Fresh and dry AGB of black oat can be predicted
from plant height obtained from the drone images [25]. Likewise, pasture AGB can be estimated using
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a similar approach [27]. AGB estimation of maize using linear and exponential regression models
is comparatively analyzed, along with the use of vegetation indices [24]. The multivariable linear
regression model was reported to provide the best results by this study [24]. Plant height can be
estimated from 3D point cloud datasets alone [24], and using drone-based 3D point cloud datasets and
statistical analysis that used a moving cuboid filter to remove outliers [28]. Comparisons of drones
with airborne platforms (for larger areas) and terrestrial laser scanning (TLS) show similar results [14].

This study aims to develop a drone-based wheat monitoring, AGB, and yield estimation system
that can help overcome the challenges posed by monitoring wheat crops with satellite images. We use
drone-based data from a small-scale winter field experiment to evaluate how successfully the CSMs
can predict AGB and crop yield. Collecting drone-based RGB-images is simple and cost-effective.
This study estimated the AGB and crop yield of wheat by using the plant height that is derived from
consumer-grade RGB drone images in Nepal (Figure 1). We also analyzed the performance of the
models based on plant height. The specific aims of this study are:

1. to understand how the easily measurable plant parameters such as plant height can be used to
infer crop AGB, yield, and fertilizer optimization;

2. to develop empirical regression models between the plant height and the AGB, and the plant
height and the yield for wheat crops; and

3. to validate empirical models for AGB and yield estimation with field measurements.
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Figure 1. The study area in Bardiya District, Nepal. The inset map shows the study area as a red polygon
overlaid on a red, green, and blue composite image acquired by a drone with a spatial resolution of
0.01 m.

2. Materials and Methods

2.1. Study Area

A wheat field at Bhurigaun village of Bardiya District, Nepal was selected as the study area
(Figure 1). The study site was managed by the International Maize and Wheat Improvement Center
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(CIMMYT). Ten trial plots and four demonstration plots were used in the experimental design. The trial
plots (named T1 to T10) had a uniform area of 20 m2. Four demonstration plots named A, B, C,
and D (Plot D is managed by the farmer and known as the farmer’s plot) had an area of 600, 300, 300,
and 100 m2 respectively. Sowing in the demonstration plots was done on 25 November 2017, while
in the trial plots it was done on 26 November 2017. The crops from all the plots were harvested on
11 April 2018.

Trial plots were used to make experiments, whilst demonstration plots were prepared for
demonstrating the outcomes to the farmers and comparing the results with the plot managed by the
farmers themselves. Experiments on the application of fertilizers and management practices were
made on trial plots by CIMMYT. The plot giving optimum results were replicated the next year in
demonstration plots. Different amounts and types of fertilizers and diverse management practices
were applied, which are presented in Tables 1 and 2.

Table 1. Fertilizer application and treatment method in demonstration plots. Various types and
amounts of fertilizers and different management practices are employed in these plots.

Plot Fertilizer Application/Treatment

Plot A

120: 50: 10 Kg/ha NP2O5K2O + best management practices (BMP)
Wheat variety: Bijaya [29]
Sowing method: Line sowing of seeds
Fertilizer application: Machine

Plot B

120: 50: 10 Kg/ha NP2O5K2O + BMP
Wheat variety: Bijaya
Sowing method: Manual line sowing
Fertilizer application: Manual line application

Plot C

120: 50: 10 Kg/ha NP2O5K2O + BMP
Wheat variety: Bijaya
Sowing method: Precision broadcasting
Fertilizer application: Precision broadcasting using Earthway spreader

Plot D

Fertilizer rate: Farmer practices
Wheat variety: Farmer choice (local seed variety was used by the farmer)
Sowing method: Farmer choice
Fertilizer application: Farmer choice

Table 2. Fertilizer application in trial plots. Various types and amounts of fertilizers, but the same
management practice is employed in trial plots. Bijaya [29] seed variety was used in all of the trial plots.

Plot Fertilizer Application/Treatment

T1 120:50:10 Kg/ha NP205K2O
T2 6-ton compost+120:50:10 Kg/ha NP205K2O
T3 6-ton farm-yard manure (FYM) +120:50:10 Kg/ha NP205K2O
T4 120:0:10 Kg/ha NP205K2O
T5 120:25:10 Kg/ha NP205K2O
T6 120:100:10 Kg/ha NP205K2O
T7 0:0:0 Kg NP205K2O /ha
T8 80:50:10 Kg NP205K2O Nitrogen from Polymer Coated Urea
T9 120:50:10 Kg NP205K2O Nitrogen from Polymer Coated Urea
T10 120:50:10 Kg NP205K2O + 10 ton/ha Rice fly ash

2.2. Methods

Twelve ground control points (GCPs) were established in the study area whose 3D-coordinates
were measured using the differential global positioning system (DGPS). While six of them were used for
orthorectification of the images, the rest were used as independent checkpoints to access the accuracy
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of the ortho-mosaic and digital surface model (DSM). The distribution of GCPs in the study area is
depicted in Figure 2.
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Figure 2. Ground control points (GCPs) distribution in the study area. The ortho-mosaic of the area
from December 2017 is shown in the background.

A DJI Phantom 3 Advanced (https://www.dji.com/phantom-3-adv/info) drone was flown four
times to capture the status of the wheat crop during each stage of its growth. Days after sowing (DoS),
growth stage, date of drone flight, and the number of images captured are presented in Table 3. The first
flight was conducted to prepare the bare earth elevation model of the study area. This reference surface
was used to prepare CSM for the later stages by subtracting the reference surface elevation from the
surface model of the particular stage.

Table 3. Drone flight date and the number of images collected during different growth stages.
The number of images differed due to the unavailability of high-resolution satellite images for flight
planning and hence, the educated guess was applied.

Growth Stage [30] Days after Sowing Flight Date No. of Images Remarks

13 8 December 2017 46
Terminal spikelet 42 6 January 2018 62
Heading 105 10 March 2018 79

Physiological maturity 130 4 April 2018 60

As the zoom level of background
images for flight planning was low,
flight plans were prepared based on an
educated guess thereby varying the area
(and the number of images) covered.

Drone images were georeferenced and ortho-mosaics were prepared using Pix4DMapper Desktop
(https://www.pix4d.com/). GCPs measured using DGPS were used to improve the accuracy of the
ortho-mosaics, DSMs, and the products derived from the drone images. Using these DSMs, CSMs for
the three growth stages were obtained by differentiating the bare earth elevation of the first flight from
that of the particular growth stage. The plant height was then estimated from the CSM using the
following steps.

First of all, a 1 m × 1 m grid was generated (Figure 3). Then the average plant height for each of
the grid was calculated from the CSM. The plant height of each of the plants falling inside the sample
sub-plots within each plot was measured in the field, and the average plant height per sub-plot was
calculated. The plant height obtained from the CSM was validated against the field-measured average
plant height for the corresponding sample sub-plots. A quadrat of size 0.25 m × 0.25 m was defined for

https://www.dji.com/phantom-3-adv/info
https://www.pix4d.com/


Drones 2020, 4, 28 6 of 15

field-based plant height measurement. Height of all the plants falling within the quadrat was measured
and their mean was computed. Three samples per trial plot and five samples per demonstration plot
were measured from the field to validate the plant height obtained from the CSM. The plant height was
measured and validated against field-based measurements, at three growth stages: terminal spikelet
(6 January 2018), heading (10 March 2018), and physiological maturity (4 April 2018).
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Figure 3. 1 m × 1 m grid overlaid over the crop surface model (CSM) derived from March 2018 drone
images. The average plant height for each of the grid was calculated from the CSM which were used in
the regression models.

For AGB and crop yield sampling, quadrat sizes of 0.5 m × 0.5 m and 2 m × 2 m were used
respectively for trial and demonstration plots. While two measurements were made in individual trial
plots, three measurements were taken from each of the demonstration plots. Hence, data collected
from these thirty-two sample locations were used for the development and validation of the AGB and
crop yield models. While AGB and crop yield samples were taken from the harvesting stage, the plant
height was used from the heading stage (March datasets). The developed relations/models were used
to estimate the AGB and crop yield for the rest of the study area. The AGB and crop yield data were
collected during the harvesting only.

The correlation and regression analyses were carried out to evaluate the relationship between
the AGB and the plant height (the plant height obtained from the CSM), as well as between the crop
yield and the plant height. A linear relationship between AGB per square meter and the plant height
was established.

For crop yield estimation, two separate relationships against the plant height were established.
The average spike weight per square meter and the average plant height for the corresponding plot’s
sample were used to establish a regression model. Similarly, the average grain weight per square
meter and the average plant height for the corresponding plot’s sample were used to establish another
regression model. The coefficient of determination (R2) [31] and root mean square error (RMSE) [32]
were obtained using Equations (1) and (2) respectively.

R2 =
[n
∑
(xy) −

∑
x
∑

y]2

[n
∑

x2 − (
∑

x)2] × [n
∑

y2 − (
∑

y)2]
(1)

where, x: plant height; y: AGB/spike/grain weight; n: sample size.

RMSE =

√∑n
i=1(Actuali − Predictedi)

2

n
(2)
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where, n is the sample size.
The developed regression equations were validated by assessing the predicted values against the

independent field-based AGB and crop yield data. The workflow of the method is depicted in Figure 4.
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3. Results

3.1. Ortho-Mosaic, CSM and Plant Height Generation

Accuracy of ortho-mosaics provided RMSE ranging between 2 and 3 cm against independent
checkpoints (Table 4). The ortho-mosaic of the study area, as well as the crop surface model (CSM) of
March 2018, are depicted in Figure 5.

Table 4. Accuracy assessment of ortho-mosaics prepared from drone images from different wheat
growth stages.

Image Acquisition Date RMSE (m)

8 December 2017 0.02
6 January 2018 0.02
10 March 2018 0.03
4 April 2018 0.03

Plant height obtained from CSM had an error of 11.9%, 7.5%, and 5% respectively for January,
March, and April. The values were not significantly different for March and April. There was no change
in plant height between heading and physiological maturity growth stages. The results show that
Demonstration Plot D and Trial Plot T5 had the lowest average plant height in January. Demonstration
Plot B and Trial Plot T4 had the highest plant height in the month. In March and April, Demonstration
Plot B and Trial Plots T2, T4, and T8 had among the highest plant heights, while Demonstration Plot D
and Trial Plot T7 had the lowest plant height. Average plant heights per plot across different growth
stages obtained from CSM are depicted in Figure 6.
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Correlating the average plant height of the plots with the amount and type of fertilizers and
management practices, it is clear that the application of compost in Trial Plot T2 has led to the best
crop growth among the trial plots. Similarly, manual line sowing of seeds and fertilizer in Plot B has
yielded the best results among the demonstration plots. Moreover, the application of polymer-coated
urea has a positive impact on the growth of wheat in trial plots T8 and T9. However, the application of
rice fly ash and farm-yard manure (FYM) did not improve the crop growth in trial plots T3 and T10.
It has to be noted that the average plant height will suffer to some extent due to the heterogeneity of
plants within the plots as presented in the CSM (Figure 5).

3.2. AGB Estimation

Only wet AGB and yield were measured due to the unavailability of drying facilities. Moisture level,
however, is supposed to be constant throughout the plots, which were very close, with homogeneous
soil structure and topography. The minimum and maximum temperatures on harvesting were found
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to be 22◦C and 39◦C respectively. AGB data from trial plots T1 to T8 and those from demonstration
plots A and B were utilized to form a regression equation (Equation (3)). The following equation
represents the relationship:

y = 2.101x− 0.997 (3)

where, x: plant height; y: AGB per square meter.
R2 was found to be 0.66. Relationship between AGB and plant height is presented in Figure 7.
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The established regression model was validated using the predicted AGB against the field-based
AGB measurement from trial plots T9 and T10, and demonstration plots C and D. The AGB estimated
from the model was within 13.4% of the weight measured in the field (Table 5).

Table 5. Validation of AGB. The AGB estimated with the regression model was validated against
independent field-measured AGB samples.

Plot Field Measured AGB (Kg/m2) Estimated AGB (Kg/m2) Error (%)

T9 1.526 1.357 11.0
T9 1.565 1.379 11.9
T10 1.726 1.505 12.8
T10 1.761 1.526 13.4
C 1.389 1.526 −9.8
C 1.377 1.505 −9.3
C 1.418 1.526 −7.6
D 1.095 1.084 1.0
D 1.186 1.084 8.6
D 1.091 1.063 2.6

Using the validated regression model of AGB and the plant height, the AGB for the entire study
area was predicted to be 12.03 tons/ha.

3.3. Crop Yield Estimation

The sample locations for collecting field-based AGB and crop yield were used. Data from the same
22 locations were used for formulating regression equations for crop yield. A regression equation for
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spike weight and plant height and another equation for grain weight and plant height were established.
Equation (4) represents the relationship between spike weight and plant height with an R2 value of 0.73:

y = 1.725x− 1.189 (4)

where, x: plant height; y: spike weight per square meter.
Similarly, the following relationship (Equation (5)) between grain weight and plant height was

established with an R2 value of 0.70:
y = 1.295x− 0.936 (5)

where, x: plant height; y: grain weight per square meter.
While the relationship between spike weight and plant height is presented in Figure 8,

the relationship between grain weight and plant height is presented in Figure 9.
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The established regression models for spike weight and grain weight were validated using the
field-measured spike and grain weights, and the plant height of the respective sample plots obtained
from the CSMs. Validation of spike weight results showed that the regression model is reasonable with
low estimation errors except in the farmer’s plot (Demonstration Plot D). The estimated and measured
spike weights lay within 11.2%, except for the farmer’s plot. The error was high for the farmer’s plot,
which ranged from 16.8% to 22.8% (Table 6). Likewise, estimated grain weight had a maximum error
of 14.3% for the trial plots T9, T10, and the demonstration plot C. However, the error was high (from
23.1% to 26.8%) for the farmer’s plot (Table 6).

Table 6. Validation of crop yield. Spike and grain weights estimated from regression models were
validated using their corresponding independent field-measured samples data.

Plot
Spike Weight (Kg/m2) Grain Weight (Kg/m2)

RemarksField
Measured Estimated Error (%) Field

Measured Estimated Error (%)

T9 0.838 0.744 11.2 0.600 0.515 14.3
T9 0.852 0.762 10.6 0.612 0.527 13.8
T10 0.918 0.865 5.8 0.553 0.605 −9.4
T10 0.932 0.882 5.3 0.625 0.618 1.1
C 0.876 0.882 −0.7 0.651 0.618 5.1
C 0.892 0.865 3.0 0.632 0.605 4.2
C 0.911 0.882 3.1 0.665 0.618 7.1
D 0.673 0.520 22.8 0.473 0.346 26.8
D 0.650 0.520 20.0 0.450 0.346 23.1
D 0.604 0.503 16.8 0.439 0.333 24.1

Use of local seed variety. Inclusion of bare
soil height and height of weeds with smaller
heights besides wheat plants, in a CSM grid.

Using the validated regression models of “Spike weight and plant height” and “Grain weight and
plant height”, spike and grain weights for the entire study area were predicted. The predicted spike
and grain weights were found to be 6.54 tons/ha and 4.53 tons/ha respectively.

4. Discussion

4.1. Data Sets and Accuracy

Drone-based platforms provide ultra-high temporal and spatial resolutions data sets that facilitate
frequent monitoring of crops and have evolved as an important support in precision agriculture [33,34].
Several studies have reported the use of different sensors and methods for precision agriculture:
LiDAR [13,14,22,35]; near-infrared (NIR)-based indices [33,36,37]; and RGB indices [10,24,38]. However,
these setups have largely been in the hands of farmers from the developed world, mainly because of
the high cost of the systems and the technical know-how, system calibration for reliable RGB-based
indices [35,37], for example. Our system setup encompasses a low-cost consumer-grade RGB-sensor
based platform that the non-technical farmers in cooperative groups could use after a short training.

In line with previous studies [10,15,16,22–25,35,38], we have found that the plant height
measurement from drone-based images can be used to estimate the AGB and yield of wheat crop.
Our results show an ortho-rectification accuracy of 2 to 3 cm (Table 4) with Pix4D software, which is
equivalent to less than 2 to 3 pixels (at the rate of 1.1 cm/pixel). This ortho-rectification accuracy is quite
expected [39]. Three-pixel errors obtained in the ortho-mosaics of March and April most probably be
attributed to wind speed. Due to the larger plant height and moderate wind speed during the flights
(during mid-day), the image matching may have performed poorly [40,41].

Validation of the average plant height obtained from CSMs provided an accuracy of 88% for
January, 92.5% for March, and 95% for April. The accuracy of the plant height measurement in
January seems lower than those in March and April, however, this is because of similar differences
in plant height but with smaller reference data compared with later growth stages. In some sample
sub-plots, however, errors were high. This is because those samples were collected from the edges
of the plots. The wheat plants on the edges of the plots do not entirely cover the sample area. The
sample area significantly includes bare soil and weeds with smaller heights as well. Therefore, the
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average plant height from the CSM is low for those sub-plots. However, the average plant height
derived from the field measurement will not be influenced by the weeds and bare soil area because
the height of the individual plants falling in the sampling area was measured and their average was
determined. An R2 of 0.91 between terrestrial laser scanning (TLS)-derived and manually-measured
plant heights, has been reported in [35]. We conclude that accuracy is comparable with those obtainable
from high-cost technologies like LiDAR. Hence, the plant height estimated from low-cost drone-based
images can be used as an alternative in developing countries to those obtainable with high-cost
technologies like LiDAR, as well as labor-intensive manual ground-based measurements.

We found a moderate (R2 of 0.66) relationship between the AGB and the plant height.
The relationship between crop yield and the plant height was stronger (with R2 of 0.73 and 0.70
respectively for the spike weight and the grain weight). Similar R2 values have been reported for
biomass [23,25] and yield estimation [37] for different crops. Likewise, the R2 value we have obtained
lies in the range of what is reported between the plant height derived from CSM generated from the
TLS point cloud and the rice AGB for linear (R2 of 0.55 to 0.92) and exponential (R2 of 0.58 to 0.91)
models [15]. Estimated spike and grain weights of all plots, except the farmer’s plot (Demonstration
Plot D), differed by 11.2% and 14.3% (Table 6) from the corresponding field-based measurements.
Higher error for Demonstration Plot D (which is up to 22.8% and 26.8% (Table 6) respectively for straw
and grain weights) may be attributed to the use of local seed variety. The secondary reason for the
large variation may be because of sparse wheat crops in the plot.

4.2. Cost and Scalability

Wheat crop monitoring and yield estimation using satellite-based remote sensing images is a
challenging task because of the smaller average Nepalese farm size of 0.46 ha [12] and a short lifespan
of approximately five months. While the spatial and temporal resolutions of freely available satellite
images prohibit their applicability at the farm level, the cost associated with very high-resolution
(VHR) satellite images bars temporal monitoring of such crops [42]. Wheat crops are generally grown
by small-holder farmers in Nepal who grow the crop in smaller farms than the national average.
The farmers further lack resources to use VHR or any other sophisticated system. However, consumer
drones are low-cost, are easy to operate, and can provide ultra-high spatial and temporal resolution.

Cooperative farming has been gaining momentum in Nepalese society [43]. Several smallholder
farmers form groups to practice homogeneous farming of particular crops with the use of comparatively
improved farming practices. This arrangement of cooperative farming not only reduces the
cost of inputs and attracts government subsidies, but also helps share resources and knowledge,
and convenient marketing of their product. Because the cost of monitoring and yield estimation
by using consumer-grade drones is inexpensive and the system is easy to operate, the cooperatives
can afford and utilize the technology to monitor their crops, making informed decisions and thereby
increasing yield. Hence, the system is also scalable with the support of cooperative farming systems.
Plant height was measured by cooperative members in this research too. Thus, the cooperatives can
properly utilize the system and operate it themselves if proper training is provided.

5. Conclusions

This study has supported the use of drone images in monitoring and yield estimation of wheat.
The estimated wheat plant height from drone images having an error of 5% to 11.9% with respect to
field-based measurements illustrated the support. Moreover, we investigated the relationship between
the plant height derived from CSMs and AGB, and the plant height and crop yield. The R2 of 0.66
was found for AGB, and 0.73 and 0.70 were obtained for spike and grain weights (yield) respectively.
With the linear regression models developed, AGB and crop yield maps were prepared. We conclude
that plant height can be economically estimated with the use of images acquired with consumer-grade
drones. Further, this study infers that wheat AGB and yield can be reasonably and competitively
estimated by measuring plant height from crop surface models (CSMs) prepared from drone images.
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As an extension and further development of this research, we recommend increasing the size of
the study area and individual plots. We firmly believe that this is likely to reveal the underpinning
problem with spatial and temporal variability, providing a precise modeling opportunity to contribute
to solutions to the food security issue.
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