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Abstract: Over the past decade, drones have become a popular tool for wildlife management and
research. Drones have shown significant value for animals that were often difficult or dangerous
to study using traditional survey methods. In the past five years drone technology has become
commonplace for shark research with their use above, and more recently, below the water helping to
minimise knowledge gaps about these cryptic species. Drones have enhanced our understanding of
shark behaviour and are critically important tools, not only due to the importance and conservation
of the animals in the ecosystem, but to also help minimise dangerous encounters with humans. To
provide some guidance for their future use in relation to sharks, this review provides an overview
of how drones are currently used with critical context for shark monitoring. We show how drones
have been used to fill knowledge gaps around fundamental shark behaviours or movements, social
interactions, and predation across multiple species and scenarios. We further detail the advancement
in technology across sensors, automation, and artificial intelligence that are improving our abilities
in data collection and analysis and opening opportunities for shark-related beach safety. An investi-
gation of the shark-based research potential for underwater drones (ROV/AUV) is also provided.
Finally, this review provides baseline observations that have been pioneered for shark research and
recommendations for how drones might be used to enhance our knowledge in the future.
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1. Overview

Drones, the common term for unmanned aerial vehicles (UAVs) [1], have become a
fundamental tool for the shark researcher. The rapid proliferation of the technology as
well as the advancement in visualization capabilities, coupled with increasing cost effec-
tiveness, have enabled new studies for all types of marine-based observations globally [2],
particularly in the field of shark research (Figure 1, Table 1).
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Figure 1. Global representation of research groups using drones for shark research with (a) representation of 32 studies (see
Table 1) conducted with different drone systems, and (b) amplified view of Australia, which per continent (and obviously
surrounded by water and many shark species) has potentially the most extensive use of drones and shark research globally.

Table 1. Location, drone (type and model) and research focus for studies working on shark drone projects. ID codes
correspond to numbers in Figure 1.

ID Location Drone Model Focus Reference

1 Moorea, French
Polynesia Multirotor DJI Phantom 2 Shark density Kiszka et al. [3]

2 Moorea, French
Polynesia Multirotor DJI Phantom 2 Shoaling behaviour Rieucau et al. [4]

3 Bahia de la Paz,
Baja, Mexico Multirotor DJI Spark Co-occurrence Frixione et al. [5]

4 Guadalupe Island,
Mexico

Underwater drone
(AUV) REMUS-100 Shark behaviour Skomal et al. [6]

5 Guadalupe Island,
Mexico

Underwater drone
(AUV) REMUS-100 Fine scale movements Gabriel [7]

6 La Jolla, CA, USA Underwater drone
(AUV) Not-specified Group movements Ho et al. [8]

7 SeaPlane Lagoon,
CA, USA

Underwater drone
(AUV) Oceanserver IVER2 Shark movements Clark et al. [9]

8 Bahamas, USA Multirotor DJI Phantom 2+ Detectability Hensel et al. [10]

9 Florida SE Coast,
USA Multirotor DJI Phantom 4 Pro Predatory avoidance

behaviour Doan and Kajiura [11]

10 Beaufort, NC, USA Fixed-wing drone eBee Detectability of shark
analogues Benavides et al. [12]

11 Cape Cod, MA,
USA

Underwater drone
(AUV) REMUS-100 Shark movements Packard et al. [13]
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Table 1. Cont.

ID Location Drone Model Focus Reference

12 Faial Island,
Azores, Portugal Fixed-wing drone Skywalker X8 Detectability of

aggregations Fortuna et al. [14]

13 Sea of the
Hebrides, UK

Underwater drone
(AUV) REMUS-100 Sub-surface behaviour Hawkes et al. [15]

14 Sea of the
Hebrides, UK Multirotor DJI Phantom 3 Pro Social behaviour Gore et al. [16]

15 Mossel Bay, South
Africa Multirotor DJI Phantom 3 and 4 Whale hunting

behaviour
Dines and Gennari

[17]

16 D’Arros and St
Joseph, Seychelles Multirotor DJI Phantom 4

Whale
scavenging/hunting

behaviour
Lea et al. [18]

17 Shoalwater, WA,
Australia Multirotor DJI Mavic Pro Shoaling behaviour López et al. [19]

18 Kimberly, WA,
Australia Multirotor DJI Phantom 4

Whale
scavenging/hunting

behaviour
Gallagher et al. [20]

19
Heron Island,
Queensland,

Australia
Multirotor DJI Phantom 3 Pro Shark movement

tracking Raoult et al. [21]

20 NSW Coast,
Australia Multirotor DJI Phantom 4

Whale
scavenging/hunting

behaviour
Tucker et al. [22]

21 NSW Coast,
Australia Multirotor DJI Phantom 4 Swimming behaviour Colefax et al. [23]

22 NSW Coast,
Australia Multirotor DJI Phantom 4 Swimming behaviour Tucker et al. [24]

23 NSW Coast,
Australia Multirotor DJI Phantom 4 Detection probability Colefax et al. [25]

24 NSW Coast,
Australia Multirotor DJI Phantom 4 Detection probability Colefax et al. [26]

25 NSW Coast,
Australia Multirotor DJI Matrice Detection probability Colefax et al. [27]

26 NSW Coast,
Australia Multirotor DJI Phantom 4 Faunal richness Kelaher et al. [28]

27 NSW Coast,
Australia Multirotor DJI Phantom 4 Helicopter v drone for

shark detection Kelaher et al. [29]

28 NSW Coast,
Australia

Artificial
intelligence Not-specified Detection probability Saqib et al. [30]

29 NSW Coast,
Australia

Artificial
intelligence Not-specified Detection probability Sharma et al. [31]

30 NSW Coast,
Australia

Artificial
intelligence Blimp-based system Shark surveillance Gorkin III et al. [32]

31 NSW Coast,
Australia Multirotor DJI Inspire 1 Beach safety Butcher et al. [33]

32
Flinders Island,

Tasmania,
Australia

Underwater drone
(ROV) BlueROV 2 Post-release behaviour Raoult et al. [34]
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Using drones as a shark research tool is a natural extension of aerial monitoring from
planes and helicopters, which has been performed for decades. Besides certain known
ecosystems (i.e., aggregation sites), it is often difficult to see sharks in the wild and gather
data, particularly in the vast expanse of the ocean. Drones offer on-demand, localised
piloting and aerial visualization as an effective way to locate, track and study sharks [33].
Recent studies have recommended that drones have the potential to outperform traditional
aerial surveys [2]. Furthermore, a huge limitation of studying sharks up close is that
some species are potentially dangerous, and drones provide the perfect platform with a
controlled aerial viewpoint to enable researchers to study them safely.

With generally declining populations and increasing anthropogenic threats to sharks,
there is a critical need to fill knowledge gaps as they are often a cornerstone of various
ecosystems [35,36]. Additionally, rare but unfortunate shark interactions from certain
species can have devastating consequences to animals and humans [37]. There is a recog-
nized need to better understand shark behaviour to preserve the ocean ecosystems, while
mitigating negative human–shark interactions.

This review provides a comprehensive analysis of how drones have expanded shark
research. In Section 2, we present the usage of drones in context (i.e., a typical deployment).
Section 3 then takes an in-depth look at how drones have been used for shark research in
the key areas of shark behaviour of predation, social interactions and bite mitigation, as
well as critical environments where sharks reside and species-specific studies. We further
detail in Section 4 how new technology in sensors, automation, and artificial intelligence,
as well as the use of underwater drones, have been developed to increase data quality and
enhance our understanding of sharks. Finally, in Section 5, we provide insights into the
future of drone development for shark research.

2. Drones for Studying Sharks

A standard drone operation consists of an unmanned aircraft, ground control station,
and communications link between the two. Typically, the ground control station serves
as the communication gateway with a live-feed visualization screen from the camera. For
shark research, often the drone will be launched from a beach or vessel serving as the
take-off point and operated along a manual or automated flight path over a target area [25].
A pilot who is responsible for controlling the flight operates the drone, and there may be
additional personnel who are operating or analysing the camera feed for sharks and at
times other relevant wildlife and/or people and infrastructure of interest. Once a shark is
spotted, data are collected, mostly in the form of pictures or videos, and recorded either
in internal storage on the drone, as part of the ground station, or by recording the feed
via a stream at an auxiliary location. Depending on the task, the data can be analysed
in real time (for instance to track a specific shark seen on the video feed) and/or videos
can be analysed post flight [25,29]. There are many parameters to consider when setting
up drone-based research for sharks (Figure 2). These can be separated into two main
categories: the requirements for surveying and data collection, and the conditions at the
study site.

The requirements of the study will dictate the appropriate equipment setup and
corresponding analysis techniques. Primarily, the critical requirements for the survey
area and the flight time (duration of visualization) will significantly influence the drone
type. Fixed-wing and multirotor are two main types of small drones currently suitable for
aerial surveys, although hybrids also exist that attempt to combine advantages from both
platforms. Fixed-wing drones are typically used for speed and energy efficiency. They can
survey comparatively longer distances over 100 s of kilometres and have flight durations
from 20 min to several hours; however, they generally require assistance with taking off
(‘throwing’ by hand or catapult) and a clear area for landing [2]. Multirotor drones are a
comparatively new technology and have advantages of rapid vertical take-off and landing
capabilities on coastal beaches and vessels. They can also hover and are more dynamic and
responsive in movement positioning, however, are more aerodynamically unstable and
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have shorter flight durations of typically 12 to 40 min [2]. Increasing the energy density
of the batteries, using alternative fuel systems, or dual or tethered power systems will
provide greater flight times and allow for longer periods of flight, but may add complexity
and cost to the drone platform.
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Figure 2. Schematic illustrating the interrelated factors that researchers should consider when planning and performing
shark research with drones. (Top) factors that influence the type of drone and payload required for a research activity,
(Left) factors that influence pre-flight planning for a research monitoring activity, (Right) factors on the day that heavily
influence successful flight and data collection during a research activity. (Inset) image of underwater ROV/UAV and
(Bottom) additional factors for underwater drones.

The type of data to be collected will influence the variant of sensor, the type of payload
to be attached to the drone, and ultimately the choice of drone for use. Image and video
collection are the primary techniques for most shark research and the related equipment
is a common feature of the typical drone toolkit. Significant variations on the range of
camera types and features for basic visualization are available, and more recently, thermal
imaging, LIDAR, and hyperspectral cameras have shown potential for research but are yet
to be fully tested. Regardless of imaging equipment, sensor type and drone choice are also
influenced by the “data link” requirements of the research. This includes considering the
timing of data analysis needed, i.e., can the images/videos be processed after collection, or
does analysis need to be in real-time or some step in between. Critically for main studies
which require analysis during the flight, the type and transmission of data collection is
a fundamental consideration, i.e., the resolution of video telemetry, data bandwidth and
meta-data captured. The interrelated requirements of automated flight and data collection
are additional worthwhile considerations, if required by the researcher. Additionally, the
payload selection directly impacts the weight allowances and capabilities for the drone.
Furthermore, drones of increasing weights are divided into different classes. In regard
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to regulation, this can impact the licenses required to fly which must also be considered
when preparing for drone research. The interplay of these factors can significantly affect
the ultimate drone choice.

The conditions of the study site are highly influential on a shark research experimental
plan, impacting both pre-flight planning, and the flight and data collection on the day.
Firstly, there are specific conditions that will influence the ability to fly and collect data.
This includes the telecommunication availability, particularly any lack of network coverage
that can impact flight control and safety, as well as limit visualization of data collection
from drones (transmitted video feeds). Furthermore, it is critical to have safe access to
the study site (for shark observations this can range from a populated urban beach to an
isolated marine reserve). The site-specific conditions can influence how researchers should
approach drone use. For instance, operators often are required to avoid flying over people
when using drones at recreational beaches. As well, certain locations have additional
drone restrictions/prohibitions to reduce wildlife impact. In protected areas like certain
parks and sanctuaries, exemptions to no-fly zones are needed, and conditions like altitude
limits are imposed to protect marine life and to minimize bird disturbance. These factors
are impacted by the technological capabilities of the drone, the “local” aviation laws, the
service providers, etc., all of which are critical for planning.

In addition to the general infrastructure and usage at the site, drone-based shark
studies are highly dependent on the weather and sea conditions. This goes well beyond
above water conditions like wind and rain that limit the ability of drones to fly. Wave
conditions are also required to be minimal to avoid distortion on the surface of the water
and thus provide a sufficiently clear view of the underwater environment. It is well known
that while aerial viewing has significant benefits, the underwater environment imposes
constraints to visualization from drones. Primarily the time of day, angle of the sun and
resulting reflection, also influence optimal visualization [25,33].

The combination of these factors showcases the difficulties in studying sharks, espe-
cially when the most basic principle requires them to be barely sub-surface to be visible.
This can occur anywhere in the ocean but most often in shallow water that constrains
the animals near the surface. In addition, inhabiting waters must be sufficiently clear to
enable the animals to be seen from the air. Some coastal or estuarine habitats are often too
turbid (murky, sandy or muddy, etc.) to see anything below the surface. Any of the above
constraints will limit the utility of drones for observing shark behaviour. Recent advances
in fluid lensing have demonstrated the ability to compensate for surface distortion from
drone video and this is a promising area for future development that could provide a
clearer view of the underwater environment at small scales [38].

One final consideration is that civil aviation regulations often require training, certifi-
cations, and impose specific usage (recreational versus commercial use) and other flight
restrictions depending on the jurisdiction. Generally, these rules are evolving and are
varied from country to country. One major consideration is that regardless of drone type,
size and payload configuration, generally authorities limit flight distances to ‘visual line-
of-sight’, which restricts operations to localized spatial scales (i.e., individual beaches).
Beyond line-of-sight operations are currently possible in some areas and countries, how-
ever, operations are typically expensive and arguably no longer cost-effective compared
with manned aircraft [39]. Therefore, although regulations are likely to be more flexible
in the near future, drones have the greatest potential on smaller spatial scales. For safety
and effective research execution, the authors strongly advise that any shark researchers
interested in using drones seek expert advice and training to gain understanding of local
issues and regulations.

The authors would also highlight that most of the factors discussed are similarly
important for underwater drones (ROV/UAV) with a few notable additions. For drone
choice, a similar discussion to the aerial flight area and time can be made for underwater
drones in patrol time and depth required for observations. ROVs are currently directly
operated vehicles, meaning they are better at reacting to changing conditions, whereas
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AUVs generally rely on following cues (usually requiring acoustic tags) and using remote
acoustic instructions that may not be as flexible as those of an ROV. In unplanned or
unknown conditions, the ROV offers more flexibility, even if the deployment capabilities of
ROVs are often inferior, especially for range and speed. Both those factors can affect drone
choice, particularly in the usage considerations between a submersible drone controlled
and tethered from a ship versus autonomous submarine type drone systems. In terms of
planning, obviously more consideration must be taken for activity/usage in the water. For
conditions on the day, turbidity or the clarity of the environment, water depth, tide and
current will absolutely influence the ability to collect images/video/data from underwater
based perspectives.

3. Drone Research Areas

The following sections provide illustrations of the limited specific research activities
that have been conducted so far on sharks using drones, highlighting the breadth of
potential of this technology for its application in shark research.

3.1. Drones as a Tool for Shark Hazard Reduction

A fundamental issue with the implementation of new methods or ‘tools’ for shark bite
mitigation is the challenge of reliably assessing the direct reduction in shark bite risk due
to the rarity of incidents. Between 2015 and 2020, research trials were completed in New
South Wales, Australia to assess the utility of drones to provide adequate beach safety with
regards to shark bites and provide insight as to whether drones may play a role in future
shark mitigation strategies.

In terms of mitigation, drones are an extension of well-established methods for shark
identification through aerial monitoring which has occurred for decades [2]. It is widely ac-
cepted that specific shark species are more dangerous to humans than others and represent
the majority of injuries and deaths recorded (particularly white, tiger, bull sharks) (https:
//www.floridamuseum.ufl.edu/shark-attacks/factors/species-implicated/). Drones can
be used to locate and identify sharks, and combined with alerting responsible beach per-
sonnel and removing swimmers from the water and/or closing the beach, thereby reduces
the risk of attacks through isolating and eliminating the hazard.

Drones have utility for shark surveillance, but are limited in both conditions that
make flying difficult, as well as those conditions that affect the ability to detect fauna from
aerial positions. From a piloting perspective, most drones can only fly effectively in winds
typically up to ~15–18 knots, and during rain-free periods [25,33] as well as if visibility is not
impaired by fog or low altitude cloud cover. Regarding visibility from the air, the reliability
of detecting fauna declines as sea conditions and water clarity worsens, just like manned
aircraft surveillance [40]. Sighting rates from drones are largely comparable to that of
helicopters [29], which can have low detection reliability when conditions are not favourable.
These factors complicate shark surveillance, while increasing wind velocities and sea states
usually negatively correlate with water users, there is a large degree of variation among
beaches, and often there are some water users (e.g., surfers) in circumstances where the
reliability of fauna detections may be significantly compromised [25].

Environmental predictors influence the probability of observing the presence of tar-
get sharks such as bull (Carcharhinus leucas), tiger (Galeocerdo cuvier) and white sharks
(Carcharodon carcharias) [25]. However, water visibility, wind speed and direction seem to
have little influence on the behaviour of white sharks while near the surf break. Along the
east coast of Australia, swim behaviour of white sharks near the surf break was demon-
strated to be largely predictable for this species, as it was shown to be consistently slow at
~3 km h−1 and parallel to the beach line [23] (Figure 3a). The slow and predictable track
trajectories of white sharks compliments surveillance strategies that can make frequent
surveillance passes (Figure 3b). However, although white shark behaviour was consistent
across the various study locations, it has been demonstrated to significantly differ near
abundant food sources, such as in proximity to seal colonies or when whale carcasses wash

https://www.floridamuseum.ufl.edu/shark-attacks/factors/species-implicated/
https://www.floridamuseum.ufl.edu/shark-attacks/factors/species-implicated/
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near shore [24]. Such species-specific information on behaviour can enhance our success of
identifying and tracking sharks under different environmental conditions.
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great hammerhead (Sphyrna mokarran) predation event on blacktip sharks (Carcharhinus limbatus) (Image credit—S Kajiura),
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hammerhead sharks (Sphyrna sp.) observed during the austral summer in Western Australia (Image credit—N.A. López),
and (f) Epaulette shark (Hermiscyllium ocellatum, ~50 cm TL) captured feeding in sediments at low tide on Heron Reef flat,
Great Barrier Reef, Australia from an altitude of 5 m (Image credit—V. Raoult).

Currently, drones are one socially preferred method for assisting shark bite mitigation
through hazard reduction, along with other monitoring techniques, particularly compared
with cull-based strategies [41]. This is despite a sentiment of concern around the reliability
of detection during unfavourable weather conditions, and the ability to effectively discrim-
inate between shark species by the pilots. It demonstrates that further development of
drones as a shark bite mitigation tool is warranted, particularly in the areas of improving
detection reliability and efficiency of individual species identification. Such improvements
in utility should further increase the positive community sentiment and further reduce
shark bite risk potential.

While the reliability of drone-based shark surveillance can likely be further improved
with spectral filtering and recognition software ([30,32], see Section 4.1 and Section 4.2), the
largest improvements to efficiency will occur with system automation. However, as coastal
air spaces often also have high air traffic activity, it is unlikely that civil aviation authorities
would approve beyond line-of-sight flights there. However, in coming years this will
likely change. Therefore, advancing and integrating detection software in drone-based
shark surveillance will have short-term benefits regarding detection reliability, but also
facilitate automation in the longer-term. Even with those advances, the authors would
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caution against an overreliance on detection technologies including drones. It is unlikely
that drones will replace spotting from trained professionals (lifeguards and lifesavers) for
the foreseeable future.

Drones have strong potential for providing adequate risk reduction in the potential for
shark bites, appease public needs and perceptions of beach safety, and support conservation.
Therefore, drones can play a pivotal role in transitioning away from shark bite mitigation
using cull-based strategies and help meet the increasing demand for non-destructive beach
safety [26]. In addition, drone-based surveillance can potentially provide opportunistically
collected data to conservation agencies as a by-product [28,42,43]. With further research
and development, the utility of drone-based surveillance will further increase, as should
public perceptions, particularly if operations remain incident-free [41].

3.2. Drone Studies of Shark Predation Events

Natural predation is notoriously difficult to document in the wild. Predation events
occur infrequently, and the events are often brief. Therefore, the probability of being in
the right place at the right time to witness a natural predation event is low and it is easier
to see the results after the fact. For example, scientists have used the presence of a large
blood slick on the surface of the water to determine that a white shark had predated
upon a pinniped, despite not seeing the actual predation event itself [44]. In addition, the
presence of the observer can alert prey or impact the behaviour of the predator, potentially
resulting in an aborted predation attempt. These complications are amplified when dealing
with underwater animals. In the underwater realm, all the same constraints apply with
some additional difficulties. The time available to wait and observe a predation event
underwater is limited by scuba or rebreather capabilities, with available duration inversely
proportional to increasing depth. Underwater visibility is greatly limited compared to in
air. This requires the observer to be much closer to the animals which can, in turn, impact
their natural behaviour. However, under some circumstances it is possible to bypass some
of these constraints to remotely observe natural predation.

Drones provide an opportunity to unobtrusively observe underwater animals, if they
are sufficiently near to the surface. At altitudes greater than 5–10 m, the sound produced by
most small drones is undetectable above background levels underwater [45]. A small drone
flying overhead would also be nearly impossible to distinguish from underwater. Thus,
unless the drone is close to the water’s surface where it could be detected by the animals,
the behaviours documented are likely to be natural and not impacted by the observer.
Another advantage of using drones to record natural predation events is the stability that
they confer. Unmanned aerial vehicles can hover in place using GPS positioning. Coupled
with gimbal-stabilized cameras, this provides a highly stable video recording platform that
facilitates quantification of predator and prey movement with respect to each other. This
enables observations to incorporate quantitative data, such as distance between individuals,
or swimming velocity in body lengths per second, rather than being merely descriptive [46].

An ideal location that satisfies the requirements to visualize shark predation using
drones is the southeast coast of Florida, USA. The nearshore environment is characterized
by a uniform, light sandy seafloor that allows the dark shape of sharks to be clearly seen. In
addition, the continental shelf narrows in southeast Florida, which allows the Gulf Stream
current to transport clear water close to shore providing good visibility. Each winter,
thousands of blacktip sharks (Carcharhinus limbatus) aggregate in the shallow water along
the coast where they are observed from the air [47]. These sharks are prey to larger sharks,
such as the great hammerhead (Sphyrna mokarran) (Figure 3c) [48]. Drones have been used to
document great hammerhead sharks attempting to prey upon blacktips in the shallows [11].
These natural predation events reveal hammerhead sharks cruising slowly in the nearshore
environment with numerous blacktips nearby. The hammerhead will suddenly accelerate
rapidly and chase down a blacktip. The featureless sandy seafloor provides no structure or
shelter and the blacktips often flee to the shallow water adjacent to the beach. The much
larger hammerhead shark is unable to follow into the shallows and turns back to deeper
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water, allowing the blacktips to escape. Documentation of the use of shallow water as
a refuge was only possible because of the aerial view provided by the drone. Although
other studies have examined social behaviour of sharks with drones [4,8,16,18], Doan and
Kajiura’s [11] study is the first to document predator avoidance behaviour by large adult
sharks. The regular predictable occurrence of large numbers of sharks in a nearshore
environment with clear water provides a rare opportunity to use drones to observe and
study natural predation in the wild.

3.3. Drone Studies of Shark Behaviour and Social Interactions

Drones have recently been used to record and study collective shark behaviour. Drone
footage can be analysed in depth to quantify swimming alignment, nearest-neighbour
distances, velocity (based on static fly and landmarks) and tail beat frequency (Figure 4).
For example, Rieucau et al. [4] used an image analysis-based technique applied to drones
and showed that blacktip reef sharks (Carcharhinus melanopterus) displayed increased
alignment with shoal companions when distributed over a sandflat where they are regularly
fed for ecotourism purposes as compared with when they shoaled in a deeper adjacent
channel. Using similar methods, it could be possible to study the collective response
of shoaling sharks to predation risk using drone-based methods [11] for example, by
measuring the transfer of information between individuals following the approach of the
predator. Drones can also be used to reveal the fine-scale interaction rules of mass migrating
elasmobranchs [16,47,49], as has been done for other terrestrial mammal species [50].

1 

 

 

 

 

 
Figure 4. Drone footage can be analysed to quantify swimming alignment, nearest-neighbour distances, velocity and tail
beat frequency (Image—modified by J Mourier from Rieucau et al., 2018).

Quantifying social interactions and building social networks may be limited using
drones because it requires identifying individuals within observed groups over multi-
ple sampling periods to infer the association indices calculated from the repeatability of
interactions—not currently an easy task with drones. However, drones can be used to
record group size in elasmobranchs [49] or to document social behaviour and frequencies
of such behaviours [16]. For example, Gore et al. [16] used a combination of boat surveys,
snorkelling and drones to record the frequency of close-following, parallel or echelon swim-
ming and breaching of basking sharks (Cetorhinus maximus). Post-processing techniques
can also be used to determine the track and path of multiple individual sharks within a
frame [21], which can be used to measure interactions and encounters between multiple
individuals. Although such analysis may be limited due to the short sampling increments
of the drone, some social measurements can still be recorded such as the frequency of
associating with another shark versus swimming alone.
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Drones are still constrained by many practicalities that would limit the study of collec-
tive behaviour and social interactions in elasmobranchs. The first one is that aerial drone
surveys are limited to record behaviour at the surface in shallow environments. While
some shark and ray species can display collective and social behaviour at the surface that
can be easily captured by drones, most species spend considerable time at relatively greater
depths beyond the vision of the drones. Moreover, drone operations can be significantly
impacted by environmental conditions as flights require good weather conditions and opti-
mal sunlight, and are restricted to daylight surveys [51]. Another current important issue is
the short battery life and flight duration. While battery technology and subsequent capacity
delivery for a given weight continuously improves, current multirotor flights rarely last
more than 20–30 min, which can affect the robustness of sampling social interactions.

3.4. Shark Behaviour around Whale Carcasses

Natural shark behaviours are often difficult to observe due to their habitats and
relatively low abundance. Larger shark species, such as bull, tiger and white sharks,
are often transitory in nature making it more difficult for researchers to observe natural
behaviours [52]. Feeding events are situations where the natural behaviour of low-density
organisms can be observed. Many species of shark feed on whale carcasses and research
suggests that sharks can locate these carcasses over great distances [53]. This makes whale
carcasses excellent opportunities for observing shark behaviour (Figure 3d).

Drones can be used to observe sharks hunting and scavenging from whales in their
natural habitat with minimal disturbance to individuals [17,20,22] (Figure 3d). Bull, tiger,
tawny nurse (Nebrius ferrugineus), and white sharks have been observed scavenging whale
carcasses using drones [22]. Small and cost-effective drones have the resolution to capture
shark behaviours and interactions at whale carcass scavenging events from heights that do
not influence natural behaviour (~30 m). Behaviours observed include test biting, head
shaking, palatoquadrate protrusion, ocular rotation, nictitating membrane use and intra
and interspecific interactions [22]. The behaviour of white sharks hunting a live whale
has been recorded including approach direction, approach angle, head shaking, and bite
location and frequency [17].

Drones are an excellent tool for observing shark behaviour in these events as the
top-down view and high resolution allows researchers to observe from a height that
includes all sides of a whale simultaneously and the area directly adjacent. Therefore,
behaviours such as approach angle/direction and intra and interspecific interactions can be
observed. Sharks feeding underneath a whale can also be observed (depending on water
clarity) which has not been possible in the past without the use of a shark cage that may
influence behaviour. This gives researchers an additional view of an event and behaviours
displayed, including some subtle communication behaviours sharks are known for [54].
Researchers are also able to pilot a drone from a distance that does not influence shark
behaviour unlike traditional, handheld cameras which require an operator be close to a
carcass. Dicken [55] recounts white sharks biting the propellers and pontoons of their boat
while filming a scavenging event with traditional cameras, suggesting that these methods
do affect behaviour and that drones can be considered a more effective tool for collecting
data without altering shark behaviour.

Stranded whale carcass management is a controversial topic due to perceived shark
attraction [56,57] and initial results suggest that shark behaviour is altered by the presence
of a stranded carcass [24]. Behaviours can be compared to that of sharks not near stranded
carcasses [23] to better understand shark behaviour around certain stimuli. Shark speed,
total length, and track straightness and sinuosity can be effectively recorded using drones
by remaining directly over a shark while matching its movement speed and heading with
the camera set in nadir [23]. Results from these studies are relevant to beach management
as significant food sources may alter the behaviour of large sharks and increase risk to
water users. Drones have been shown to be effective tools for bather protection in normal
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conditions [33] and can be utilised in a similar manner, around whale carcass standing
events, to reduce risk of shark interactions with water users.

Operating drones around cetaceans and sharks can be more complex than operating
around sharks alone. Some countries have cetacean exclusion zones for drones. In Australia,
for example drones are prohibited to come within 100 m of live whales and dolphins in
New South Wales and within 300 m in South Australia. While some cost-effective drones
have the zoom and/or resolution to collect detailed observations from 100 m altitude, 300 m
would require specialty cameras, and therefore larger, more expensive and more complex
drones, to collect data in the resolution required to effectively analyse. While this is not an
issue around cetacean carcasses, observing interactions between sharks and live cetaceans,
including potential predation, may be difficult in some countries. This, coupled with the rarity
of witnessing such an event, may limit the observational data drones can collect. Advances
in drone and camera technologies will likely increase their usefulness in these situations as
cameras with higher resolution and better zoom are becoming increasingly smaller, lighter
and more cost effective, thereby allowing for their inclusion on smaller drones.

3.5. Drone Research of Pelagic Shark Aggregations

Pelagic sharks are amongst the most threatened of vertebrates globally, with at least
three-quarters of all species assessed as Threatened or Near Threatened by the IUCN [35,58].
They are considered extremely valuable in commercial and recreational fisheries [59–61]
and, consequently, this group has been heavily exploited during the last decades deci-
mating their populations across all oceans [36,62,63]. Their conservative life-history traits,
including longevity, late sexual maturity and few offspring, renders pelagic sharks highly
vulnerable to anthropogenic threats [64,65].

A number of pelagic sharks show aggregation behaviour close to the surface or in
shallow coastal areas during different life stages. These aggregations can represent feeding
or breeding locations when adults [16,66], and nurseries or growing grounds during early
life stages [67–69]. Their aggregation behaviour also increases their vulnerability to ex-
ploitation [70,71], hence monitoring their distribution and behaviour during these periods
is vital for appropriate management and conservation [70,72–74]. For example, knowing
where and when they aggregate can inform spatial protection management strategies,
such as marine protected areas and fisheries management. Technological advances in
new non-invasive and cost-efficient methods such as drones provide researchers with the
opportunity to study the fine-scale movements and behaviour of pelagic shark species in
shallow coastal environments, complementing the use of traditional methods.

Hammerhead sharks (Sphyrnidae) are an excellent candidate for drone studies and
provide a clear example of the potential of drones to study other pelagic shark species that
aggregate in shallow coastal waters. Their laterally elongated head shape, or cephalofoil,
makes them unmistakable from other sharks in the Carcharhiniformes [75]. The great,
scalloped and smooth hammerheads are considered large species within the group [76]
that translates into easier aerial detection. These species have global distributions and
are known to travel hundreds to thousands of kilometres [77,78] between shallow coastal
habitats [79,80]. Their behaviour differs noticeably: while great hammerheads tend to
inhabit coastal waters and are solitary [76], scalloped and smooth hammerheads occur in the
open ocean and are known to form large aggregations near oceanic islands and seamounts
when adults [70,81] and coastal aggregations while in neonate and juvenile stages [82–84].

The first aerial study of the spatial ecology of hammerhead sharks (Sphyrna spp.) using
manned aircraft dates from the 1980s [85]. This study quantified seasonal patterns in the
abundance of hammerheads in relation to sea surface temperature and the Gulf Stream in
Florida, USA. Since then, records of hammerheads have been reported in multiple marine
megafauna aerial studies [86–88] but have yet to be the focus of drone-based studies in
terms of ecology or behaviour. To date, three studies explored hammerhead detectability
from manned and unmanned aerial vehicles [12,14,40]. In 2014, Robbins et al. [40] studied
shark detectability from fixed-wing and helicopter aircrafts using shark analogues with
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different shapes including, white, tiger and hammerhead sharks (Sphyrna spp.). Although
they observed overall low detectability rates, the only mock “sharks” successfully identified
by the spotters where those with the hammerhead shape. Two further studies have
evaluated hammerhead shark detectability using fixed-wing drones: Fortuna et al. [14]
tested the detectability of juvenile hammerhead aggregations (Sphyrna spp.) off the coast
of Faial Island, Azores, demonstrating the potential of drones for identifying hammerhead
aggregations. More recently, Benavides et al. [12] demonstrated the effect of environmental
variables on the detection probability of mock bonnethead sharks (Sphyrna tiburo), a small
coastal species, in a temperate estuarine area, concluding that depth had the strongest
effect on detectability rates. As of writing, there was only one study that documented
hammerhead shark behaviour using drones [11]. The authors documented predatory
avoidance behaviour of great hammerhead sharks and blacktip sharks in shallow coastal
waters off Florida, USA, demonstrating that drones can be successful in elucidating the
behaviour of hammerhead sharks [11]. In addition, drones have been used to study the
southernmost aggregation of hammerhead sharks (Sphyrna sp.) in Western Australia,
following reports of a consistent seasonal but unstudied aggregation [López, unpublished
work; Figure 3e].

The potential of drones as a non-invasive and cost-effective method to study ham-
merhead sharks in shallow coastal areas is clear, prompting future work and should be
extended to other endangered sharks that school. Application of demonstrated methodolo-
gies using drones to study shark shoaling behaviour [4], movement trajectories, and habitat
use [3,21,23] will be extremely beneficial to better understand how these endangered species
are using coastal areas to inform better spatial management and conservation strategies.

3.6. Drone Studies of Reef Sharks

Shallow water sharks found in coral reefs are the focus of scientific research for most
elasmobranchs [89]. Among species of reef shark, there is a dearth of research on many
smaller or cryptic genera in this category [90]. Low numbers of studies may be driven
by the difficulty accessing the shallow reefs where many reef-associated species such as
epaulette sharks (Hermiscyllium ocellatum) occur (Figure 3f). Shallow reefs are often complex
habitats that are generally only accessible by foot at low tide or by boat at high tide: this
makes using common abundance or behaviour survey techniques difficult to use effectively.
Most studies to date examining the movement and behaviour of reef sharks in shallow
lagoons rely on acoustic tagging [91,92], but these have limits in lagoon environments due
to unreliable detection distances [93]. Baited remote underwater video systems (BRUVS)
that are often used to assess reef shark abundance and diversity rely on bait to attract
species of interest [94], meaning that they are not able to assess natural behaviour and
habitat use. Researchers can use RUVS to remove the effect of bait on behaviour, but they
are limited in their visibility and probability of observation making them less efficient for
determining abundance and assessing behaviours of sharks. When being in the water
is possible, snorkelers or divers also impact natural shark behaviour [95,96] making the
separation of natural from human-induced behaviours difficult. Drones are less limited by
tides in shallow reef environments and can circumvent some of these issues by providing a
platform to assess abundance, diversity, movement and behaviour of these animals with
low impact and at relatively low cost. In addition, the barrier reefs that often surround
these environments limit wave clutter that can make drone research more difficult [97]. In
shallow reef environments, drones can obtain information that would otherwise require
tagging or visual censuses. For example, by using the drone onboard GPS it is possible to
assess links between movement and habitat use and behaviour of sharks at very high (<1 m)
spatial resolutions, albeit over relatively shorter timeframes (<20 min) than with tagging
approaches with current drone battery technology [21]. One way to extend these tracks is
to use at least two drones to relay flights as batteries run out as in Colefax, et al. [23], but
eventually pilot fatigue is likely to reduce the accuracy of this approach similarly to typical
~6 h limits used in active acoustic tracking [98]. The only limits to numbers of active tracks
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of sharks using drones are the number of available batteries, pilot fatigue and weather,
meaning that in ideal conditions with a battery recharge station and multiple pilots/drones
it is possible to obtain large datasets rapidly. Since the drone-based tracks are shorter than
active surface tracking, which can last for 24+ h [99], obtaining datasets that are sufficiently
large to infer habitat use and behaviour from drones thus require more individual tracks
than tagging approaches. However, the trade-off from using drones is obtaining higher
resolution data than tagging approaches, and the ability to directly examine behaviours.

Drones can also be used to assess the abundance and diversity of sharks and rays in
reef habitats. For example, by conducting line transects with drones, Kiszka, et al. [3] were
able to identify difference in densities of sharks and rays in various reef locations. Drones
were also effective at counting and identifying reef sharks and rays in impacted and pristine
lagoons [10]. In shallow reef environments, it should be possible to obtain morphometric
data on reef sharks and rays in a similar process as those used on whales [45] since shallow
depths are unlikely to affect measurements. The use of drones may thus provide an
alternative rapid approach for assessments of shark populations in shallow reefs, especially
compared to more conventional methods like BRUVS or capture and release programs that
impact behaviour and may come at a cost to the health of the animal. To date, most drone-
based shark population assessments have relied on multi-rotors that have comparatively
limited flight times relative to fixed-wing drones [2], and, for these applications fixed-wing
drones may be preferable for larger survey areas similar to conventional aircraft [100].

The quantitative movement or behaviour of sharks in these environments is a useful
metric, but haphazard flights can also reveal novel behaviours and inter-specific interac-
tions that open new avenues of research. For example, drone flights along shallow beaches
revealed that blacktip sharks use these shallow environments to seek refuge from great
hammerhead sharks known to predate on them [47]. Flights over a reef lagoon at low
tide revealed active foraging of blacktip reef sharks (C. melanopterus) and epaulette sharks
feeding on prey in bare sediment [21] (Figure 3f). Use of drones allows the safe observation
of large numbers of reef sharks including tiger sharks scavenging whale carcasses [18].
A greater availability and willingness to use drones during reef shark research projects
should allow new insights into their behaviour and ecology.

In these shallow reef environments, drones currently provide one of the only means
to study shark behaviour, distribution and abundance. The use of drones in these environ-
ments, however, is relatively novel and there are few long-term studies that have relied on
this approach to obtain conservation-relevant data. Satellite and acoustic tagging programs
initially encountered similar difficulties as sample sizes were low, yet global datasets are
now available that have allowed inferences to be drawn at scales never before possible.
As drones become more commonly used tools for shark research in shallow reefs, larger
drone-based datasets will allow broader examinations of ecological patterns of shark move-
ment, habitat use, and behaviour not obtainable with other approaches. For example, since
drone movement data are georeferenced at high resolutions, large drone-based datasets
could examine questions around the use of landmarks or ‘highways’ in shallow reefs to
move across reef lagoons, and whether movement of sharks in these areas has effects on
other species of shark and fishes that can be visible concurrently. The use of drones in these
environments could therefore be used to start making explicit links between behaviour,
movement and habitat, which has not been achievable using any single method before
drones. The power of drones to map shallow reefs and also provide bathymetric data at
very high resolutions (e.g., ~1 cm positioning error, [101–103] should facilitate this objective.

4. Enabling Technologies for Future Drone-Based Shark Research
4.1. Alternative Sensors on Drones for Shark Research

Cameras are rapidly increasing in functionality, obtaining higher resolutions and
progressively more compact and lightweight. For drone platforms, gimbal systems and
telemetry systems have also improved to allow advanced camera stabilisation and high-
definition transmission of video in real time. This has effectively increased the utility of
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drones and subsequent use in ecology in recent years [2,104,105]. Similarly, the advances
in electronic component miniaturisation have allowed alternative sensors, such as thermal
infrared, multispectral (such as red edge and near infrared) and hyperspectral systems to
be mounted on small drones of less than 25 kg, and some micro-sensors on drones that are
less than 2 kg [106]. Such alternative sensors are available in different spatial resolutions,
just like their RGB counterparts. However, the spectral accuracy and resolution is also a
major consideration and usually scales with cost. Alternative sensors are typically used
when spectral information is desired that is also outside of the visible spectrum [105], or
when measurements of specific wavelengths are desired, such as for differentiating objects
or condition from spectral signatures [107,108].

The advantage of using drone-mounted platforms [109] as opposed to manned aircraft
or satellite is in the added flexibility of data acquisition timing, cost considerations, or
increased spatial resolution that comes with being nearer the ground [97,110]. This also
applies to the use of alternative sensors, especially considering the lower spatial resolutions
that are often associated. The vast majority of drone-based research on marine fauna is
currently done with RGB sensors. This is largely due to (1) the low signal to noise ratio
that occurs because of the attenuation properties of water, and the lack of transmission of
ultraviolet, near infrared and infrared wavelengths [107,111]; and (2) the additional cost
and expertise associated with integration, operation and data interpretation when using
alternative sensors. Consequently, the scope for which alternative sensors may offer to
marine fauna research, including observing sharks, has not yet been thoroughly researched.

Not surprisingly, most use cases of thermal infrared and multispectral sensors on
fauna have been in terrestrial environments. The use of thermal has enabled increased
detection rates compared with RGB when there is sufficient temperature difference between
target individuals and their surroundings [112,113]. Thermal infrared has also been used in
the marine environment; however, utility is restricted to animals breaking the surface [114].
In these cases, focus has been on detection at night or investigating temperature differentials
as indicators of animal health, such as in the case of whales [114,115]. However, because
of the submerged nature of sharks, using thermal infrared wavelengths for detection or
remotely investigating thermal properties of sharks will have little utility.

Alternatively, multispectral sensors have been reported as proof-of-concept to improve on
the detection rates of marine fauna offered from human spotters or RGB cameras [116,117].
However, to our knowledge, no independent empirical assessments on the potential
increase in detection reliability have been made. Drone-mountable multispectral cameras
usually have a five or six band array, covering the colour range to red-edge or near-infrared,
and currently with full width at half maximum bandwidths typically between 10 and
40 nm, depending on the model. Fretwell, et al. [118] used imagery, comprising 8 colour
bands (one red-edge) and a panchromatic band, from the WorldView2 satellite, to detect
whales in Golfo Nuevo Bay, Argentina. They found that of the available bands, the coastal
band (wavelengths 400–450 nm) provided the best sub-surface features of whales due to
the better water penetration. Similarly, multispectral sensors may have utility in providing
enhanced detection of sharks from the air over RGB cameras, by selecting one or two of
the narrow colour bands. However, the ideal wavelengths and bandwidths likely differ
between locations, conditions and time of day.

Hyperspectral sensors have been used in shallow coral environments to create habitat
maps, differentiate between coral types and to assess coral health through empirically
assessing reflectance signatures [109,110]. Due to the light attenuation properties of water,
these studies typically use submersible hyperspectral units. From the air, the signal to noise
ratio decreases, however, airborne (drone-based) hyperspectral systems have proven useful
for detecting degrees of coral bleaching [119]. It is likely that submersible hyperspectral
sensors might have some utility on underwater drones for depicting features of demersal
elasmobranchs. Whether different features or species of elasmobranch have measurably
separable spectral signature remains uncertain. From the air, differentiating sharks from
other fauna based on spectral signatures might be difficult as the signal to noise ratio
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decreases with the animal’s depth due to light attenuation. However, there is likely utility
in using hyperspectral sensors to define or isolate wavelengths that provide optimal sighta-
bility of sharks [2]. This approach is similar to that discussed with multispectral sensors,
however, due to the comparatively numerous wavelength channels on a hyperspectral
sensor, the identification of ideal wavelengths to increase detectability of sharks is likely to
be much more precise.

4.2. Artificial Intelligence for Shark Monitoring, Detection, and Alerting

Artificial intelligence (AI), encompassing systems using machine learning (ML), deep
learning and computer vision, is revolutionising ecology research across aquatic and land
environments. Particularly in recent years, the development of standardised algorithms
and the wide availability of automated sensing platforms have led to a paradigm change
in survey capability. It is now possible for AI systems to automate aspects of flight and the
detection and measurement of target species in all kinds of sensor data (e.g., photographs,
video, sound recordings and spectra). Such automated systems will make collection of
science-ready data significantly easier and cheaper, facilitate far-reaching citizen science
programs and assisting beach managers in reliably identifying potentially dangerous shark
species in real-time.

Ecologists focusing on terrestrial environments have been at the forefront of this new
wave. They have paired drone platforms and AI techniques to catch poachers [120,121],
count animals [122–124], detect invasive weeds [125], map forests [126,127] and monitor
plastic pollution [128]—amongst many other uses. By comparison, the adoption of AI
techniques in the marine context has been slower, likely because dynamic aquatic environ-
ments are more difficult to operate in and present greater challenges to the algorithms (see
Dujon and Schofield [129] for a recent review).

One of the earliest automated aerial surveys for marine fauna is by Maire et al. [130],
who used a convolutional neural network (CNN) to detect dugongs in aerial survey images.
By modern standards the network architecture was very simple, containing only three
convolutional blocks, which likely contributed to the high number of false positives they
report. Despite this, such deep learning techniques are now recognised as being state-of-
the-art for computer vision tasks. Modern CNNs are at the heart of mission-critical systems
like self-driving cars, e.g., [131,132] and healthcare diagnostic tools, e.g., [133].

CNN-based systems have been enthusiastically developed for the aquaculture indus-
try, where they have been deployed to identify fish species and measure their physical
properties—tasks directly relevant to shark research. Although usually applied to imagery
from underwater cameras, the underlying algorithms and training workflows are also
directly applicable to aerial imagery. For example, AI applied to underwater videos has
been very successfully demonstrated by Ditria et al. [134]. The authors used object de-
tection algorithms to track and identify fish species seen in video feeds from underwater
cameras at fixed locations. They demonstrated that the methods could be made to work
well on previously unseen data and on novel data from completely different sites. A key
innovation here was the development of an integrated active-learning software platform
called FishID (https://globalwetlandsproject.org/tools/fishid/) that allows new data to be
rapidly tagged and assimilated into an improved model. In another example, Fernandes
et al. [135] tackled a related challenge to segment the anatomy of fish species in order to
estimate body volume. This was largely accurate when applied in a controlled setting (fish
out of water on a uniformly lit background) but performance degraded when the system
was applied to other species, or in situ.

These exemplar studies and similar research showcase the possibilities of AI in a
marine setting. However, applying AI techniques to aerial imagery of ocean scenes is
generally more difficult because the dynamic air-water interface distorts sub-surface shapes.
In addition, the fidelity and quality of images are affected by weather conditions, water
turbidity and the presence of confusing objects (e.g., submerged reef, rocks and seaweed,
and floating foam).

https://globalwetlandsproject.org/tools/fishid/
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The use of AI has shown immediate value to assist researchers with shark detection,
species identification and real-time alerting to beach users. There are several AI-based
shark detection systems in development globally and most of these focus on applying
computer vision techniques to aerial imagery. One striking exception is the work by Hughes
and Burghardt [136] who identify individual white sharks from imagery of their dorsal
fins (Figure 5). Their system applies computer-vision segmentation techniques to extract
candidate fin boundaries, which are then refined using a random forest ML algorithm. The
unique biometric notch patterns at the trailing edges of each fin are encoded and matched
to known individuals using a Bayesian nearest-neighbour classifier. The authors report an
average precision of 81% and expect the system to work well with other species of shark.
Another notable example is Clever Buoy, developed in a commercial collaboration between
Shark Mitigation Systems Ltd. and Tritech International Ltd. This system deploys sonar
transducers to detect moving objects in the water and uses AI to identify sharks over two
meters in length via their distinctive movement patterns.
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reported to lifeguards (2019), and (f) in development AI on portable devices that can identify to species level in real time by
Macquarie University and NSW Department of Primary Industries research teams.

The majority of systems under development have focused on building AI systems that
learn salient features from a library of drone footage and apply this learned model to detect
sharks in live video streams. Candidate detections are annotated on visualisation devices
deployed in the field, either performing inference on-device or at a remote server. The
Little Ripper Group deployed one of the first such drone-based AI shark detection systems
in Australia (Figure 5). Developed in partnership with the University of Technology
Sydney, the shark-spotting system operated on a live video feed from drones flown above
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NSW beaches. Sharma et al. [31] reported on the initial development of the CNN-based
models used to detect and localise sharks, and other marine objects. In their non-field-
based tests the VGG16 network architecture delivered the most robust detections of sharks
(mAP > 90%) when applied to a 30% testing set drawn from the ensemble data. Although
accurate, VGG16 is a resource-intensive network and required desktop-class computing
hardware to achieve high frame rates (Sharma et al. [31] report a NVIDIA Quadro P6000
GPU delivered an inference time of 0.130 s).

Other organisations have further expanded on these initial results, although these
have not yet been published as peer-reviewed papers. In the USA a team from UC
Santa Barbara’s Benioff Ocean Initiative, in collaboration with Salesforce AI Research and
computer scientists at San Diego State University, have developed a system they call
SharkEye. According to their web page (https://www.sharkeye.org), data collection is done
via RGB cameras on drones flown over the beaches. The live video stream is processed on
remote servers, feeding a system that broadcasts real-time alerts to beach users.

In Australia, researchers from the University of Wollongong have developed a similar
end-to-end platform that operates with any aerial imagery (they present a case study
on a beach, based on blimp- and drone-mounted cameras). Also called SharkEye, the
system described in Gorkin et al. [32] performs inference in the cloud and delivers push
notifications to Apple mobile devices both on land, and critically, in the water, as the first
demonstration of personalized alerting to swimmers and surfers in real-time. Gorkin
et al. [32] report accuracies of 91.7%, 94.5% and 86.3% for sharks, stingrays, and surfers,
respectively. However, these metrics were derived from a limited sample of images and the
authors acknowledge that the purpose was to demonstrate the flexibility of the technology
platform, and like other groups with limited data collection, their specific detection models
will likely not generalise well to other locations, or environmental conditions. Finally,
several other small organisations have launched demonstrators of shark-detection systems.
For example, Greenroom Robotics (https://greenroomrobotics.com) built a proof-of-concept
drone-based system for a company on Reunion Island.

The greatest challenge for drone-based AI shark detection is the issue of generalisation.
Current systems are limited by: (1) the narrow range of environmental conditions sampled
in the training data, (2) the small and skewed distributions of species observed, (3) low
overall numbers of training images and (4) the small number of field sites sampled that are
not broadly representative. A generally useful shark detector would need to address all
these issues.

Supervised learning AI systems are trained using an iterative process that requires
accelerated computing hardware to progress in a reasonable time (typically 1–2 days).
High-quality annotated datasets are the key to building high-performing models and these
are extremely time-intensive to create. The data must reflect the full range of conditions
encountered in the field and (at least initially) human experts are required to manually
label each object of interest. However, the labelling process can also be assisted by AI
tools—once reasonable object detection models are available.

We note that the studies reported above assess performance by testing on a small
sub-sample split from their training data. Such tests can be misleading for the reasons
given above and reported accuracies are unlikely to hold when deployed in the field. The
tests essentially answer the question ‘How well does the AI know the current data?’ rather
than ‘How well does the AI solve the problem?’. In particular, the visual appearance of beaches
in different locations can vary dramatically, meaning that even a well-trained algorithm
would need tuning to avoid significant false positive detections. This problem is known as
‘domain shift’ and can be mitigated by using an active learning system that facilitates the
rapid assimilation of new data into the AI model.

Tools for active learning have started appearing in the literature recently. These
take the form of software that predict labels for new data and allow an ‘oracle’ user to
make corrections via an interactive graphical interface (e.g., ICON by Gonda et al. [137],
RootPainter by Smith et al. [138], FishID by Ditria et al. [134] and the Transfer Sampling

https://www.sharkeye.org
https://greenroomrobotics.com
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method by Kellenberger et al. [139]). A large trial (involving some of the authors of this
manuscript) of AI shark detection algorithms on drones has recently been completed in
NSW, Australia to systematically test the ability of ML algorithms to distinguish between
shark species, and to determine how well algorithms can generalise across a range of water
and environmental conditions. Over 4 TB of data was gathered at five beaches on the
NSW coast during March–June 2020, covering a wide range of environmental conditions.
The scientific team developed in-house active learning tools to assist with labelling the
dataset and expect to release results of the trial in early 2021. The goal is to deploy a robust
and accurate software tool to assist beach managers in confidently identifying potentially
dangerous sharks in real time. Further enhancements will aim to mitigate against surface
distortions, e.g., [140] and apply photogrammetric methods, e.g., [141] to measure shark
size, orientation and swim-parameters [8].

Taken as a whole, these capabilities have the potential to transform any intelligent
device into a data-gathering tool. For example, such automated systems could be the foun-
dation of a high-quality citizen science program. Members of the public could report shark
sightings using their personal drones, reporting consistent measurements and uncertainties.
Ecological surveys that once required expensive helicopters and manual labour could be
achieved with few resources and to greater reliability. Once properly calibrated, auto-
mated measurements could correct for confounding environmental conditions and supply
trustworthy quality-control flags and other essential metadata. Finally, drone systems are
already being deployed for spotting potentially dangerous sharks at public beaches. If AI
systems live up to their promise, then automated shark detection and tracking from drones
could be an unremarkable and trusted presence at public beaches in the near future.

4.3. The Potential of Underwater Drones

Over the past decade, underwater drones that use similar control software and hard-
ware as aerial drones have been developed to actively track marine animals while collecting
direct behavioural observations and environmental data [142–146]. There are two main
types of underwater drones: autonomous underwater vehicles (AUVs) and remotely oper-
ated vehicles (ROVs) (Figure 6). Autonomous underwater vehicles track an acoustically
tagged shark with or without any direct input from the pilot and without a link to the
surface, are typically torpedo-shaped, and as a result have 3 axes of movement (pitch, yaw,
roll) and only forward and reverse propulsion. Remotely operated vehicles (ROVs) for the
most part require manual operation and are tethered to the surface but can manoeuvre with
6 degrees of freedom in any direction or orientation. Autonomous underwater vehicles
have been used more often to study sharks, so we focus primarily on these machines here.
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The first attempts to autonomously track a fish with an underwater drone involved the
use of a 3 m kayak equipped with a hydrophone, receiver, and GPS that could follow a simu-
lated acoustically tagged fish from the surface for up to 24 h [144]. Subsequent studies used
a self-propelled, subsurface AUV to passively collect data on acoustically tagged Atlantic
sturgeon (Acipenser oxyrinchus), winter flounder (Pseudopleuronectes americanus), shortnose
sturgeon (Acipenser brevirostrus), summer flounder (Paralichthys dentatus), and sablefish
(Anoplopoma fimbria) by canvassing an area along a pre-programmed path [145,146].

The first to use an underwater drone to study sharks was Clark et al. [9], who actively
tracked an acoustically tagged leopard shark (Triakis semifasciata) in a coastal lagoon. In
that study, the drone was constrained to the surface, was not equipped with cameras (for
behavioural observations), lacked the capacity to monitor animal depth, and resulted in
a coarse estimate of the shark’s horizontal movements. Packard et al. [13] were the first
to mount cameras on an underwater drone for the sole purpose of observing behaviour
while actively tracking sharks and collecting environmental data at depth. These authors
used a REMUS (Remote Environmental Monitoring UnitS; Woods Hole Oceanographic
Institution, Woods Hole, MA, USA) drone, which was developed as a platform for a wide
variety of oceanographic instrumentation and outfitted with a Global Positioning System
(GPS), wireless communication, iridium capabilities, an inertial navigation system, ring
laser gyroscopes to orient the vehicle spatially, and accelerometers to sense changes in
speed and velocity [9]. The drone also carried a variety of sensors including an acoustic
Doppler current profiler, a conductivity-temperature probe, magnetic heading sensor, and
pressure sensor. During this study, basking and white sharks were tracked at depth off
the coast of Cape Cod, MA and direct observations (video) and environmental data were
collected, thereby demonstrating that an AUV could actively and accurately track large
(>2 m) sharks in shallow waters (<20 m) [13].

With improvements to tracking capabilities, Skomal et al. [6] used this same drone
technology to investigate the behaviour, habitat use, and feeding ecology of white sharks off
Guadalupe Island, Mexico. In that study, six drone missions were conducted on four white
sharks, ranging in estimated total length from 3.9–5.7 m, for durations of 1.4–2.9 h. Based
on over 13 h of behavioural data, this study showed that the white sharks remained in the
area for the duration of each mission and moved through broad depth and temperature
ranges from the surface to 163.8 m and 27.1 to 7.9 ◦C, respectively [6]. Video footage and
drone sensor data revealed that two of the white sharks being tracked and eight other white
sharks in the area approached, bumped, and/or bit the AUV during these tracks [6]. Not
only did this study demonstrate that a drone could be used to effectively track and observe
the behaviour of a large shark, but it also produced the first observations of subsurface
predatory behaviour for this species.

Using the behavioural and environmental datasets generated by these tracks and three
additional missions, Gabriel [7] conducted more detailed analyses related to underwater
drone performance, white shark behaviour, and environmental correlates. This study
concluded that the drone was not only able to track sharks more accurately, both horizon-
tally and vertically in the water column, than traditional vessel-based methods, but also
provided fine-scale, environmental datasets related to the tracks and direct observations
of white shark behaviour [7]. Using data collected by the drone, the first estimates of
swimming speed and course relative to water current direction/strength and changes in
depth were calculated for this species [7]. In addition, the influence of environmental
factors (e.g., temperature, time of day, tides, depth of thermocline, bathymetry, and wa-
ter current magnitude and direction) on swimming behaviour were also investigated [7].
Video observations collected by the on-board cameras allowed for the calculation of tailbeat
frequency, which remained consistent across tracks and swimming speeds [7]. Using a
manually piloted and tethered underwater drone controllable with 6 degrees of freedom
(remotely-operated vehicle (ROV), BlueRobotics BlueROV2) [147] obtained similar metrics
from small sharks (Cephaloscyllium laticeps, Squalus megalops) released into the ocean, albeit
over shorter durations than possible with AUVs.
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Based on these studies, underwater drones can be used to monitor, follow, approach,
and image a randomly moving shark. These vehicles, which can be readily deployed in
waters inaccessible to, or unsafe, for divers (e.g., remote, rough seas, where sharks are
feeding), can produce high precision tracks [6,147] while collecting environmental data
and behavioural imagery over periods of several hours. Moreover, these vehicles are
versatile and highly customizable, and can take on different payloads to meet scientific
goals (e.g., underwater sonar, CTD probes, Niskin bottles). There is also evidence that
underwater drones may be less obtrusive than other commonplace sampling or active
tracking approaches [148] and may be superior for surveying abundance or behaviours
of sharks and rays than divers or snorkelers. However, like their aerial counterparts,
underwater drones might affect the natural behaviour of sharks. For example, the noise
from an AUV’s propeller might influence behaviour the same as a boat engine during active
tracking. It is anticipated that new advances in this field will ultimately be used to collect
observations over broader temporal and spatial scales and across many species [15,34], and
like aerial drones, the costs of these machines are decreasing rapidly.

5. Outlook and Conclusions

Drones have greatly enhanced the scope of research possible for scientists and man-
agers [149]. Sharks are inherently difficult to study due to their often migratory nature, their
sub-surface habits and the potential for negative human–shark interactions, particularly in
species that are potentially more dangerous to humans. Such data are particularly impor-
tant for many species where our understanding of their ecological importance in marine
ecosystems remains rudimentary. Sharks that inhabit shallow coastal environments often
occur in turbid waters or along breaking waves on beaches, making direct observations
difficult. Until recently, monitoring and observing the natural behaviour of sharks has
been limited to invasive tagging studies, animal-borne video, underwater diver surveys,
deployment of remote stationary cameras (baited or unbaited) or aerial surveys. Tagging
and animal borne video require capture and there is potential for injury and behavioural
changes of the animals. These techniques also typically assess animal movement on larger
temporal and spatial scales. Scuba surveys are limited by the constraints of the divers
and the potential aggressiveness of the focal species, and remote cameras cannot track
individuals and are limited to whatever swims past a small field of view. Manned aerial
surveys allow vast distances to be covered quickly and can be effective for individual shark
tracking but are expensive, both financially and in labour. This review discusses the roles
that drones offer as non-intrusive and effective methods of surveying and tracking sharks,
and monitoring their behaviours.

Specific requirements and conditions need to be met to successfully deploy drones for
shark research. Once a researcher has established the appropriate equipment and training,
drones offer efficient, reliable and cost-effective ways to collect spatially explicit data that
have previously been unavailable through other methods. Drones offer direct visualisation
of sharks for surveying and mitigation strategies and technology is now underway that
allows managers to spot and monitor the behaviour of individuals to assess their risk of
interaction with humans in real time. Researchers have had the opportunity to document
direct predation events and associated behaviours of sharks in the wild and interactions
with each other without disturbance, sometimes for the first time, via drone technology.
Such behaviours are inherently difficult to document due to their brief and sporadic nature
and drones offer a highly opportunistic method for data collection in such events. Similarly,
ecological aspects of threatened species and those in complex habitats that are difficult to
monitor effectively via other technologies have been successfully assessed using drones.

The use of drones in shark research and management has rapidly risen in the past
five years and is projected for exponential increase, particularly if key technical challenges
are overcome. Many of these emerging technologies are already being developed, as
discussed in this review. Drone sensors, and camera quality and functionality need to be
further optimised to allow for higher definition video to be transmitted in real time and for
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improved detection of sub-surface sharks. Drone design and battery improvements must
continue to allow for longer airtime and data collection. Advances in larger multirotor
systems such as hexacopters offer possibilities for refining lifting and deployment of heavy
equipment for shark-associated activities or interactive sampling and manipulation (i.e.,
drone imagery for 3d reconstruction of the body). Refinements to AI and ML are necessary
to optimise and automate processes for detection, identification and tracking sharks from
live video feed. This is particularly important considering the current bottleneck of inten-
sive data processing and video analysis and would pave the way for easier comparisons
between species in different ecosystems and environments. Finally, improvements in the
tracking capabilities, speed, manoeuvrability and broader depth ranges of autonomous
underwater vehicles are needed to jettison the capabilities of underwater drone use for
shark researchers studying deeper water or benthic species. Unique opportunities also
arise to pair aerial and underwater drone studies to allow for an integrated comparison of
shark behaviour from above and below.

It should be noted that regardless of the technological advances for drones and their
post video processing, ultimately the ubiquity of drone use for shark research comes down
to the expertise of the user, issues associated with flying beyond line-of-sight distance,
and with navigating a diversity of weather conditions. Increased training, situational
awareness and thorough flight protocols can all lessen the potential for error, but it is
difficult to imagine a scenario where human error will be eliminated from the process
entirely. Drone flights beyond line-of-sight are increasing in popularity as this allows
tracking of sharks as they venture further from the operator but also increases risk and
decreases safety. Finally, there are some weather conditions that make drone flight too
hazardous, regardless of the importance of the research at stake. As weather is inherently
changeable, it is prudent to have the ability to adequately forecast weather before and
during flight.

Our understanding of shark behaviour has been limited to date by difficulties in
obtaining direct observations of rare behaviours and fine-scale, spatially explicit data.
The use of drones in observing sharks allows scientists, managers, other stakeholders
and the broader community the opportunity to document real-time behavioural events in
relative safety. Documenting behaviours via video and imagery has the added advantage
of creating an historical record of an event that may form the foundations of future research
not considered at the time of data collection. This opportunistic footage taken by a drone
enthusiast may be valuable to researchers and managers, aligning interests of researchers
with those of the broader community. Such documentation can also be used to increase
public understanding of sharks and help challenge the inaccurate dogma of sharks being
killing machines that require lethal deterrent measures.
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Poland, 27–30 August 2018; pp. 515–520.

126. Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.; et al.
Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote
Sens. 2017, 9, 185. [CrossRef]

127. Sandino, J.; Pegg, G.; Gonzalez, F.; Smith, G. Aerial Mapping of forests affected by pathogens using UAVs, hyperspectral sensors,
and artificial intelligence. Sensors 2018, 18, 944. [CrossRef] [PubMed]

128. Geraeds, M.; van Emmerik, T.; de Vries, R.; Ab Razak, M.S. Riverine plastic litter monitoring using unmanned aerial vehicles
(UAVs). Remote Sens. 2019, 11, 2045. [CrossRef]

129. Dujon, A.; Schofield, G. Importance of machine learning for enhancing ecological studies using information-rich imagery.
Endanger. Species Res. 2019, 39, 91–104. [CrossRef]

130. Maire, F.; Alvarez, L.M.; Hodgson, A. Automating marine mammal detection in aerial images captured during wildlife surveys:
A deep learning approach. In AI 2015: Advances in Artificial Intelligence; Pfahringer, B., Renz, J., Eds.; Springer International
Publishing: Cham, Switzerland, 2015; pp. 379–385.

131. Dharmawan, W.; Nambo, H. End-to-End Xception model implementation on Carla Self Driving Car in moderate dense environ-
ment. In Proceedings of the 2019 2nd Artificial Intelligence and Cloud Computing Conference, AICCC 2019, Kobe, Japan, 21–23
December 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 139–143.

132. Sanil, N.; Rakesh, V.; Mallapur, R.; Ahmed, M.R. Deep learning techniques for obstacle detection and avoidance in driverless cars.
In Proceedings of the 2020 International Conference on Artificial Intelligence and Signal Processing (AISP), Vellore, India, 10–12
January 2020; pp. 1–4.

133. Ismail, W.N.; Hassan, M.M.; Alsalamah, H.A.; Fortino, G. CNN-Based health model for regular health factors analysis in
internet-of-medical things environment. IEEE Access 2020, 8, 52541–52549. [CrossRef]

134. Ditria, E.M.; Lopez-Marcano, S.; Sievers, M.; Jinks, E.L.; Brown, C.J.; Connolly, R.M. Automating the analysis of fish abundance
using object detection: Optimizing animal ecology with deep learning. Front. Mar. Sci. 2020, 7, 429. [CrossRef]

http://doi.org/10.1038/srep22574
http://doi.org/10.1364/AO.36.008710
http://www.ncbi.nlm.nih.gov/pubmed/18264420
http://doi.org/10.1038/srep45127
http://www.ncbi.nlm.nih.gov/pubmed/28338047
http://doi.org/10.3390/drones3020034
http://doi.org/10.3389/fmars.2019.00466
http://doi.org/10.1038/35082745
http://www.ncbi.nlm.nih.gov/pubmed/11429591
http://doi.org/10.1371/journal.pone.0088655
http://doi.org/10.3390/s18072026
http://doi.org/10.1016/j.biocon.2019.02.017
http://doi.org/10.1111/2041-210X.12974
http://doi.org/10.26077/ahd5-na26
http://doi.org/10.1111/2041-210X.13277
http://doi.org/10.3390/rs9030185
http://doi.org/10.3390/s18040944
http://www.ncbi.nlm.nih.gov/pubmed/29565822
http://doi.org/10.3390/rs11172045
http://doi.org/10.3354/esr00958
http://doi.org/10.1109/ACCESS.2020.2980938
http://doi.org/10.3389/fmars.2020.00429


Drones 2021, 5, 8 28 of 28

135. Fernandes, A.F.; Turra, E.M.; de Alvarenga, É.R.; Passafaro, T.L.; Lopes, F.B.; Alves, G.F.; Singh, V.; Rosa, G.J. Deep Learning
image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia.
Comput. Electron. Agric. 2020, 170, 105274. [CrossRef]

136. Hughes, B.; Burghardt, T. Automated visual fin identification of individual great white sharks. Int. J. Comput. Vis. 2017, 122, 542.
[CrossRef]

137. Gonda, F.; Kaynig, V.; Jones, T.R.; Haehn, D.; Lichtman, J.W.; Parag, T.; Pfister, H. ICON: An Interactive Approach to Train Deep
Neural Networks for Segmentation of Neuronal Structures. In Proceedings of the 2017 IEEE 14th International Symposium on
Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 327–331.

138. Smith, A.G.; Han, E.; Petersen, J.; Olsen, N.A.F.; Giese, C.; Athmann, M.; Dresbøll, D.B.; Thorup-Kristensen, K. RootPainter: Deep
learning segmentation of biological images with corrective annotation. bioRxiv 2020. [CrossRef]

139. Kellenberger, B.; Marcos, D.; Lobry, S.; Tuia, D. Half a percent of labels is enough: Efficient animal detection in UAV imagery
using deep CNNs and active learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9524–9533. [CrossRef]

140. Chirayath, V.; Li, A. Next-Generation optical sensing technologies for exploring ocean worlds—NASA FluidCam, MiDAR, and
NeMO-Net. Front. Mar. Sci. 2019, 6, 521. [CrossRef]

141. Gray, P.C.; Bierlich, K.C.; Mantell, S.A.; Friedlaender, A.S.; Goldbogen, J.A.; Johnston, D.W. Drones and convolutional neural
networks facilitate automated and accurate cetacean species identification and photogrammetry. Methods Ecol. Evol. 2019, 10,
1490–1500. [CrossRef]

142. Lowe, C.G.; White, C.F.; Clark, C.M. Use of autonomous vehicles for tracking and surveying of acoustically tagged elasmobranchs.
In Shark Research: Emerging Technologies and Applications for the Field and Laboratory; Carrier, J., Heithaus, M., Simpfendorfer, C.,
Eds.; CRC Press: Boca Raton, FL, USA, 2018.

143. Eiler, J.H.; Grothues, T.M.; Dobarro, J.A.; Masuda, M.M. Comparing autonomous underwater vehicle (AUV) and vessel-based
tracking performance for locating acoustically tagged fish. Mar. Fish. Rev. 2013, 75, 27–42. [CrossRef]

144. Goudey, C.A.; Consi, T.; Manley, J.; Graham, M.; Donovan, B.; Kiley, L. A robotic boat for autonomous fish tracking. Mar. Technol.
Soc. J. 1998, 32, 47.

145. Grothues, T.; Dobarro, J.; Eiler, J. Collecting, interpreting, and merging fish telemetry data from an AUV: Remote sensing from an
already remote platform. In Proceedings of the 2010 Autonomous Underwater Vehicles Symposium, Monterey, CA, USA, 1–3
September 2010; Volume 136, pp. 1–9.

146. Grothues, T.; Dobarro, J.; Ladd, J.; Higgs, A.; Niezgoda, G.; Miller, D. Use of a multi-sensored AUV to telemeter tagged Atlantic
sturgeon and map their spawning habitat in the Hudson River, USA. In Proceedings of the 2008 Autonomous Underwater
Vehicles Symposium, Woods Hole, MA, USA, 13–14 October 2008; pp. 1–7.

147. Raoult, V.; Williamson, J.E.; Smith, T.M.; Gaston, T.F. Effects of on-deck holding conditions and air exposure on post-release
behaviours of sharks revealed by a remote operated vehicle. J. Exp. Mar. Biol. Ecol. 2019, 511, 10–18. [CrossRef]

148. White, C.F.; Lin, Y.; Clark, C.M.; Lowe, C.G. Human vs robot: Comparing the viability and utility of autonomous underwater
vehicles for the acoustic telemetry tracking of marine organisms. J. Exp. Mar. Biol. Ecol. 2016, 485, 112–118. [CrossRef]

149. Raoult, V.; Colefax, A.P.; Allan, B.M.; Cagnazzi, D.; Castelblanco-Martínez, N.; Ierodiaconou, D.; Johnston, D.W.; Landeo-Yauri,
S.; Lyons, M.; Pirotta, V.; et al. Operational protocols for the Use of Drones in Marine Animal Research. J. Drones 2020, 4, 64.
[CrossRef]

http://doi.org/10.1016/j.compag.2020.105274
http://doi.org/10.1007/s11263-016-0961-y
http://doi.org/10.1101/2020.04.16.044461
http://doi.org/10.1109/TGRS.2019.2927393
http://doi.org/10.3389/fmars.2019.00521
http://doi.org/10.1111/2041-210X.13246
http://doi.org/10.7755/MFR.75.4.2
http://doi.org/10.1016/j.jembe.2018.11.003
http://doi.org/10.1016/j.jembe.2016.08.010
http://doi.org/10.3390/drones4040064

	Overview 
	Drones for Studying Sharks 
	Drone Research Areas 
	Drones as a Tool for Shark Hazard Reduction 
	Drone Studies of Shark Predation Events 
	Drone Studies of Shark Behaviour and Social Interactions 
	Shark Behaviour around Whale Carcasses 
	Drone Research of Pelagic Shark Aggregations 
	Drone Studies of Reef Sharks 

	Enabling Technologies for Future Drone-Based Shark Research 
	Alternative Sensors on Drones for Shark Research 
	Artificial Intelligence for Shark Monitoring, Detection, and Alerting 
	The Potential of Underwater Drones 

	Outlook and Conclusions 
	References

