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Abstract: Unmanned Aerial Vehicles (UAVs), used in civilian applications such as emergency medical
deliveries, precision agriculture, wireless communication provisioning, etc., face the challenge of
limited flight time due to their reliance on the on-board battery. Therefore, developing efficient
mechanisms for in situ power transfer to recharge UAV batteries holds potential to extend their
mission time. In this paper, we study the use of the far-field wireless power transfer (WPT) technique
from specialized, transmitter UAVs (tUAVs) carrying Multiple Input Multiple Output (MIMO)
antennas for transferring wireless power to receiver UAVs (rUAVs) in a mission. The tUAVs can
fly and adjust their distance to the rUAVs to maximize energy transfer gain. The use of MIMO
antennas further boosts the energy reception by narrowing the energy beam toward the rUAVs.
The complexity of their dynamic operating environment increases with the growing number of
tUAVs and rUAVs with varying levels of energy consumption and residual power. We propose an
intelligent trajectory selection algorithm for the tUAVs based on a deep reinforcement learning model
called Proximal Policy Optimization (PPO) to optimize the energy transfer gain. The simulation
results demonstrate that the PPO-based system achieves about a tenfold increase in flight time for
a set of realistic transmit power, distance, sub-band number and antenna numbers. Further, PPO
outperforms the benchmark movement strategies of “Traveling Salesman Problem” and “Low Battery
First” when used by the tUAVs.

Keywords: UAVs; wireless power transfer; RF energy harvesting; MIMO; deep reinforcement learning

1. Introduction

The recent years have seen increasing advancements and decreasing costs of low-
altitude UAVs, commonly known as drones. Drones carrying a range of technologies for
sensing and communication are becoming popular with service providers as innovative
service delivery platforms, such as for emergency medical deliveries, precision agriculture,
aerial imagery, etc. This popularity contributes directly to the growth of the global market
for drone-delivered commercial services to an estimated value of USD127bn [1]. Drones are
also employed in 5G networks either as aerial base stations providing a wireless Hotspot
or mobile relaying services to the ground nodes [2,3], or as aerial nodes of cellular UAV
networks [4,5].

With such a staggering market value, reliability through service continuity becomes a
critical success factor [6]. However, drones have short flying times due to their dependency
on on-board, limited capacity batteries for power supply. For example, the typical flight-
time of the DJI Spreading Wings S900 drone is about 18 min when the battery is fully
charged [3]. This implies that drones need to make frequent trips to the ground charging
stations so their batteries can be replaced or recharged, which creates significant service
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disruptions. To reduce the disruption, in situ recharging of the drone battery using ambient
energy harvesting techniques is considered as a core technology for operational UAVs in
5G networks [6].

The energy limitation issue is largely being addressed through the design and opti-
mization of algorithms and motion control functions [7–12] to achieve energy efficiency.
While such efforts are helpful, they do not fundamentally solve the problem since the
drones would still need to fly away from their missions and return to ground charging
stations when the battery eventually drains out. Solar powered drones can harvest energy
from the sun. To harvest enough energy, the drones need fixed wings with a long wingspan
(e.g., 4 m [13]) to accommodate the solar panels. As such, smaller, consumer drones as
well as rotary-wing drones cannot benefit from this solution. Moreover, the solar energy
harvesting is dependent on flight conditions, e.g., cloudy days and night time are not
favorable for this type of energy harvesting. The far-field WPT using the Radio Frequency
(RF) Electromagnetic Radiation (EMR) technique (radiative WPT) is a promising approach
for powering UAVs [14,15], which allows the transmitter and receiver to be located over a
distance. This specifically suits the deployment and mobility requirements of recharging
UAVs during missions.

The viability of the far-field WPT approach was demonstrated in [16–19]. William C.
Brown for instance, showed how a wireless-powered helicopter can be powered over a
distance of 18 m above the transmitting antenna in 1964 [16]. In this experiment, 270 W
power could be harvested at 2.45 GHz. Recently, the simultaneous wireless information
and power transfer system was explored to send wireless information and power to drones
from terrestrial base stations [20,21]. However, the drones need to remain in the close
proximity to the base stations during the WPT process to achieve Line-of-Sight (LoS) links.
This limits the deployment location and mobility of the UAVs. Other issues with far-field
WPT are the drop in transmission efficiency due to high path loss when the distance
between the transmitter and receiver is increased [15] and the random, uncontrollable
energy arrival at the receiver when non-dedicated energy sources are used [6].

In this paper, therefore, we propose the deployment of multiple, flying energy trans-
mitters for recharging UAVs (rUAVS) using WPT. This is inspired by the practice of mid-air
fueling of military jets using aerial tankers, a concept that was also proposed for civil
aviation purposes [22]. The transmitters are specialized UAVs (tUAVs) equipped with
Multiple-Input-Multiple-Output (MIMO) antennas. The MIMO antenna system can direct
energy beams towards the receivers. The rUAVs can continue their mission without hav-
ing to adjust their locations to receive power, while the tUAVs dynamically adjust their
locations to reduce the transmission distance to enhance the power delivery. To boost
the WPT efficiency while meeting the regulatory constraints on maximum transmission
power [23], in each tUAV, we propose deploying multiple antennas that operate in multiple
band spectrum. This is because the use of multi-band transmission helps to distribute
power over a wider spectrum so that the maximum transmitted power does not exceed the
regulated limit. The rUAVs convert the received RF power to DC power using an array of
rectennas that are special types of antennas used to convert electromagnetic energy to DC
current. A conceptual view of our proposal is shown in Figure 1.

The energy consumption of each rUAV may be different due to the environmental
conditions (e.g., windy or still conditions), dynamic wireless communication requirements,
and mobility. Therefore, the tUAVs must intelligently pick the rUAVs to serve according to
their residual energy levels in a coordinated manner. This calls for a multi-agent optimiza-
tion model, for which we employ Proximal Policy Optimization (PPO), a recent class of
Deep Reinforcement Learning (DRL) algorithms. PPO adjusts each tUAV’s movements to
intelligently pick the next rUAVs to be recharged considering traveling time, other rUAV
locations, rUAV battery level and the other tUAVs’ locations. This minimizes the service in-
terruptions by extending flying times of the rUAVs. In other words, using PPO, each tUAV
can find the best location to move to at a given observation of entire network of rUAVs.
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To the best of our knowledge, this is the first attempt to consider such a wireless charging
architecture for UAVs using multiple dedicated and coordinating aerial energy sources.

The main contributions of this paper can be summarized as: (i) we propose a system
of multiple tUAVs to facilitate aerial wireless charging of rUAVs using multi-band MIMO
beamforming, (ii) we propose a PPO-based movement decision algorithm for the tUAVs
in selecting the next rUAVs to recharge as per their battery levels, and (iii) we compare
the PPO-based system performance using simulations, with two benchmark movement
decisions strategies of the tUAVs: traveling Salesman Problem (TSP) and Low Battery
First (LBF). Our results demonstrate that with PPO, the system achieved a tenfold flight
time extension compared to no WPT. Further, this strategy outperforms the benchmark
movement strategies of TSP and LBF when used with WPT.

The rest of the paper is organized as follows. The related works are discussed in
Section 2. System description and the DRL model is presented in Section 3 followed by the
performance evaluation of proposed model in Section 4. We finally conclude the paper and
discuss future works in Section 5.

Figure 1. In situ recharging of UAVs using aerial wireless energy sources: Sample Wireless Power
Transfer (WPT) beams in a flying trajectory.

2. Related Works

Researchers commonly address the drone energy-limitation issue through the design
of their energy-efficient functioning mechanisms. These mechanisms include flight path
(trajectory) planning and communication methods. UAVs consume energy due to their me-
chanical (flying, hovering) and electronic (wireless communication) functions, presenting
scopes for improving energy efficiency of both. However, since the mechanical energy con-
sumption is significantly more than that from the electronic functions, researchers mostly
focus on optimizing the trajectory to shorten the flight paths for reducing mechanical
energy consumption, e.g., in [7,8,24]. As our current work is on the topic of energy replen-
ishment solutions for the deployed UAVs, we omit details of the work on energy-efficient
UAV operations.

One approach to address the energy replenishment objective of the deployed UAVs
is using tethered UAVs [25], wherein the UAVs are connected via a cable to the ground
station to receive continuous supply of power. As the ground station has an unlimited
power supply, the tethered UAVs can operate perpetually. However, this approach restricts
the UAVs’ mobility and deployment locations to be only in the areas with existing ground
stations. Another solution is to use UAV battery swapping [26], which requires the de-
ployed UAVs to fly back to the ground station for “hot-swapping” the battery, whereby the
external power sources keep the UAVs powered on while the battery replacement takes
place. This approach is quicker than recharging the on-board battery at the ground station.
However, this approach leads to service interruptions due to the UAVs leaving the serving
area for the battery swapping. To allow greater freedom of deployment locations and
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mobility of the UAVs, we consider a far-field wireless powering approach in our current
work for which we discuss the related work below.

As previously mentioned, there have been many trials in the past demonstrating
the viability of far-field WPT techniques. Further development and practical use of such
techniques are somewhat stalled; however, we see a renewed interest, as evident in recent
industry needs, activities and trials. A New-Zealand based startup company, Emrod, was
recently reported to have developed a long-range, high-power, WPT technology to deliver
wireless electricity to end users without needing copper power lines [27]. This follows
the country’s second largest power company Powerco, planing to trial the technology in
2021 [28]. In 2020, a US-based company, Powerlight Technologies (formerly known as Laser-
Motive), demonstrated a wireless power receiver for drones. In an earlier demonstration,
the company used a laser beam to fly a drone for more than 12 h [29].

On the other hand, the increasing demand for UAVs’ autonomous wireless recharging
is clearly evident by their numerous commercial operations such as power line monitoring
(e.g., [30]), food delivery (e.g., [31]) and law enforcement (e.g., [32]), to name a few. The
short flight times of these drones are causing serious deployment hindrances in these
industries. According to a 2020 Bloomberg report, the predicted market value of the
global autonomous wireless charging and infrastructure market for drones will reach
USD 249.3 Million by 2024 [33]. This justifies the unified efforts from research and industry
that are required to develop practical solutions for wireless charging of drones and, more
importantly, in situ solutions.

The utility of far-field WPT using EM radiation is well established: it provides place-
ment flexibility and mobility of transmitters and receivers, can work even in non-LoS
conditions, and can power over a distance. Due to the energy conversion efficiency limi-
tation, generally this technique is suitable for low-power devices. Despite this limitation,
various works on WPT suggest that far-field WPT can also be used for recharging UAV
batteries (e.g., [15]). To this end, wireless recharging of UAVs were proposed using RF
WPT in [20] and optical energy transfer in [21], both from ground base stations in a si-
multaneous wireless information and power transfer system. Using a power-splitting and
time-switching architecture, authors proposed a relaying system in [20] in which the UAV
harvests energy and information from the base station, and relay the information to a
ground node. With an objective of prolonging the lifetime and throughput maximization
of the network, authors optimized the system parameters along with the UAV deployment
location; however, no explicit results on received power were mentioned. The authors
in [21] studied a similar system but with an optical transmitter at the ground base station
casting optical beam to the UAV carrying both data and energy, providing simultaneous
communication and charging. The numerical results showed that the system achieved a
high network throughput and a 25% extra hovering time in the drones. However, both
proposals require the UAVs to be in the proximity of the terrestrial base station to achieve
LoS and receive power. This limits the locations where the UAVs can be deployed due
to the fixed terrestrial base stations. Therefore, flexible in situ wireless charging of UAVs
remains a challenging open problem.

In our previous works [34,35], we studied different modes of dedicated, aerial WPT
chargers to observe their performance subsequently, with tUAVs carrying omnidirectional
antennas. In [34] we utilized aerial, stationary (i.e., hovering at fixed locations) tUAVs
to study their optimal placement locations with respect to the rUAVs to maximize total
received power at the rUAVs. In [35], we utilized one flying tUAV to power all rUAVs.
In that work, for the single tUAV to recharge all rUAVs, a single-agent optimization of
the tUAV’s trajectory was presented via Q-Learning to enhance power delivery. However,
Q-Learning comes with a scalability issue and both observation and action space must
be limited. As such, for multi-agent systems (current work) Q-learning poses limitations.
Further, the use of omnidirectional antennas waste energy since energy is radiated all
around the antenna, not only to the energy receiver. The fundamental differences of
our current work with our prior works is that our current work uses multi-band MIMO
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antennas at the flying energy sources which distributes power over a wider spectrum
and exploits targeted energy beams through beamforming to recharge chosen UAVs. This
boosts energy delivery at the rUAVs. Further, we employ a multi-agent optimization model
for multiple tUAVs in the network to optimize the tUAVs’ movement decisions using the
PPO algorithm. The advantages of PPO over Q-Learning is discussed in the next section.

3. System Description

In this section, we present our UAV recharging architecture involving multiple tUAVs
and rUAVs. We also present the deep reinforcement learning algorithm using the PPO
technique to control the movements of the tUAVs in targeting the next rUAVs to recharge.
The optimization aims to enhance the MIMO-WPT efficiency to achieve longer flying times
of the rUAVs in the presence of multiple coordinated tUAVs serving multiple rUAVs with
dynamic battery levels.

3.1. UAVs Recharging Architecture

Our proposed UAV recharging architecture consists of specialized, flying UAVs
equipped with multiple high gain RF antennas (tUAV) that transmit wireless power to
recharge the rUAVs’ batteries. We assume that the rUAVs are deployed in an area to
provide Hotspot wireless communication services to the ground users (Figure 1). The
tUAVs are assumed to have a significantly greater power supply than the commodity
rUAVs, e.g., by carrying a larger battery or having hybrid power sources. As such, the
tUAVs are expected to be costlier and bulkier than the rUAVs. Further, a tUAV which
recharges several rUAVs can be replaced with another tUAV when its energy is depleted.
However, the tUAV replacement does not interrupt the services of the rUAVs. It is to be
noted that our aim is to extend each rUAV’s operating time as much as possible, thus
reducing the number of times the rUAVs would return to the ground station once their
batteries eventually deplete. The tUAVs fly about and position themselves in a way to
minimize the distance between them and the rUAVs, and to improve the line-of-sight RF
links for the target rUAVs. This enhances the power transfer effectiveness.

To increase energy transfer efficiency, we propose a MIMO system to perform an
energy beamforming and focus energy toward the receiver [36–38]. Hence, we consider a
point-to-point MIMO system with mt antennas installed on the tUAVs and mr antennas on
the rUAVs. Without the loss of generality, we assume a uniform square array of antenna on
each side. We use the system model obtained from [14,37] where a total of N orthogonal
sub-bands are used to transmit energy. On each sub-band, sine-wave signal Sn is emitted
at carrier frequency fn by mt tUAV antennas as

sn(t) = [s1n(t), . . . , smtn(t)]
T , (1)

where n = 1, 2, . . . , N and smn(t) is the beamforming component of sn(t) by antenna m at
frequency n. Thus, the total received power at all mr receiver antennas is defined as

Pr =
mr

∑
i=1

N

∑
n=1

E
[
|hH

insn(t)|2
]
=

N

∑
n=1

tr
(

HH
n HnSn

)
,

where hH
in

[
h∗i1n, · · · , h∗imtn

]
is the channel vector from transmitter antennas to receiver

antenna i, Hn is the channel matrix between mt transmitter antennas and mr receiver
antennas and Sn is the transmit covariance matrix all at sub-band n. Similarly, the total
transmit power at frequency fn is

Pt =
N

∑
n=1

tr(Sn). (2)
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The maximum transmit power at each sub-band is constrained by regulation and
hardware limits. Thus, let us assume

tr(Sn) ≤ Ps, ∀n. (3)

Based on [14] and assuming the maximum sum-power Ps is transmitted at each
sub-band, the received power at each sub-band n is obtained as

Pr,n = Psλ2
max,n, n = 1, · · · , N, (4)

where λmax,n = λmax(HH
n Hn) denotes the maximum singular value of HH

n Hn for sub-band
n. As a result, the total harvested energy is

Pr = Ps

N

∑
n=1

λ2
max,n. (5)

Since there is almost a pure LoS MIMO channel between a pair of tUAV and rUAV dur-
ing the recharging process as the tUAV adjusts its position to achieve this, Hn is a rank one
matrix and an optimal beamforming can be achieved by an SVD-based beam-former [39,40]
when only one strong beam is formed by transmitter antennas as optimal energy beamforming
with a gain of nt [37,41],

λmax,n = an
√

mtmr, (6)

where an is the signal attenuation along the LoS path at frequency n which is assumed to
be the same for all antenna pairs. This assumption is valid when the distance between
transmitter and receiver is much larger than the antenna array size [39]. For this purpose,
the Channel State Information (CSI) should be available at transmitter side. In contrast
with MIMO channel’s information, the energy transfer channel in our system is significant,
stable and relatively time invariant. Hence, measuring the CSI feedback is not a challenging
task. Attenuation is also achieved by

a2
n =

GtGrc2

(4πd fn)2 (7)

where Gt and Gr represent each antenna gain at the transmitter and receiver, respectively, c
is the speed of light and d is the distance between the transmitter and receiver. Thanks to
mechanical alignment, high gain antennas can be employed to boost MIMO gain [41,42]. We
applied a limit of 90% efficiency [43] to the RF gain in (5) to model nonideal implementation
of MIMO system, i.e., mutual coupling. There is also RF to DC conversion efficiency at
the receiver which represents how much of received wireless energy can be converted
to usable energy by the rUAVs. In this work, we assume a constant RF to DC efficiency
of 80% [44,45] that is denoted by γ. Additionally, we assume that the receiver antennas
are installed on the top of the rUAVs to minimize blockage by rUAV’s frame or blades.
Equation (7) shows that the energy transmission is significant for short distances; therefore,
the tUAV should hover above rUAV to maximize energy transfer and this will minimize the
blockage. Furthermore, small movements of both tUAV and rUAV do not reduce efficiency
of beam alignment since CSI can be measured several times in a second to update beam
direction. As discussed earlier, we limited the RF efficiency in our proposed conjecture to
model non-ideal implementation. However, the true and highly accurate model can be
achieved by a prototype system.

3.2. Proposed Trajectory Selection Algorithm

Proximal policy optimization (PPO) is a model-free, online, on-policy reinforcement
learning method from policy gradient family [46,47]. This method supports both discrete
and continuous spaces for observations and actions. A PPO agent transitions from one
state to another, by taking random actions. A set of states S which are defined based on the
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observations from the environment and a set of actions A define the learning space. By
performing an action a ∈ A and observing the resulting state, a revenue function calculates
a numeric reward. The learner’s goal is to maximize the discounted long-term reward
state-action pairs from beginning up to reaching the goal state, so called the optimal policy.
The optimal policy indicates which action is the best to take in different states, which results
in a maximized overall gain. PPO selects actions based on the probability distribution and
we define the optimal policy so that the action with maximum likelihood is chosen after
training as deterministic exploitation. PPO finds the best location and movement for the
tUAVs at a given observation of entire network of rUAVs.

Reinforcement learning has been widely used in UAV related research recently.
This includes a range of application from military threat avoidance [48] and obstacle
avoidance [49] to trajectory optimization for improving services in wireless communi-
cations [50]. In our previous work [35], we used Q-Learning which is not scalable for
large observation space and multi-agent systems. In our current work, we utilize DRL to
solve the scalability issue where deep neural networks are used to improve reinforcement
learning. Among several DRL methods such as deep Q-network (DQN), deep determinis-
tic policy gradient (DDPG), PPO and Twin-Delayed Deep Deterministic Policy Gradient
Agents (TD3), we found PPO to perform the best in terms of faster learning, relatively
little hyperparameter tuning and simplicity [51]. Hence, we employ PPO with discrete
observation and action space. PPO also allows us to use fine-grained discrete observation
value. In contrast, discretizing observation values can be an implementation issue in
Q-Learning as it increases the Q-table size sharply. PPO components in our solution are
defined as the following:

• Agent (tUAV) observes the current state and takes actions. There are multiple agents
in our scenario. To keep the model simple, we implemented multiple tUAV system as
a single agent PPO with multiple actions.

• State (S) is defined based on the observed information of rUAVs and the current loca-
tion of tUAV. Thus, we define the system state as S = {Lc, Lh, Bh} where Lc is the loca-
tion of tUAVs, Lh = [Lh1 , Lh2 , . . . , LhZ ] is a vector that denotes the locations of rUAV1
to rUAVz and Bh = [Bh1 , Bh2 , . . . , BhZ ] is a vector that denotes their battery levels.

• Action (a) is defined as flying to hovering above certain rUAVs. Hence, the number
of possible actions is equal to number of rUAVs. The PPO algorithm implements a
function approximator µ(S) that takes state S and returns the probabilities of taking
each action in the action space.

• Revenue (R) is the combination of rewards and penalties after taking action a at state
S and moving to state S′. It returns a reward for the energy that all rUAVs receive
from tUAV and/or applies a penalty if an rUAV has to move to a terrestrial charging
station due to low battery. R is formulated as:

R(S, a, S′) = w1

∫
T

Pr dt + w2No + w3Bl + w4B f + w5Q (8)

where w1, . . . , w5 are adjusting weights, Pr is the total harvested power by rUAVs
noted in (5), T is the time step and No is the number of out of charge rUAVs which
should be replaced and resulted in service interruption. Bl represents the low battery
thresholds of rUAVs and is defined as

Blow =
Z

∑
k=1

B̄k , while

B̄k =

{
0.05Bmax − Bhk

i f Bhk
≤ 0.05Bmax

0 otherwise
,

(9)

where Bmax is the battery capacity of rUAV. B f denotes the full battery if the battery is
more than 97% charged. Finally, Q indicates the conflict between the tUAVs if their
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distance from each other is less than a threshold. This can force them to not charge
the same rUAV in the same time and also avoid a crash. The second PPO function
approximator is the critic V(S) that takes observation S and returns the expectation of
the discounted long-term reward [46,47].

In the above model, each agent (tUAV) needs to observe all rUAVs’ geographical
locations and their remaining battery levels. We assume that the rUAVs remain in the same
geo-cell in our considered area; therefore, only their battery status needs to be sent to the
tUAVs at each time step. Hence, our tUAVs and rUAVs must have a light periodic signaling
to exchange information.

Considering the discussed Reinforcement Learning components, we follow Algorithm 1
to obtain an optimal flying trajectory (i.e., movement decisions) of the tUAVs and recharg-
ing mechanism that maximizes the overall flying duration of all rUAVs. In this algorithm,
each tUAV receives updated information of the rUAVs at each time step. The observation
includes the tUAVs current location indicating the current state. The agent makes a decision
on movement based on the actor output. Recharging is considered only when the tUAV
arrives to hover above the chosen rUAV because recharging is assumed inefficient when
the tUAV is flying. The PPO details are not presented in Algorithm 1 as it can be found
in [46,47]. The algorithm can be executed centrally in a ground control station or by the
tUAVs individually.

Algorithm 1 tUAV Trajectory Algorithm.

Initialize Actor µ(S) and Critic V(S) with random values
Observe rUAVs’ locations
REPEAT

Observe rUAVs Battery
Current state = (tUAV’s location, Observation)
Update tUAV’s location by taking an action for current state µ(S)
Calculate Revenue of the tUAV’s last movement
If there is enough experiences, update Actor µ(S) and Critic V(S)

CONTINUE

4. Performance Evaluation

In this section, we first describe the simulation set-up including the baseline algorithms
that we compare the PPO’s performance against. We then present and discuss key results
of this research.

4.1. Simulation Setup

In our scenarios, we consider six rUAVs and two tUAVs, located in an environment
modeled as a 100× 100 grid (Figure 2). To simplify our simulation design, we assume all
rUAVs can be located only at the center of cells as illustrated in Figure 2. Each tUAV sends
the recharging beam toward the target rUAV that is selected by the algorithm. We selected
an arbitrary frequency of 25–27 GHz which can be adjusted as per the spectrum regulations
in the region. Note that increasing the frequency increases free space path loss but more
antennae can be installed in the same antenna size since the MIMO proper inter-element
space is related to wavelength. For example, the wavelength of frequencies below 1 GHz
is very large for MIMO. Additionally, 1-7 GHz is highly saturated for current wireless
communications [40]. On the other hand, high path loss in higher frequency is helpful
to minimize the interference of WPT to ground stations. Hence, we propose mmWave
spectrum for our conjecture. We assume a maximum power of 1Watt is transmitted at each
sub-band of 10 MHz width. This is reasonable in terms of regulations as in most countries
mobile devices that work in the millimeter-wave spectrum are permitted to operate in
83 dBm/100 MHz range [23]. There are 256 antenna elements installed on each tUAV and
rUAV in a uniform square array, and since the EM wavelength is about 1.2 cm, the array
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can be readily fitted on a small drone. For a square array, the number of antenna elements
should be a power of 2, e.g., 256. All simulation parameters are defined in Table 1.

Figure 2. Considered simulation scenarios showing tUAV and rUAV positions. The rUAVs are
stationary in each scenario and two tUAVs periodically change position to improve the energy
transfer efficiency where the initial position of tUAV is randomized for each episode.

Table 1. Simulation parameters.

Simulation Component Value

Transmit power of each sub-band Ps 1 Watt
Antenna element gain Gt, Gr 16 dBi

Number of antenna on tUAV mt 256
Number of antenna on rUAV mr 256

Number of sub-bands N 200
Sub-band’s width 10 MHz

Cell side 10 m
Charging Wave Frequency range 25–27 GHz

Learning rate 0.4
Discount factor 0.95

rUAV power consumption 50 ± 10 Watt
rUAV battery capacity 30 Watt-hour (108 kJ)

Time step 30 or more s
Revenue adjusting weights (w1, w2, w3, w4, w5) 0.001, −10,000, −0.0001, −0.00003, −10,000

In order to evaluate our algorithm’s performance, we used the MATLAB Reinforce-
ment Learning Toolbox to simulate the environment and implement the PPO algorithm.
Additionally, we simulated the following two benchmark schemes for the tUAVs’ move-
ment decisions:

• Traveling Salesman Problem (TSP): Each tUAV recharges a group of three rUAVs
periodically and in order. The groups and orders should be selected so that the
traveling times of the tUAVs are minimized. We solve the TSP using an iterative
approach to find the best two groups to be served by the two tUAVs.

• Lowest Battery First (LBF): The tUAVs target to serve the rUAVs with the minimum
battery level at each time step.

To compare the performance of the PPO and the above baseline schemes and also to
show the WPT recharging effect, we counted the number of times that an rUAV battery
reaches the minimum threshold and it is replaced with a full battery rUAV after few
seconds. The rUAV replacement can result in a service interruption to the nodes that
are served by the respective rUAV (e.g., in the Hotspot service scenario). As such, the
replacements should be minimized. Additionally, we calculated the average flying time
of all rUAVs. We assumed that the WPT recharging in our scenario is not enough to keep
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all rUAVs in service for long time. This is because the total recharging power is less than
consumed power. A period of 10 h was simulated to study the impact of the recharging.

4.2. Results

In this section, we present the simulation results based on the above system model
and algorithm.

First, we ran simulations with and without the WPT capability to see the viability of
our proposed model. We can evaluate both systems’ performances based on the number
of times the rUAVs need to be replaced due to the battery depletion. As is illustrated in
Figure 3, using the MIMO based WPT-enabled tUAVs significantly improves the system
performance by reducing the number of rUAV replacements from 108 (when no WPT
recharging is used) to less than 20 during a 10 h simulation period. In the same simulation,
we also evaluated the performance of the proposed algorithm against benchmark schemes
with WPT enabled tUAVs. As it can be seen from Figure 3, PPO outperforms the benchmark
schemes where in 10 h duration, the number of rUAV replacements is only 11 in comparison
with 14 and 17 for the LBF and TSP schemes. We assumed 120 s time steps for tUAVs to
retake decisions in this simulation.
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Figure 3. Comparison of number of rUAV replacements when an rUAV is out of charge. Note that
after 600 min, 108 replacements were recorded without WPT recharging.

Second, since the tUAV’s recharging ability is not used when it is traveling, increasing
the time step may improve the results for benchmarks. For this purpose, we simulated the
scenario with different time step durations to compare different models’ performances. The
result is plotted in Figure 4. As can be seen, the PPO’s performance can also be improved
for longer time steps of about 150–200 s. It is further observed that TSP can be as good as
PPO for some time steps. However, the figure shows that the PPO performance superiority
is maintained for all time step values despite the fact that the gap is reduced in 150–200 s.
To conclude, the best overall performance is recorded for a time step of 150 s by PPO when
only 10 replacements are recorded over 10 h.
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Figure 4. Comparison of different tUAV movement schemes used with the WPT for different time
step values. Each tUAV takes the next action to update the location at the end of each time step. The
lowest replacement is achieved by PPO when time step is 150 s.

Furthermore, we have recorded the flight duration of all rUAVs in our simulation.
Figure 5 demonstrates their average flying times. We have used the best time step for each
scheme based on Figure 4. As is shown, while it is only 33 min without employing the
WPT recharging mechanism, the proposed PPO based WPT can increase rUAVs’ flight
duration up to 390 min for the studied scenario. Moreover, it can be observed that the low
complexity schemes of LBF and TSP can achieve an approximately 240 min flying duration,
which is significant. This result demonstrates the merit of our proposed MIMO-WPT based
UAVs recharging architecture, irrespective of the specific movement strategy of the tUAVs.
However, the PPO’s performance achieved notable gains of about 60% higher than the
benchmark movement schemes. Additionally, a confidence interval of 95% is shown in
Figure 5 that shows energy distribution fairness among rUAVs. Among the three schemes
of WPT, TSP is distributing energy more equally.
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Figure 5. Average flying time of rUAVs for different time step values. In the absence of WPT
recharging, the average flying time is 33 min.
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On the other hand, we present the average flight duration of rUAVs in Figure 6 for
different numbers of antennas in which we consider the same value for mr and mt. Clearly,
increasing the number of antenna elements can increase the beamforming gain and improve
the WPT efficiency. However, this is limited by the total transmitting power, and the WPT’s
efficiency (RF-RF) which cannot be more than 100%. Note that we assumed a maximum
of 90% RF-RF efficiency to address the non-ideal implementation factors such as mutual
impedance between antenna elements in the antenna array [43].
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Figure 6. Average flying time of rUAVs for different antennae numbers when PPO is used.

5. Conclusions and Future Work

We studied the concept of using dedicated, flying chargers equipped with MIMO
antenna for in situ recharging of UAVs’ batteries using wireless power transfer. We
formulated the movement decision of the aerial chargers to recharge the UAVs as a multi-
agent optimization problem using the Proximal Policy Optimization (PPO) to optimize the
energy transfer gain and enhance the UAVs’ flying times. Using simulation studies, we
demonstrated that the MIMO-WPT provided a tenfold increase in the flight time for the
deployed system compared to no wireless recharging of the UAVs. The maximum gain was
achieved when PPO was employed to place and move wireless energy sources intelligently.
Although we have extracted simulation parameters and assumptions from practical works,
implementation challenges may affect the gain of MIMO-WPT UAV recharging.

Although we simulated a scenario of Hotspot UAVs that hover above fixed locations,
it can be generalized for all applications where the power receiver UAVs are hovering
above a certain location. Future work could consider scenarios with mobility and dynamic
positioning of the power-receiver UAVs, and the use of hybrid power sources at the flying
chargers. Additionally, the CSI measurement at the tUAVs is not a challenge for the rotor-
based rUAVs, which is what we have used in our work. However, for the winged rUAVs,
this is not the case since they cannot stand still. So, in practical implementations of our
system with the winged rUAVs, the CSI acquisition and dynamic beamforming will be
challenging. In future work, fast beam switching technology in the face of changing CSI
using ML or codebook-based beamforming can be investigated.

Author Contributions: Conceptualization, S.S.K.; visualization, A.B.; investigation, S.A.H.; method-
ology, S.A.H.; Software, A.B. and S.A.H.; writing—original draft preparation, S.A.H., A.B. and J.H.;
writing—review and editing, S.S.K.; Conceptualization, J.H.; Funding acquisition, J.H.; All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Central Queensland University Research Grant RSH5137.



Drones 2021, 5, 89 13 of 15

Acknowledgments: The authors acknowledge the Central Queensland University high performance
computing resources (https://www.cqu.edu.au/eresearch/high-performance-computing accessed
on 12 July 2021) made available for conducting the research reported in this paper. The authors also
acknowledge infrastructure support from UNSW Institute for Cyber Security.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Silver, B.; Mazur, M.; Wisniewski, A.; Babicz, A. Welcome to the Era of Drone-Powered Solutions: A Valuable Source of New

Revenue Streams for Telecoms Operators. 2017. Available online: https://www.pwc.com/gx/en/communications/pdf/
communications-review-july-2017.pdf (accessed on 10 March 2020).

2. Fotouhi, A.; Ding, M.; Hassan, M. Flying Drone Base Stations for Macro Hotspots. IEEE Access 2018, 6, 19530–19539. [CrossRef]
3. Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J. Survey on UAV Cellular

Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges. IEEE Commun. Surv.
Tutorials 2019, 21, 3417–3442. [CrossRef]

4. Zeng, Y.; Wu, Q.; Zhang, R. Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond. Proceedings of the
IEEE 2019, 107, 2327–2375. [CrossRef]

5. Zeng, Y.; Lyu, J.; Zhang, R. Cellular-Connected UAV: Potential, Challenges, and Promising Technologies. IEEE Wirel. Commun.
2019, 26, 120–127. [CrossRef]

6. Li, B.; Fei, Z.; Zhang, Y. UAV Communications for 5G and Beyond: Recent Advances and Future Trends. IEEE Internet Things J.
2019, 6, 2241–2263. [CrossRef]

7. Tran, D.H.; Vu, T.; Chatzinotas, S.; Shahbazpanahi, S.; Ottersten, B. Coarse Trajectory Design for Energy Minimization in
UAV-Enabled Wireless Communications with Latency Constraints. IEEE Trans. Veh. Technol. 2020, 69, 9483–9496. [CrossRef]

8. Salehi, S.; Bokani, A.; Hassan, J.; Kanhere, S.S. AETD: An Application Aware, Energy Efficient Trajectory Design for Flying Base
Stations. In Proceedings of the 2019 IEEE 14th Malaysia International Conference on Communication (MICC), Selangor, Malaysia,
2–4 December 2019.

9. Li, K.; Ni, W.; Wang, X.; Liu, R.P.; Kanhere, S.S.; Jha, S. Energy-efficient cooperative relaying for unmanned aerial vehicles. IEEE
Trans. Mob. Comput. 2015, 15, 1377–1386. [CrossRef]

10. Abdulla, A.E.; Fadlullah, Z.M.; Nishiyama, H.; Kato, N.; Ono, F.; Miura, R. An optimal data collection technique for improved
utility in UAS-aided networks. In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications,
Toronto, ON, Canada, 27 April–2 May 2014; pp. 736–744.

11. Zhan, C.; Zeng, Y.; Zhang, R. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wirel. Commun. Lett.
2017, 7, 328–331. [CrossRef]

12. Abdulla, A.E.; Fadlullah, Z.M.; Nishiyama, H.; Kato, N.; Ono, F.; Miura, R. Toward fair maximization of energy efficiency in
multiple UAS-aided networks: A game-theoretic methodology. IEEE Trans. Wirel. Commun. 2014, 14, 305–316. [CrossRef]

13. Morton, S.; D’Sa, R.; Papanikolopoulos, N. Solar powered UAV: Design and experiments. In Proceedings of the 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015;
pp. 2460–2466. [CrossRef]

14. Zeng, Y.; Clerckx, B.; Zhang, R. Communications and Signals Design for Wireless Power Transmission. IEEE Trans. Commun.
2017, 65, 2264–2290. [CrossRef]

15. Huang, J.; Zhou, Y.; Ning, Z.; Gharavi, H. Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects.
IEEE Wirel. Commun. 2019, 26, 163–169. [CrossRef]

16. Brown, W.C. Experiments involving a microwave beam to power and position a helicopter. IEEE Trans. Aerosp. Electron. Syst.
1969, 5, 692–702. [CrossRef]

17. Shinohara, N. Beam control technologies with a high-efficiency phased array for microwave power transmission in Japan. Proc.
IEEE 2013, 101, 1448–1463. [CrossRef]

18. Strassner, B.; Chang, K. Microwave power transmission: Historical milestones and system components. Proc. IEEE 2013,
101, 1379–1396. [CrossRef]

19. Jull, G.W.; Lillemark, A.; Turner, R. SHARP (stationary high altitude relay platform) telecommunications missions and systems.
In Proceedings of the GLOBECOM’85-Global Telecommunications Conference, New Orleans, LA, USA, 2–5 December 1985;
Volume 2, pp. 955–959.

20. Hua, M.; Li, C.; Huang, Y.; Yang, L. Throughput Maximization for UAV-enabled Wireless Power Transfer in Relaying System.
In Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing,
China, 11–13 October, 2017; pp. 1–5. [CrossRef]

21. Ansari, N.; Wu, D.; Sun, X. FSO as backhaul and energizer for drone-assisted mobile access networks. ICT Express 2020, 6,
139–144. [CrossRef]

22. Nangia, R.K. ‘Greener’ civil aviation using air-to-air refuelling—Relating aircraft design efficiency and tanker offload efficiency.
Aeronaut. J. (1968) 2007, 111, 589–592. [CrossRef]

https://www.cqu.edu.au/eresearch/high-performance-computing
https://www.pwc.com/gx/en/communications/pdf/communications-review-july-2017.pdf
https://www.pwc.com/gx/en/communications/pdf/communications-review-july-2017.pdf
http://doi.org/10.1109/ACCESS.2018.2817799
http://dx.doi.org/10.1109/COMST.2019.2906228
http://dx.doi.org/10.1109/JPROC.2019.2952892
http://dx.doi.org/10.1109/MWC.2018.1800023
http://dx.doi.org/10.1109/JIOT.2018.2887086
http://dx.doi.org/10.1109/TVT.2020.3001403
http://dx.doi.org/10.1109/TMC.2015.2467381
http://dx.doi.org/10.1109/LWC.2017.2776922
http://dx.doi.org/10.1109/TWC.2014.2343219
http://dx.doi.org/10.1109/IROS.2015.7353711
http://dx.doi.org/10.1109/TCOMM.2017.2676103
http://dx.doi.org/10.1109/MWC.2019.1800378
http://dx.doi.org/10.1109/TAES.1969.309867
http://dx.doi.org/10.1109/JPROC.2013.2253062
http://dx.doi.org/10.1109/JPROC.2013.2246132
http://dx.doi.org/10.1109/WCSP.2017.8170970
http://dx.doi.org/10.1016/j.icte.2019.12.002
http://dx.doi.org/10.1017/S0001924000001858


Drones 2021, 5, 89 14 of 15

23. Federal Communications Commission. FCC-Use of Spectrum Bands Above 24 GHz For Mobile Radio Services. 2016. Available
online: https://apps.fcc.gov/edocs_public/attachmatch/FCC-16-89A1.pdf (accessed on 7 July 2021).

24. Hoseini, S.A.; Bokani, A.; Hassan, J.; Salehi, S.; Kanhere, S.S. Energy and Service-Priority aware Trajectory Design for UAV-BSs
using Double Q-Learning. In Proceedings of the 2021 IEEE 18th Annual Consumer Communications Networking Conference
(CCNC), Las Vegas, NV, USA, 9–12 January 2021; pp. 1–4. [CrossRef]

25. Bushnaq, O.M.; Kishk, M.A.; Celik, A.; Alouini, M.S.; Al-Naffouri, T.Y. Optimal Deployment of Tethered Drones for Maximum
Cellular Coverage in User Clusters. IEEE Trans. Wirel. Commun. 2021, 20, 2092–2108. [CrossRef]

26. Lee, D.; Zhou, J.; Lin, W.T. Autonomous battery swapping system for quadcopter. In Proceedings of the 2015 International
Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 118–124. [CrossRef]

27. Shukla, H. This Wireless Power Technology Could Change New Zealand’s Transmission System. 2020. Available online:
https://mercomindia.com/this-wireless-new-zealand-transmission-system/ (accessed on 23 June 2021).

28. Delbert, C. The Dawn of Wireless Electricity Is Finally Upon Us. Here’s How New Zealand Will Do It. 2021. Available online:
https://www.popularmechanics.com/science/a33522699/wireless-electricity-new-zealand/ (accessed on 23 June 2021).

29. Boyle, A. PowerLight Is Hitting Its Targets with a Power Beaming System That Uses Lasers. 2021. Available online: https:
//www.geekwire.com/2021/powerlight-hitting-targets-power-beaming-system-uses-laser-light/ (accessed on 23 June 2021).

30. Bennett, T. TransGrid Deploys Drones to Perform Power Line Work. 2020. Available online: https://www.itnews.com.au/news/
transgrid-deploys-drones-to-perform-power-line-work-559095 (accessed on 23 June 2021).

31. Wing. Available online: https://wing.com/en_au/australia/canberra/ (accessed on 23 June 2021).
32. Metz, C. Police Drones Are Starting to Think for Themselves. 2020. Available online: https://www.nytimes.com/2020/12/05

/technology/police-drones.html (accessed on 23 June 2021).
33. Banga, B. Global Autonomous Drone Wireless Charging and Infrastructure Market to Reach $249.3 Million by 2024. 2020.

Available online: https://www.bloomberg.com/press-releases/2020-01-07/global-autonomous-drone-wireless-charging-and-
infrastructure-market-to-reach-249-3-million-by-2024 (accessed on 23 June 2021).

34. Hassan, J.; Bokani, A.; Kanhere, S.S. Recharging of Flying Base Stations using Airborne RF Energy Sources. In Proceedings of the
2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW), Marrakech, Morocco, 15–18 April 2019;
pp. 1–6. [CrossRef]

35. Hoseini, S.A.; Hassan, J.; Bokani, A.; Kanhere, S.S. Trajectory Optimization of Flying Energy Sources using Q-Learning to Recharge
Hotspot UAVs. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 683–688. [CrossRef]

36. Xu, J.; Bi, S.; Zhang, R. Multiuser MIMO Wireless Energy Transfer With Coexisting Opportunistic Communication. IEEE Wirel.
Commun. Lett. 2015, 4, 273–276. [CrossRef]

37. Xu, J.; Zhang, R. A General Design Framework for MIMO Wireless Energy Transfer with Limited Feedback. IEEE Trans. Signal
Process. 2016, 64, 2475–2488. [CrossRef]

38. Wang, Y.; Liu, A.; Xu, K.; Xia, X. Energy and Information Beamforming in Airborne Massive MIMO System for Wireless Powered
Communications. Sensors 2018, 18, 3540. [CrossRef]

39. Tse, D.; Viswanath, P. Chapter 07: MIMO I : Spatial Multiplexing and Channel Modeling; Fundamentals of Wireless Communication;
Cambridge University Press: Cambridge, UK, 2005; pp. 290–331.

40. Hoseini, S.A.; Ding, M.; Hassan, M.; Chen, Y. Analyzing the Impact of Molecular Re-Radiation on the MIMO Capacity in
High-Frequency Bands. IEEE Trans. Veh. Technol. 2020, 69, 15458–15471. [CrossRef]

41. Hamdy, M.N. Beamformers Explained. 2020. Available online: https://www.commscope.com/globalassets/digizuite/542044
-Beamformer-Explained-WP-114491-EN.pdf (accessed on 7 July 2021).

42. Agrawal, T.; Srivastava, S. Two element MIMO antenna using Substrate Integrated Waveguide (SIW) horn. In Proceedings of the
2016 International Conference on Signal Processing and Communication (ICSC), Noida, India, 26–28 December 2016; pp. 508–511.
[CrossRef]

43. Aoki, T.; Yuan, Q.; Quang-Thang, D.; Okada, M.; Hsu, H.M. Maximum transfer efficiency of MIMO-WPT system. In Proceedings
of the 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, 3–7 June 2018; pp. 1–3.

44. Carvalho, A.; Carvalho, N.; Pinho, P.; Goncalves, R. Wireless power transmission and its applications for powering Drone. In
Proceedings of the 8th Congress of the Portuguese Committee of URSI, Lisbon, Portugal, 28 November 2014.

45. Brown, W.C. The history of wireless power transmission. Sol. Energy 1996, 56, 3–21. [CrossRef]
46. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
47. MathWorks. Proximal Policy Optimization Agents. Available online: https://www.mathworks.com/help/reinforcement-

learning/ug/ppo-agents.html (accessed on 30 May 2021).
48. Yan, C.; Xiang, X.; Wang, C. Towards Real-Time Path Planning through Deep Reinforcement Learning for a UAV in Dynamic

Environments. J. Intell. Robot. Syst. 2019, 98, 297–309. [CrossRef]
49. Yijing, Z.; Zheng, Z.; Xiaoyi, Z.; Yang, L. Q learning algorithm based UAV path learning and obstacle avoidence approach. In

Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 3397–3402.

https://apps.fcc.gov/edocs_public/attachmatch/FCC-16-89A1.pdf
http://dx.doi.org/10.1109/CCNC49032.2021.9369472
http://dx.doi.org/10.1109/TWC.2020.3039013
http://dx.doi.org/10.1109/ICUAS.2015.7152282
https://mercomindia.com/this-wireless-new-zealand-transmission-system/
https://www.popularmechanics.com/science/a33522699/wireless-electricity-new-zealand/
https://www.geekwire.com/2021/powerlight-hitting-targets-power-beaming-system-uses-laser-light/
https://www.geekwire.com/2021/powerlight-hitting-targets-power-beaming-system-uses-laser-light/
https://www.itnews.com.au/news/transgrid-deploys-drones-to-perform-power-line-work-559095
https://www.itnews.com.au/news/transgrid-deploys-drones-to-perform-power-line-work-559095
https://wing.com/en_au/australia/canberra/
https://www.nytimes.com/2020/12/05/technology/police-drones.html
https://www.nytimes.com/2020/12/05/technology/police-drones.html
https://www.bloomberg.com/press-releases/2020-01-07/global-autonomous-drone-wireless-charging-and-infrastructure-market-to-reach-249-3-million-by-2024
https://www.bloomberg.com/press-releases/2020-01-07/global-autonomous-drone-wireless-charging-and-infrastructure-market-to-reach-249-3-million-by-2024
http://dx.doi.org/10.1109/WCNCW.2019.8902900
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162834
http://dx.doi.org/10.1109/LWC.2015.2407357
http://dx.doi.org/10.1109/TSP.2016.2526965
http://dx.doi.org/10.3390/s18103540
http://dx.doi.org/10.1109/TVT.2020.3041488
https://www.commscope.com/globalassets/digizuite/542044-Beamformer-Explained-WP-114491-EN.pdf
https://www.commscope.com/globalassets/digizuite/542044-Beamformer-Explained-WP-114491-EN.pdf
http://dx.doi.org/10.1109/ICSPCom.2016.7980633
http://dx.doi.org/10.1016/0038-092X(95)00080-B
https://www.mathworks.com/help/reinforcement-learning/ug/ppo-agents.html
https://www.mathworks.com/help/reinforcement-learning/ug/ppo-agents.html
http://dx.doi.org/10.1007/s10846-019-01073-3


Drones 2021, 5, 89 15 of 15

50. Challita, U.; Saad, W.; Bettstetter, C. Deep reinforcement learning for interference-aware path planning of cellular-connected
UAVs. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May
2018; pp. 1–7.

51. SchulmanOleg, J.; WolskiPrafulla, K.; Radford, D. Proximal Policy Optimization. 2017. Available online: https://openai.com/
blog/openai-baselines-ppo/ (accessed on 15 August 2021).

https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/

	Introduction
	Related Works
	System Description
	UAVs Recharging Architecture
	Proposed Trajectory Selection Algorithm

	Performance Evaluation
	Simulation Setup
	Results

	Conclusions and Future Work
	References

