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Abstract: With the development of photogrammetry technologies, point clouds have found a wide
range of use in academic and commercial areas. This situation has made it essential to extract
information from point clouds. In particular, artificial intelligence applications have been used to
extract information from point clouds to complex structures. Point cloud classification is also one
of the leading areas where these applications are used. In this study, the classification of point
clouds obtained by aerial photogrammetry and Light Detection and Ranging (LiDAR) technology
belonging to the same region is performed by using machine learning. For this purpose, nine popular
machine learning methods have been used. Geometric features obtained from point clouds were
used for the feature spaces created for classification. Color information is also added to these in
the photogrammetric point cloud. According to the LiDAR point cloud results, the highest overall
accuracies were obtained as 0.96 with the Multilayer Perceptron (MLP) method. The lowest overall
accuracies were obtained as 0.50 with the AdaBoost method. The method with the highest overall
accuracy was achieved with the MLP (0.90) method. The lowest overall accuracy method is the GNB
method with 0.25 overall accuracy.

Keywords: photogrammetry; LiDAR; point cloud; classification; machine learning; UAV

1. Introduction

Extraction of information from three-dimensional (3D) data has become a popular
research area in photogrammetry, remote sensing, computer vision and robotics. Classifi-
cation is defined as the grouping of points under a meaningful cluster by evaluating the
particular properties. Classification of point clouds is a challenging field of study, due to
their complex structure. In remote sensing, photogrammetric methods, Light Detection and
Ranging (LiDAR) systems, Red Green Blue Depth (RGB-D) cameras and Synthetic Aper-
ture Radar (SAR) are methods used to obtain point clouds [1,2]. Point clouds provide rich
geometric information for land use land cover applications [3,4] due to their 3D structure.

Machine learning is defined as a mathematical tool for classification of the complex
content of point clouds, as in 2D optical images. In machine learning algorithms, classifica-
tion rules are learned automatically using training data, rather than defined as parameters
based on predetermined rules and strong assumptions. Much of the challenging design in a
rule-based classification technique is avoided due to automatic feature selection in machine
learning. Therefore, machine learning methods are more appropriate than traditional
classification methods for complex point cloud data [5].

Many studies have been published in the literature on the use of geometric features for
point cloud classification. Weinmann et al. [6] published a comprehensive study on using
different geometric features for point cloud classification, choosing the most appropriate
neighbourhood and different classifiers. Among these features, the features that positively
affect the accuracy have been selected using specific feature selection methods. Oakland
3D Point Cloud Dataset [7], comprising mobile laser scanning data, and Paris-rue-Lille
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Database [8], which uses the same type of data, were used as the data set. In the study
conducted by Vosselman et al. [9], 19 geometric feature features were used. Vaihingen
and Rotterdam datasets of the International Society for Photogrammetry and Remote
Sensing were used as the dataset. The classification method is Conditional Random
Field. As a result of the study, group-based classification has higher accuracy than point-
based classification. Guo et al. [5] proposed an ensemble learning method known as
JointBoost; ensemble learning methods create a robust classifier by combining multiple
weak classifiers. In the first step of the classification, classification is made with the
JointBoost method. In the second step, unreliable or mis-classified points are reclassified by
using the K-Nearest Neighbour method. Thus, an improvement was achieved as a result
of the classification. In the study published by Cabo et al. [10], controlled classification
was applied in forest and residential areas. In the study, five geometric features were used
from the point cloud: linearity, flatness, sphericity, horizontality and height change. Some
popular supervised classification algorithms were used, such as Support Vector Machines
(SVM), Random Forest (RF), Logistic Regression, and linear discriminant analysis. In
another study published by Becker et al. [11], a controlled classification of point clouds
was applied using geometric features. In the study, besides the 15 geometric properties,
the color information of the points is added to the feature space, while RF and Gradient
Increment Trees were selected as the classifier algorithm. The classes targeted as a result of
the classification are ground, higher plants, roads, cars, buildings and manmade objects in
a photogrammetric point cloud. In the study conducted by Lin et al. [12], the aerial point
cloud was classified by using SVM according to three geometric features: linearity, flatness,
and sphericity. The proposed method aimed at increasing the classification accuracy
by weighting the covariance matrix used in the calculation, and the targeted classes are
divided into buildings and outdoor structures. In the study of Chen et al. [13], both spectral
information and 3D spatial information of LiDAR data were used. In the study, a two-stage
classification process was carried out to remove noise that reduces classification accuracy.
In the first stage, classification based on spectral information was applied using spectral
reflection or vegetation index. In the second stage, classification based on spatial data was
carried out using the K-Nearest Neighbors (K-NN) algorithm. Atik et al. [14] published a
comprehensive study on the performance of eight supervised machine learning methods
using geometric features. In the study, the effect of the support area obtained in different
scales on the classification accuracy was examined. Moreover, the importance of geometric
features was examined according to the data and scale. Dublin City, Oakland3D and
Vaihingen data sets obtained with LiDAR were used in the study. Reymann et al. [15]
evaluated how multiple echo and intensity information in datasets obtained by LiDAR
technology can improve scene classification performance. The density information of the
LiDAR data was interpreted, and geometric features were obtained by using Euclidean
distances. In addition, a supervised classification process was performed with the Random
Forest algorithm by using the density feature and multi-eco features. In the study published
by Atik and Duran [16], photogrammetric point cloud classification was made with the
popular recurrent neural network algorithms LSTM and BiLSTM, and was carried out
on a new photogrammetric dataset proposed in the study. In the classification, not only
geometric features but also color information was used; thus, the effect of color information
was also examined. The F-1 score building, low vegetation, high vegetation and ground
was obtained as 0.85, 0.91, 0.67 and 0.86, respectively.

In this study, point clouds obtained from two different sensors (UAV camera and
LiDAR) belonging to the same region were classified by different machine learning methods.
Thus, it was possible to compare the classification results of point clouds under the same
conditions. In this aspect, the study fills an existing gap in the literature. Nine machine
learning algorithms were applied for classification purposes: Logistic Regression (LR),
linear discriminant analysis (LDA), K-Nearest Neighbors (K-NN), decision tree (DTC),
gaussian Naïve Bayes (GNB), Multilayer Perceptron (MLP), AdaBoost (ADB), Random
Forest (RF) and Support Vector Machines (SVM). A total of 22 geometric features of the
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point clouds were calculated and the feature spaces of the points were formed. In the
photogrammetric point cloud, color information is also included in the feature space.
Random points belonging to different classes selected from the study area were used as
training and test data. The points chosen from the point cloud are divided into four classes
as building, ground, high vegetation and low vegetation. The usage of geometric features
in the classification of point clouds obtained from different sensors has been investigated.

2. Materials and Methods
2.1. Study Area and Data

Istanbul Technical University, Ayazaga Campus, was chosen as the study area. Ayazaga
Campus is a campus in Maslak, Istanbul, covering an area of 1,600,000 square meters
(Figure 1). The campus includes many different buildings across wooded and grassy areas.
The 3D point cloud model of the campus was obtained with an aerial laser scanning system.
The accuracy of LiDAR was calculated with 23 ground control points (see Section 2.2. Pho-
togrammetric Process). The horizontal and vertical accuracy of the LiDAR data are about
±8 cm. The average point density of the data is 16 points/m2 (Figure 2a). Furthermore,
100,000 points were selected for each class from the objects determined in the LiDAR point
cloud. Training and testing were applied with these points.
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In this study, DJI Phantom 4 Pro UAV platform is used to capture the high-resolution im-
ages in Istanbul Technical University Ayazaga Campus. The camera captures a 5472 × 3648
pixels image size with a horizontal field of view (FOV) of 84 degrees, while the image
has three visible (RGB) bands. The camera has 20 µm of pixel size and 8.8 mm of the
focal length of the lenses. Flight planning was created with Pix4Dcapture mobile phone
application. The flight parameters were determined as forward overlap 80% and side
overlaps of 70% and flown at the height of 80 m above. Therefore, Ground Sampling
Distance (GSD) is around 3 cm. A total of 3.367 aerial photographs were obtained. Selected
points from both LiDAR and photogrammetric point cloud were manually labeled. The
data distribution is given in Table 1.

Table 1. Point distribution of the classes in the datasets.

Class LiDAR Photogrammetric

Building 100,000 100,000
High vegetation 100,000 100,000
Low vegetation 100,000 100,000

Ground 100,000 100,000
Total 400,000 400,000

2.2. Photogrammetric Data Processing

Photogrammetry deals with 3D reconstruction of objects from images and provides
accurate sensor calibration and object modeling using analog or digital images [17]. The
point cloud was modeled using Agisoft Photoscan software. The software works depending
on the Structure-from-Motion (SfM) algorithm; SfM operates under the basic principles
of photogrammetry, that is, the 3D coordinates of an object are calculated by measuring
the corresponding points between two overlapping images (Figure 3). Unlike traditional
photogrammetry, SFM automatically resolves camera positions and orientation to create
object geometry without the need for a target network with predetermined 3D positions.
Camera pose and scene geometry are recreated simultaneously by automatically mapping
points in multiple images, while camera positions and object coordinates can be estimated
with the coordinates of these points obtained in each image. The initial estimated values
are then iteratively improved using non-linear least squares adjustment [18]. For this, at
least two photographs of the same object are used [19].
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In terms of alignment photographs, 3.367 aerial photos were aligned using automati-
cally detected features from each image via the software. Ground control points were then
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marked for a coordinated and scaled model. The photogrammetric point cloud georefer-
encing was carried out using 23 ground control points (GCP) whose XYZ coordinates were
measured by terrestrial measurements (using Global Navigation Satellite System (GNSS)).
The horizontal accuracy of the point cloud was 9.3 cm, and the vertical accuracy was 5.2 cm.
After the images were aligned to each other, the dense point cloud was obtained (Figure 2b).
The point cloud density is 83 pts/m2 and the spatial resolution is approximately 9 cm.
100,000 points were randomly selected from each determined class. In total, 400,000 from
the point cloud obtained by aerial photogrammetry for training and testing. The data
acquisition time is approximately 5 h and the processing time is 10 h.

2.3. Classification Methods
2.3.1. Logistic Regression (LR)

Logistic regression (LR) [20] is a probabilistic statistical classification algorithm. Logis-
tic regression applies a linear transformation is applied between the input variables and
the probabilities of the output variable. Relational hypotheses between a categorical output
variable and one or more categorical variables can be explained and tested with LR [21].
As a result, the probability of observation for a category is obtained. The mathematical
model of the LR classifier is given in Equation (1)

ln
P(Y = i)
P(Y = C)

= αi +
p

∑
j=1

β jxj (1)

where Y is the output variable, αi and βj are the coefficients of the model, and x1, x2, . . . , xp
are the covariates. Logit, which is the natural logarithm of a probability ratio, is the
basic mathematical concept of the LR. If we consider a bivariate classification, the natural
logarithm of the ratio of the case i of class Y and the case C that is equal to 1 − i, gives the
logit of the case i. This natural logarithm value is used as the regression coefficient of the
Logistic Regression classifier. Data are assigned to a class of the maximum probability:

P(Y = i|X) =
eαi+∑

j=p
i=1 β jXj

1 + eαi+∑
j=p
i=1 β jXj

(2)

2.3.2. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [22] is a linear transformation aimed at calculating
the directions of the axes that best separate multiple classes. If a vector is defined as w, all
data is projected onto this vector:

z = wtx (3)

where z is the projection of data (x) onto w and t indicates the vector transposition. In order
to separate the classes well after the projection, the average of the samples in each class
should be kept as far from each other as possible and the class samples should be distributed
to a small area as possible. It is ensured that the within-class (Si) (Equation (4)) and between-
class (SB) (Equation (5)) distribution matrices (R = Si/SB) have the maximum ratio.

Si = ∑
t

rt
i
(
xt −mi

)(
xt −mi

)t (4)

SB =
K

∑
i=1

Ni(mi −m)(mi −m)t (5)

where mi is the means of samples from class i and m is the sum of mi. The algorithm assigns
elements to each class by maximizing R. The problem is solved with the largest eigenvectors
S−1

W SB, where Sw is the sum of the within-class distribution matrix. According to LDA,
attributes (input or explanatory variables) are distributed continuously and normally, and
the dependent output variable is categorical [10].
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2.3.3. K-Nearest Neighbors (K-NN)

K-Nearest Neighbors (K-NN) classifier is an example-based learning type because a
data-dependent internal model is not developed. [23]. The K-NN, which is a nonparametric
method, is not limited to a fixed number of parameters. Since K-NN does not have initial
parameters, it creates and applies a function based on training data. K-NN is advantageous
over other methods as it can explain the result of the classification of neighbours.

For each data in the X input data set, the closest neighbouring points are found.
Neighbouring points are weighted in inverse proportion to the Euclidean distance between
them and the query point. The majority class in the neighbourhood area is assigned
as the class of the input x. In application of the K-NN method, K is usually taken as a
single number to minimize confusion between classes because confusion generally occurs
between two neighbouring classes.

2.3.4. Decision Tree Classifier (DTC)

The decision tree is an algorithm that calculates parameters for each part by dividing
the input space into subparts. Decision tree is a nonparametric classification and regression
algorithm. It consists of nodes that divide each part of the decision tree into subparts. If
there is a decision tree of undetermined size, the algorithm can be thought of as nonpara-
metric [24]. The decision tree also has some disadvantages. In some cases, it can create
complex decision trees. Decision trees can be unstable as small changes in the data are
affected. However, it is preferred due to its ease of calculation.

2.3.5. Naïve Bayes (NB)

The basic logic of Naïve Bayes classifier works by calculating a separator function for
each class and assigning an example to the class in which the function gets the maximum
value [25]. fi(E) indicates the discriminant function corresponding to the ith class. The
discriminant function for a feature vector a can be written as:

fi(E) = P(Ci)
a

∏
j=1

P
(

Aj = vjk

∣∣∣Ci

)
(6)

where Aj is a feature and vjk is the value of the feature Aj. The classifier that estimates the
relevant probabilities in the training set using this discriminant function is often called
the Naïve Bayes classifier [26]. NB classifier is defined as a probabilistic method based on
Bayes’ theorem that studies the probability relationship between a given data point x and
class C. (Equation (7)) [27].

P(C |x ) = P(x|C)
P(x)

(7)

Gauss Naïve Bayes (GNB), the most used Naïve Bayes classifier, applies the classifica-
tion assuming the probability of the properties to be Gaussian [28]. The formulation is as
in Equation (8):

P(x i|C) =
1√

2πσ2
C

exp

(
− (xi − µC)

2

2σ2
C

)
(8)

2.3.6. Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) is a supervised learning method that learns a function by
training on a dataset. Multilayer Perceptron can be used to solve non-linear classification
problems [28]. Thus, it differs from Logistic Regression [29]. In the MLP, there is a forward
and backward propagation between layers. While calculating the output and error value of
the network in the forward propagation phase, the connection weight values are updated
to minimize the error value in the back-propagation phase.
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The value x is given to the input layer. “Activation” moves forward and zh values
are calculated in hidden layers. Hidden layer units, each of them a detector, apply the
non-linear sigmoid function to weighted sum:

zh = sigmoid
(

wT
h x
)
=

1

1 + exp
[
−(∑d

j whjxj + wh0)
] (9)

The sensors in this section calculate yi values in the output layer using the calculated
values in hidden layers as input values. [28].

yi = vt
iz =

H

∑
h=1

vihzh + vi0 (10)

where zh is the bias weights in the hidden layer and vi0 is the bias weights. vih are the
weights in the second layer. Although there is no non-linearity in the outputs of the y
calculation in regression problems, the results of the discriminant functions are non-linear
when K > 2 (K is the number of classes).

2.3.7. Adaboost (ADB)

Boosting methods combine weak classifiers to create a robust classifier. In boosting,
complementary basic classifiers are actively created by training the next classifier about the
errors of the previous classifiers [28].

AdaBoost is a machine learning meta-algorithm formulated by Freund and Schapire [30].
AdaBoost is used effectively with weak classifiers. The most convenient and common
algorithm used with AdaBoost is single-level decision trees. These trees are often called
decision logs because they are so short and only contain a decision for classification. Each
example in the training dataset is weighted (Equation (11)).

weight(xi) =
1
n

(11)

xi represents each part of the data in the training set, and n is the total number of data.
For training purposes, weak classifiers are added separately and trained with weighted
training data. The process continues until a predetermined number of weak classifiers (user
parameters) are created or no further improvements can be made in the training dataset.
The estimates are made by calculating the weighted average of the weak classifiers.

2.3.8. Random Forest (RF)

Random Forest [31] is an advanced version of bagging that creates and averages
individual trees. Each tree in the Random Forest gives a class prediction, and the highest-
scoring class is assigned as the model’s prediction. RF allows random sampling of each
tree from the dataset through a modification process known as bagging. Bagging increases
accuracy when using random features and determines generalized error (PE*) estimates of
the community. RF classifier needs two basic parameters: the number of variables used in
each node and the number of trees to be developed to determine the best split. As a result
of these operations, a generalized error is obtained. The generalized error calculation is
shown in Equation (12).

PE∗ = PX,Y(mg(X, Y) < 0) (12)

where mg() is the margin function. Margin measures the difference in the average number
of votes in (X, Y) for the correct class from the average number of votes for any other class.
The size of the margin value indicates the reliability of the classification [12].

2.3.9. Support Vector Machines (SVM)

Support Vector Machines (SVM) [32] is a popular supervised machine learning algo-
rithm used in classification or regression. SVM aims to find a plane that has the maximum
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distance between data points of two classes. The distance is called the maximum margin.
Maximizing the margin distance allows the data points to be classified as more secure.

In addition to linear classification, SVMs can perform a non-linear classification using
functions called kernel tricks by indirectly mapping their inputs to high-dimensional
feature fields. Linear boundaries in the extended field provide better class separation
and become non-linear boundaries with kernel tricks. Nonlinearly separable input data
is displayed in a high-dimensional feature space. Extending to more complex decision
surfaces works by mapping the input variable x to a higher dimensional property area
and making linear classification in that area. Input variable x maps to a vector of the new
property space (Equation (13)).

x → ∅(x) = (a1∅(x) , a2∅2(x), . . . , an∅n(x)) (13)

The solution of a two-class problem with the kernel trick can be mathematically
expressed as;

f (x) = sign

(
∑

i
λiyi∅(x).∅(xi) + b

)
(14)

where λi are the non-negative Lagrange multiplier, yi denotes the class of the input data
and b is the parameter of the hyper-plane.

2.4. Geometric Features

Geometric features are widely used to describe the local geometry of LiDAR points.
These features determine the geometric relationship of a point to points in a given area
around it. Depending on a specified scale, these geometric features can be determined.
Geometric features of any point p of the point cloud are obtained by using the eigenvalues
(λ1, λ2, λ3) of the eigenvectors (v1, v2, v3) derived from the covariance matrix:

cov(S) =
1
S ∑

p∈S
(p− p )(p− p )t (15)

where p is the centroid of the support S. In this study, many values are calculated as
geometric features such as roughness, curvatures (mean, gaussian, normal change rate),
number of neighbours, surface density, volume density, 1st order moment, the sum of
eigenvalues, omnivariance, eigenentropy, anisotropy, planarity, linearity, surface variation,
sphericity, verticality, PCA1, PCA2, eigenvalues (λ1, λ2, λ3) (Table 2). Optimum radius was
selected because geometric features are calculated depending on the support area [6]. The
feature computation time is 240 s and 15 s for photogrammetric point cloud and LiDAR
point cloud, respectively.

2.5. Experiment

Cloud Compare, open-source software, was used for calculating 22 geometric features
for both the LiDAR point cloud and the photogrammetric point cloud. The support area
is an important parameter in calculating geometric features. Support area refers to the
area in which neighbour points of a point are determined. In this study, 0.5 m within the
LiDAR point cloud and 0.05 m for the photogrammetric point cloud were experimentally
determined as the optimum support radius. The workflow of the study is presented in
Figure 4.

Due to the size of the point clouds, it was not possible to use all points as inputs in
machine learning algorithms. For this reason, random selection was made from the data
sets, with the same number of items in each class. Thus, errors arising from unbalanced data
distribution in classes are prevented. The same number of random and homogeneously
distributed point selection procedures was performed for the four classes defined (surface,
dense woodland, green area, and structure). 100,000 points were chosen from each class.
Random 1/3 test data was selected from this prepared data set. Other points are separated
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as training data set. In the study, point clouds were classified using nine machine learning
algorithms: LR, LDA, K-NN, DTC, GNB, MLP, ADB, RF, SVM. The algorithms were
trained using training data. The optimum values of the parameters of the algorithms were
determined experimentally (see Section 4). Algorithms were developed and implemented
through the Python programming language. Scikit-learn, a popular library developed in
the Python language, was used.

Table 2. Geometric features used in the study.

Feature Explanation Feature Explanation

1st eigenvalue λ1 PCA1 λ1/(λ1 + λ2 + λ3)
2st eigenvalues λ2 PCA2 λ2/(λ1 + λ2 + λ3)
3st eigenvalue λ3 Height value Zi

Sum of eigenvalues λ1 + λ2 + λ3 Surface density Number of neighbour/neighbourhood area

Anisotropy (λ1 − λ3)/λ1 Volume density Number of
neighbour/neighbourhood volume

Planarity (λ2 − λ3)/λ1 Number of neighbours

Other features

Linearity (λ1 − λ2)/λ1 1st order moment
Surface variation λ3/(λ1 + λ2 + λ3) Roughness

Sphericity λ3/λ1 Mean curvature
Verticality 1− |〈[0 0 1], λ3〉| Gaussian curvature

Normal change rate
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Overall Accuracy is metric that measures the proportion of points correctly classified.
Metric values obtained in machine learning are calculated with a confusion matrix. The
equations of the metrics are shown in Equations (16)–(19).

Overall Accuracy =
TP + TN

TP + TN + FP + TN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1 score = 2
Precision · Recall
Precision + Recall

(19)

True positive (TP) is the number of points that are predicted to be labeled as positive
and the actual label is positive. True negative (TN) is the number of points that are predicted
to be labeled as negative and the actual label is negative. False positive (FP) is defined as
the number of points that are predicted to be labeled as positive, but the actual label is
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negative. False negative (FN) is defined as the number of points that are predicted to be
labeled as negative, but the actual label is positive [33]. These metrics allow us to pinpoint
what types of misclassifications occur. Thus, it is possible to detect more accurately the
situations that cause errors in the classification.

3. Results

Machine learning algorithms have been applied to the LiDAR dataset and the pho-
togrammetric point cloud dataset. Thus, the performance of machine learning algorithms
in the classification of point clouds obtained by different methods was examined. Overall
accuracy, precision, recall and F1 score were calculated as classification evaluation metrics
of these models. The points in the datasets split training and testing. 70% of the points
used for training and 30% of the point was used for testing. A balanced distribution of test
and training data was provided for each class.

According to the data obtained from the LiDAR point cloud, the highest overall
accuracies were obtained as 0.96 with the MLP method and 0.95 with the K-NN method.
The lowest general accuracies were obtained as 0.50 with AdaBoost method. It has been
concluded that AdaBoost algorithm gives dramatically lower accuracy compared to other
methods. The method with the highest precision, recall and F1 score is again the MLP
method with values of 0.96, 0.96 and 0.96, respectively. The method with the lowest
precision, recall, F1 score is the AdaBoost method with values of 0.30, 0.50 and 0.38,
respectively. The results of the methods in the LiDAR dataset are shown in Table 3.

Table 3. The results of the LiDAR point cloud for each algorithm. The results were between 0–1.

Algorithm Accuracy Precision Recall F1 Score Computation Time (Seconds)

LR 0.87 0.87 0.87 0.87 2.8
LDA 0.79 0.80 0.79 0.80 0.4

K-NN 0.95 0.96 0.95 0.95 1.2
DTC 0.89 0.90 0.89 0.89 0.4
GNB 0.80 0.83 0.80 0.81 0.05
MLP 0.96 0.96 0.96 0.96 135.3
ADB 0.50 0.30 0.50 0.38 3.8
RF 0.91 0.92 0.91 0.92 1.0

SVM 0.91 0.91 0.91 0.91 28.2

It is concluded that the results in the photogrammetric point cloud dataset generally
show a decrease in the evaluation metrics. The method with the highest general accuracy
was achieved with the MLP (0.90) method, as in the LiDAR dataset. The second method
with the highest overall accuracy is the Logistic Regression method, with an accuracy of
0.84. The lowest overall accuracy method is the GNB method with 0.25 of overall accuracy.
Additionally, compared with the LiDAR dataset, it is observed that there is a very high
increase in the AdaBoost method with 0.76 of overall accuracy. The highest precision and
recall values were obtained with the MLP method with 0.90 and 0.90, respectively. The
lowest precision and recall values were obtained with the GNB method with 0.31 and
0.25, respectively. Similarly, in the F1 score value, the best result was obtained with the
MLP method as 0.90, while the lowest value was obtained as 0.28 with the GNB method
(Table 4). In all methods except the AdaBoost method, higher metrics were obtained in the
LiDAR point cloud. Comparative results are shown in Figure 5.

The results were also analyzed for each class. The best precision values for the
building class in the Lidar dataset were obtained by the MLP and K-NN methods. These
two methods detect all buildings as positive. However, the MLP method has the highest
recall value of 0.99. According to the F1 score, the building class is determined with the
highest accuracy by the MLP method. The AdaBoost method has the lowest metrics for
finding the building class. In the AdaBoost method, the building points are generally
mixed with the ground points. Therefore, almost no building points have been detected



Drones 2021, 5, 104 11 of 16

correctly. In the Forest class, the method with the highest accuracy is K-NN with 0.93
and the method with the lowest F1 value is the AdaBoost method with a value of 0.67.
Algorithms are more successful in detecting the ground class than other classes. In low
vegetation class, RF method (0.94) has the highest precision value, LDA method (0.99) in
recall value and K-NN method (0.94) in F1 score (Tables 5–10).

Table 4. The results of the photogrammetric point cloud for each algorithm. The results were
between 0–1.

Algorithm Accuracy Precision Recall F1 Score Computation Time (Seconds)

LR 0.84 0.84 0.84 0.84 2.8
LDA 0.79 0.79 0.79 0.79 0.4

K-NN 0.83 0.83 0.83 0.83 1.2
DTC 0.79 0.79 0.79 0.79 0.4
GNB 0.25 0.31 0.25 0.28 0.05
MLP 0.90 0.90 0.90 0.90 135.3
ADB 0.76 0.76 0.76 0.76 3.8
RF 0.78 0.81 0.78 0.80 1.0

SVM 0.81 0.83 0.81 0.82 28.2
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In both data sets, the duration of the algorithms during the classification is recorded
in seconds. While the algorithm that produces the fastest results in the data set obtained
from LIDAR technology is the K-Nearest Neighbours (K-NN) algorithm, the algorithm
that produces results in the longest time is the Support Vector Machine (SVM) algorithm.
In the data set obtained from air photogrammetry, the algorithm that produces the fastest
results is the K-NN algorithm, as in LIDAR, and the algorithm with the longest duration is
the SVM algorithm (Figure 6).
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Table 5. The precision values for each class in LiDAR dataset. The results were between 0–1.

LR LDA K-NN DTC GNB MLP ADB RF SVM

Building 0.88 0.71 1.00 0.94 0.94 1.00 0.2 0.93 0.98
High vegetation 0.92 0.98 0.98 0.74 0.91 0.95 0.5 0.81 0.93
Ground 0.82 0.71 0.95 1.00 0.77 1.00 0.5 1.00 0.87
Low vegetation 0.86 0.81 0.89 0.92 0.69 0.9 0.00 0.94 0.88

Table 6. The recall values for each class in LiDAR dataset. The results were between 0–1.

LR LDA K-NN DTC GNB MLP ADB RF SVM

Building 0.8 0.71 0.95 1.00 0.69 0.99 0.00 0.93 0.84
High vegetation 0.85 0.76 0.88 0.94 0.57 0.89 1.00 0.81 0.87
Ground 0.88 0.71 1.00 0.94 0.97 1.00 1.00 1.00 0.98
Low vegetation 0.93 0.99 0.98 0.67 0.96 0.95 0.00 0.94 0.94

Table 7. The F1-score values for each class in LiDAR dataset. The results were between 0–1.

LR LDA K-NN DTC GNB MLP ADB RF SVM

Building 0.84 0.71 0.97 0.97 0.8 0.99 0.00 0.96 0.9
High vegetation 0.88 0.86 0.93 0.83 0.7 0.92 0.67 0.87 0.9
Ground 0.85 0.71 0.98 0.97 0.86 1.00 0.67 1.00 0.92
Low vegetation 0.89 0.89 0.94 0.77 0.81 0.92 0.00 0.85 0.91

Table 8. The precision values for each class in the photogrammetric point cloud. The results were
between 0–1.

LR LDA K-NN DTC GNB MLP ADB RF SVM

Building 0.77 0.67 0.78 0.70 1.00 0.87 0.63 0.61 0.65
High vegetation 0.85 0.80 0.77 0.80 0.00 0.93 0.71 0.83 0.85
Ground 0.82 0.81 0.84 0.86 0.25 0.85 0.84 0.94 0.86
Low vegetation 0.91 0.89 0.91 0.82 0.00 0.94 0.88 0.87 0.94

Table 9. The recall values for each class in the photogrammetric point cloud. The results were
between 0–1.

LR LDA K-NN DTC GNB MLP ADB RF SVM

Building 0.74 0.68 0.68 0.76 0.00 0.81 0.64 0.86 0.82
High vegetation 0.82 0.79 0.84 0.70 0.00 0.90 0.74 0.72 0.79
Ground 0.87 0.80 0.89 0.80 1.00 0.93 0.83 0.65 0.78
Low vegetation 0.93 0.91 0.89 0.89 0.00 0.95 0.84 0.91 0.86

Table 10. The F1 score values for each class in the photogrammetric point cloud. The results were
between 0–1.

LR LDA K-NN DTC GNB MLP ADB RF SVM

Building 0.75 0.68 0.73 0.73 0.00 0.84 0.63 0.72 0.73
High vegetation 0.84 0.79 0.80 0.75 0.00 0.91 0.72 0.77 0.82
Ground 0.85 0.80 0.87 0.83 0.40 0.89 0.84 0.77 0.82
Low vegetation 0.92 0.90 0.90 0.85 0.00 0.95 0.86 0.89 0.89
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4. Discussion

The performances of machine learning algorithms on LiDAR and photogrammetric
point clouds were compared. Generally, algorithms appear to have higher metrics in the
LiDAR point cloud. Geometric features are calculated more accurately since the number of
unrelated points in point support areas is less.

Hyperparameters are parameters that can be optimized during the training process of
the model. The selection of the optimum hyperparameters is important because of their
impact on the performance of the classification algorithm. In the study, random search
method was used for the selection of suitable hyperparameters. This method was first
announced in an article published by Bergstra and Bengio (2012) [34]. The method is
based on the determination of the hyperparameter range using the prior knowledge of
the problem. Then, instead of trying each of the values in this range, random values are
selected for finding the most appropriate value for the hyperparameters. In the K-NN
method, the appropriate neighbour size was determined by this method. As another
hyperparameter example, “Adam” is used for the optimization of the weights in the MLP
algorithm. The reason for this is that Adam is a stochastic gradient-based optimizer, which
achieves good success on large datasets.

According to the results, it was concluded that the GNB method shows a lower
performance in noisy data (Tables 8–10). The LiDAR point cloud has a lower density than
the photogrammetric point cloud. Since the AdaBoost algorithm is an ensemble method
consisting of weak classifiers, it is understood that the geometric features calculated from
the support fields in the LiDAR dataset are not distinctive enough for AdaBoost (Tables 5–7).
MLP method, which is a neural network-based method, has the highest metrics in both
datasets. These results are also compatible with previous studies [16]. It is concluded that
neural network-based classifiers have the potential for point cloud classification. SVM and
MLP methods have a long classification period for real-time applications (Figure 6). K-NN
and LR methods can be preferred for real-time applications in terms of time and accuracy
balance (Figure 6). All evaluation metrics of GNB method decreased compared to Lidar
point cloud results. The results of the methods in the photogrammetric dataset are shown
in (Table 4). While MLP and RF are the most accurate methods in the ground class, the
lowest accuracy method is the AdaBoost method. When the photogrammetric point cloud
is examined, the building class ground class is generally mixed in the GNB method. All
of the buildings are labeled as ground. The highest precision, recall and F1 score values
were obtained by MLP method. As in the building class, the highest metrics in ground,
forest and low vegetation classes were obtained with the MLP method. The method with
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the lowest metrics is GNB method. Although the value of 1 is obtained in some metrics
with the GNB method, this value is not meaningful because very few points are labeled
correctly. Class-based metric values of the photogrammetric point cloud are presented in
Tables 8–10. In this study, an original dataset was created. Users whose machine learning
methods are reproducible can repeat the experiment over the shared dataset.

Optimum neighbourhood radius selection is an important factor affecting the classifi-
cation [14]. If a large neighbourhood radius is chosen to calculate geometric features, the
computational load increases considerably and the distinctiveness of the points decreases.
If a small neighbourhood radius is chosen, the geometry around the point cannot be defined
sufficiently, so the geometric properties are similar at all points. Thus, the neighbourhood
value chosen for the photogrammetric point cloud is smaller than that of LiDAR, because
the geometry around the point can be defined with fewer points in the photogrammetric
point cloud. In order to define the geometric properties of a point correctly in LiDAR, a
larger neighbourhood area is required. Most of the methods have higher accuracy in the
LiDAR point cloud. K-NN, GNB, RF and SVM methods have high accuracy in LiDAR
point cloud that have lower point density (Table 3). ADB, which is a boosting method, has
higher accuracy in the photogrammetric point cloud (Table 4).

5. Conclusions

This study examined the performances of nine different machine learning algorithms
in the classification of point clouds obtained by LIDAR and aerial photogrammetry. As a
result of the point cloud classification process, the building, high vegetation, ground and
low vegetation were classified. In the classification process, it has been done by using the
geometric features of the data. Thus, the classification process was carried out without
additional information other than 3D coordinates of the points.

Machine learning algorithms are used to classify point clouds obtained by different
sensors. Machine learning methods have significant potential for the classification of point
clouds. This study can be carried out in areas with land use and land cover structure in
future studies. In addition to geometric features, the feature spaces can be expanded by
using LiDAR point clouds and images together. Among the machine learning methods,
especially those based on neural network (such as MLP), have shown successful results.
As data complexity increases, neural network-based methods can be used. The results of
this study have the potential to be a reference for future studies.
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