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Abstract: The overall safety of a building can be effectively evaluated through regular inspection
of the indoor walls by unmanned ground vehicles (UGVs). However, when the UGV performs line
patrol inspections according to the specified path, it is easy to be affected by obstacles. This paper
presents an obstacle avoidance strategy for unmanned ground vehicles in indoor environments.
The proposed method is based on monocular vision. Through the obtained environmental infor-
mation in front of the unmanned vehicle, the obstacle orientation is determined, and the moving
direction and speed of the mobile robot are determined based on the neural network output and
confidence. This paper also innovatively adopts the method of collecting indoor environment images
based on camera array and realizes the automatic classification of data sets by arranging cameras
with different directions and focal lengths. In the training of a transfer neural network, aiming at the
problem that it is difficult to set the learning rate factor of the new layer, the improved bat algorithm
is used to find the optimal learning rate factor on a small sample data set. The simulation results
show that the accuracy can reach 94.84%. Single-frame evaluation and continuous obstacle avoidance
evaluation are used to verify the effectiveness of the obstacle avoidance algorithm. The experimental
results show that an unmanned wheeled robot with a bionic transfer-convolution neural network as
the control command output can realize autonomous obstacle avoidance in complex indoor scenes.

Keywords: unmanned ground vehicles; transfer learning; bionic optimization; bat algorithm; obsta-
cle avoidance; indoor environment

1. Introduction

Unmanned ground vehicles (UGVs) are often used in the field of unmanned operation,
especially in repetitive and single-factory environments [1,2]. Unmanned ground vehicles
have also been gradually applied to the indoor environment. In particular, the tracking
security unmanned vehicles in indoor public places are widely used [3]. In recent years,
the application of unmanned tracking vehicles in building wall monitoring has also been
proposed [4]. As shown in Figure 1, the unmanned vehicle regularly inspects the building
wall through the sensor according to the specified track and uses the sensor information
to evaluate the building safety. However, in the complex indoor environment, unmanned
vehicles often encounter obstacles not indicated in the built-in map during operation.
How to sense obstacles in time and avoid obstacles is a hot issue in the research of indoor
tracking unmanned vehicles. Indoor obstacle avoidance research focuses on perception
and control decision-making. Firstly, the local environment is obtained by the sensor
and the obstacles are identified, then the obstacle avoidance decision is given by the
decision system, and finally, the unmanned vehicle is controlled to complete the obstacle
avoidance process.
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decision system, and finally, the unmanned vehicle is controlled to complete the obstacle 
avoidance process. 

In the research of the obstacle perception of ground unmanned vehicles, vision sen-
sors, lidar sensors, and millimeter wave radar sensors are usually used to obtain obstacle 
information. Rajashekaraiah et al. (2017) [5] used a laser rangefinder to obtain obstacle 
data and constructed a PTEM (probabilistic thread exposure map), which obtained obsta-
cle information through lidar and updated PTEM in real time to guide unmanned vehicles 
to avoid obstacles. Similarly, using the radar sensor, Yang et al. (2017) [6] proposed the 
sensor lidar to detect the obstacles in the front path. Based on the lidar data, combined 
with the vehicle position, obstacle position, vehicle operation capability, and global envi-
ronmental restrictions, the optimized path was generated, and the path was updated in 
real time through the detection data. Bhave et al. (2019) [7] applied the laser rangefinder 
to an unmanned ground vehicle (‘the rover’). The test showed that the unmanned vehicle 
can detect obstacles in front and navigate back to the base. This unmanned vehicle has 
been applied to aid intelligence, surveillance, and rehabilitation missions in adult envi-
ronments. Khan et al. (2017) [8] proposed a disparity image method based on the vision 
method. This method inferred the relationship between obstacles and robot path through 
vision and judged the contour and position of obstacles based on projection information. 
The author’s experiments showed that under the action of visual perception, the robot 
could detect obstacles of any size and shape within 80–200 cm. Levkovits-Scherer et al. 
(2019) [9] used the visual perception method for obstacle avoidance tasks, but the appli-
cation object was UAV. The front environment information of UAV was obtained through 
monocular vision, and the image was transmitted to the ground control station. The 
ground control station had a built-in convolution neural network algorithm to extract ob-
stacle information, and then transmitted the flight control command to the UAV to realize 
real-time obstacle avoidance. Similarly, using visual perception to avoid obstacles, Yu et 
al. (2020) [10] proposed an autonomous obstacle avoidance scheme based on the fusion of 
millimeter wave radar and monocular camera, and through extended Kalman filter (EKF) 
data fusion to build exact and real 3D coordinates of the obstacles. Eppenberger et al. 
(2020) [11] also used noise point cloud data generated by stereo cameras to divide obsta-
cles into static and dynamic. The moving speed of dynamic obstacles was estimated and 
a two-dimensional moving grid for obstacle avoidance was generated. The author evalu-
ated them in indoor and outdoor environments, respectively. Finally, the accuracy of dy-
namic obstacles was 85.3% and that of static obstacles was 96.9%. 

 
Figure 1. Schematic diagram of working scene and problems of wheeled robot. Figure 1. Schematic diagram of working scene and problems of wheeled robot.

In the research of the obstacle perception of ground unmanned vehicles, vision sensors,
lidar sensors, and millimeter wave radar sensors are usually used to obtain obstacle
information. Rajashekaraiah et al. (2017) [5] used a laser rangefinder to obtain obstacle
data and constructed a PTEM (probabilistic thread exposure map), which obtained obstacle
information through lidar and updated PTEM in real time to guide unmanned vehicles to
avoid obstacles. Similarly, using the radar sensor, Yang et al. (2017) [6] proposed the sensor
lidar to detect the obstacles in the front path. Based on the lidar data, combined with the
vehicle position, obstacle position, vehicle operation capability, and global environmental
restrictions, the optimized path was generated, and the path was updated in real time
through the detection data. Bhave et al. (2019) [7] applied the laser rangefinder to an
unmanned ground vehicle (‘the rover’). The test showed that the unmanned vehicle can
detect obstacles in front and navigate back to the base. This unmanned vehicle has been
applied to aid intelligence, surveillance, and rehabilitation missions in adult environments.
Khan et al. (2017) [8] proposed a disparity image method based on the vision method.
This method inferred the relationship between obstacles and robot path through vision and
judged the contour and position of obstacles based on projection information. The author’s
experiments showed that under the action of visual perception, the robot could detect
obstacles of any size and shape within 80–200 cm. Levkovits-Scherer et al. (2019) [9]
used the visual perception method for obstacle avoidance tasks, but the application object
was UAV. The front environment information of UAV was obtained through monocular
vision, and the image was transmitted to the ground control station. The ground control
station had a built-in convolution neural network algorithm to extract obstacle information,
and then transmitted the flight control command to the UAV to realize real-time obstacle
avoidance. Similarly, using visual perception to avoid obstacles, Yu et al. (2020) [10]
proposed an autonomous obstacle avoidance scheme based on the fusion of millimeter
wave radar and monocular camera, and through extended Kalman filter (EKF) data fusion
to build exact and real 3D coordinates of the obstacles. Eppenberger et al. (2020) [11] also
used noise point cloud data generated by stereo cameras to divide obstacles into static and
dynamic. The moving speed of dynamic obstacles was estimated and a two-dimensional
moving grid for obstacle avoidance was generated. The author evaluated them in indoor
and outdoor environments, respectively. Finally, the accuracy of dynamic obstacles was
85.3% and that of static obstacles was 96.9%.

In the research of obstacle decision-making and control of unmanned ground vehicles,
many path optimization algorithms and intelligent control methods have been adopted.
Lv et al. (2021) [12] proposed a fuzzy neural network objective avoidance algorithm
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based on multi-sensor information fusion and verified the superiority and reliability of
the algorithm through simulation and real platform experiments. Hu et al. (2020) [13]
divided obstacles into dynamic and static. For static obstacles, the optimal path was
generated online by an optimal path reconfiguration based on direct collocation method.
For dynamic obstacles, receding horizon control was used for real-time path optimization.
The continuous time model predictive control algorithm and the disturbance estimation
based on extended state observer were designed. Finally, the simulation experiment was
carried out on CarSim platform. Mohamed et al. (2018) [14] proposed an artificial potential
field (APF) method combined with optimal control theory for path planning. This method
generated a collision-free path when obstacles existed. Based on the artificial potential
field method, Chen et al. (2021) [15] proposed an improved artificial potential field for
obstacle avoidance of unmanned vehicles in urban environment and solved the problem of
autonomous obstacle avoidance in complex urban environment by establishing the models
of gravitational potential field, repetitive potential field, and comprehensive potential field.
Singla et al. (2019) [16] proposed a UAV obstacle avoidance method based on reinforcement
learning. By using recurrent neural networks with temporary attention, UAVs could avoid
obstacles in real time when only equipped with a monocular camera.

In this paper, based on the above research on the perception and decision control
of unmanned ground vehicles, an end-to-end obstacle avoidance method for unmanned
ground vehicles is proposed. The front data of unmanned vehicle are obtained by the
monocular vision method, and it is well-applied in the field of intelligent perception based
on deep learning [17–19] to realize the perception and discrimination of obstacle orientation.
The obstacle avoidance strategy is designed based on the output confidence of the neural
network to realize the autonomous obstacle avoidance of ground unmanned vehicles in
indoor environments. At the same time, aiming at the training of a transfer neural network,
this paper innovatively puts forward the bionic optimization method, which realizes the
automatic adjustment of neural network learning rate by combining the bionic optimization
strategy with transfer training. The main contributions of this work are:

(1) A bat optimization algorithm with an improved time factor is proposed. It improves
the search ability of the algorithm in the early iteration stage and the mining ability in the
late iteration stage.

(2) The improved bat algorithm is used to optimize the learning rate parameters of
the transfer layer. The output of neural network with higher accuracy under the condition
of small samples is realized.

The rest of the paper is organized as follow. Section 2 introduces the automatic
acquisition of training samples. In Section 3, the improved bat algorithm is used to
optimize the neural network. In Section 4, the neural network training and experiments in
different scenes are carried out. Section 5 concludes the paper.

2. Materials and Methods Training Set and Test Set Acquisition

Training the transfer convolutional neural network is a kind of supervised learning.
Training the neural network requires a large number of annotated images, and manual
classification takes time and effort. In this paper, the camera array is arranged in the
front, right-front, and left-front of the wheeled robot for image collection. By manually
controlling the wheeled robot to move through complex office areas, images from each
camera will be automatically classified to avoid manual marking. The images collected by
the left-front camera are all obstacles on the left side of the field of vision. The wheeled
robot needs to turn right. The images collected by the middle camera are wide vision in
front, and the robot needs to walk straight. The image collected by the camera on the right
front is the obstacle on the right side of the field of vision, and the wheeled robot needs to
turn left.
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2.1. Video Stream Acquisition

The external AONI camera of the notebook was used for image acquisition. Camera
parameters are shown in Table 1.

Table 1. Camera parameter.

Model Pixel Resolution

AONI-ANC 1.3 million 640 × 480

The arrangement of cameras is shown in Figure 2a,b. OA represents the optical axis of
the camera. The three cameras are at an angle of 60◦ to each other. By manually controlling
the wheeled robot through a complex environment, the three cameras separately store the
captured video. In the process of progress, the video captured by camera 1 is a straight-
through video, the video captured by camera 2 is a video that needs to be turned right
(the obstacle is located to the left of the field of view), and the video captured by camera 3
is a left-turn video (the obstacle is located to the right of the field of view). Figure 2c,d
shows the image environment acquired by the wheeled robot.
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Figure 2. Wheeled robot video acquisition.

Videos are collected through 4 groups of different experiments, and the duration of
videos is 45 min.

2.2. Data Set Acquisition

The collected video is processed by Matlab, and an image is taken every 20 frames.
Since the input of the neural network is 227 × 227, the image needs to be cut to that size.
There will be fuzzy pictures in video obtained from each camera, and it is necessary to
manually select and remove the fuzzy pictures. The types of collected images are shown in
Figure 3, and the number of samples and labels are shown in Table 2.
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Table 2. Data set and label.

Subject Left Proximity Left Far Middle Proximity Middle Far Right Proximity Right Far

Train 313 418 166 561 369 407
Test 63 83 33 112 74 81

Lable 100000 010000 001000 000100 000010 000001

3. Bionic Optimization Neural Network

This paper uses Alexnet-based transfer learning to modify the Alexnet network to
accommodate new classification tasks. Alexnet was proposed by Alex in 2012. The Alexnet
used in this paper has received training for a total of 1 million images in 1000 categories,
including keyboards, pencils, and many animals. Through the training of massive pictures,
the first few layers of Alexnet can extract rich features in pictures. When using the first
layers and adding new layers of Alexnet to adapt to the output of wheeled robot control
direction, it is necessary to fine-tune the transfer-layer and quickly adjust the new layer in
the process of training the neural network. Therefore, for the learning rate factor setting of
the network layer, the new layers need to set a large learning rate factor parameter, and the
transfer layers need to set a small learning rate factor parameter. In the process of training
the transfer neural network using the Matlab framework, the Matlab defaults to 1 for the
new layers’ weight and bias of learning rate factor. This causes the neural network to train
slowly, not to converge quickly, or to fall into local optimum. If the manual adjustment
parameters set an excessive learning factor, this causes the loss function to oscillate back
and forth at the optimal position during the neural network training and may skip the
global optimization. The bionic optimization algorithm is used to optimize the weights
and bias learning rate factor parameters in the newly added layer of the transfer neural
network. The optimization idea is to obtain the optimal learning rate factor parameter
combination by training optimization on the small sample training set, and then applying
it to the large sample training set to train the neural network.

The bat algorithm (BA) was proposed by X.S. Yang, a Cambridge scholar, in 2010
to simulate the behaviour of bat echolocation in food exploration [20]. In the process of
searching for food, bats first use large pulse sound and low pulse frequency to perform
large-scale searches because the strong pulse sound helps to spread ultrasound over a
longer distance. When approaching food, low pulse sound and high pulse frequency
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are used, because high pulse frequency helps to accurately grasp the position of prey.
The process of finding food in bats is shown in Figure 4.
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In this paper, a time factor improvement method is proposed for the shortcomings
of the initial bat algorithm with a small search range in the early stage and insufficient
mining ability in the later stage. By adding time factor perturbation to the position update
equation instead of the implied time factor with constant 1, the overall search ability of the
algorithm is improved. The time factor disturbance Formula (3) and the improved position
update Formula (4) are as follows:

(1) The pulse frequency of a bat individual while exploring a target:

fi = fmin + ( fmax + fmin)× rand (1)

where fi is the pulse frequency of the first i individual to explore the target, fmin and
fmax are the upper and lower limits of the pulse frequency, and rand is a random number
between 0 and 1.

(2) The velocity of individual bats in searching for targets:

vt
i = vt−1

i + (xt−1
i − x∗)× fi (2)

Among them, vt
i and vt−1

i are the flight velocities of the first i individual at time t and
time t − 1, respectively. xt−1

i is the position of the bat individual i at time t − 1. x∗ is the
current optimal position.

(3) The update of the bats’ positions:

β = 1+ sin(
π

2
− πt

2tmax
) (3)

xt
i = xt−1

i + βvt
i (4)

where t is the current number of iterations and tmax is the maximum number of iterations.
(4) The update of the pulse frequency and volume of the bat individual when searching

for prey:
rt+1

i = r0
i (1 − e−γt) (5)

At+1
i = αAt

i (6)

where r0
i is the maximum pulse frequency, γ is an increase parameter of the pulse frequency

and is a constant greater than zero, At
i is the pulse volume of the individual i at time t,

and α is the pulse volume reduction parameter which is a constant from 0 to 1.
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Figure 5 shows the iterative process of bat algorithm. The parameters of the newly
added full connection layer weights and the bias learning rate factor are, respectively, set
by using bat algorithm, and the parameters of the bat algorithm are set as shown in Table 3.
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Figure 5. BA iterative process.

Table 3. BA parameters setting.

Subject maxiter m fmin fmax r0
i Amax

Parameter 20 30 −1 1 0.85 0.1

In the experiment, the improved bat algorithm and the unimproved bat algorithm are
compared. Each experimental iteration is 20 times, and each algorithm has two groups of
experiments. The accuracy of the neural network trained by the learning rate factor ob-
tained by each optimization iteration is used as a fitness function. The idea of optimization
in this paper is to optimize on the small sample training set, and then extend the optimized
learning rate parameters to the large sample neural network training. Five different sam-
ples are used in the training process. A total of 55 training sets and 20 test sets are selected.
The training times of the neural network are 10. The process of bionic optimization is
shown in Figure 6. As can be seen from Figure 6, in the early stage of iteration, the con-
vergence speed of the improved bat algorithm is faster than that of the unimproved bat
algorithm, and it is in a fast convergence state. This is mainly because the improved time
factor can search the optimal solution in a large range in the early stage of search. In the
later stage of iteration, the fitness value of the improved bat algorithm is smaller than that
of the unimproved bat algorithm, and it also has advantages in convergence speed. It is
further proved that the improved time factor can greatly improve the ability of mining the
global optimal value in the later stage of search. Therefore, the improved bat algorithm has
more advantages than the unimproved bat algorithm in global optimal solution search.
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As can be seen from Figure 6a,b, the fitness function has converged at about 15 iter-
ations in two experiments, and the solution is globally optimal. Table 4 is the best opinion 
from the two experiments. In order to improve the training efficiency, the learning rate 
parameters take the rounded integers of the average of two experiments. 

Table 4. Optimization results of improved BA. 

Subject 
Improved BA Algorithm 

WeightlearnRateFactor BiasLearnratefacto 
Experiment 1 10.2354 7.6387 
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As can be seen from Figure 6a,b, the fitness function has converged at about 15 itera-
tions in two experiments, and the solution is globally optimal. Table 4 is the best opinion
from the two experiments. In order to improve the training efficiency, the learning rate
parameters take the rounded integers of the average of two experiments.

Table 4. Optimization results of improved BA.

Subject
Improved BA Algorithm

WeightlearnRateFactor BiasLearnratefacto

Experiment 1 10.2354 7.6387
Experiment 2 6.3334 9.4124

Average 8 9

4. Neural Network Training and Experiments
4.1. Neural Network Training

The transfer learning neural network can realize small samples and achieve high
accuracy output with fewer iterations. The neural network is trained on the Matlab 2018(a)
framework with dual 1080 ti GPUs and dual E5-2620 v4 dual-core CPUs with 64 GB of
memory. The first 7 layers of the transfer Alexnet network are used, followed by a fully
connected layer, a softmax layer, and a classification layer to construct a 10-layer deep
convolutional neural network. The parameters of the fully connected layer weight and the
bias learning rate factor in the newly added layer are set to 8 and 9, respectively, according
to the results of the improved bat algorithm. Mini-batch gradient descent (MBGD) is used
in the training process. The number of input pictures is 30 and the number of iterations is
1140. The neural network training process is shown in Figure 7.
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Figure 7 shows the bat algorithm optimization learning rate factor, the default learn-
ing rate factor, and the artificially set learning rate factor optimization iterative process.
The upper half of the graph is the accuracy curve, and the lower half is the loss function
curve. The default learning rate factor of Matlab is 1, the manual setting is 20, and the
learning rate factor is optimized to be 8,9. From the accuracy curve and the loss function
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convergence curve, the network training convergence with the default learning rate factor
of 1 is significantly slower than the other two networks. It starts to converge in about
700 iterations, resulting in low computational efficiency and waste of computing resources.
When the learning rate factor is 20, the network convergence starts to be flat at 400 times,
and the bat algorithm optimization is about 500 times. From the final training accuracy
curve, it can be seen that the accuracy of the default 1 and manual setting 20 is less than
90%. The accuracy of the bat algorithm optimization neural network is far more than 90%.
In summary, although the convergence speed of bat algorithm is slightly slower than that
of manual settings, the accuracy of bat algorithm is higher, and it avoids falling into local
optimum in the process of network training.

For further comparison, HOG + SVM is used for comparison experiments. In this
paper, HOG + SVM is used to train and test the dataset in Table 2. Table 5 lists the accuracy
of various methods.

Table 5. Optimization results.

Subject Default Manual Setting BA HOG+SVM

Accuracy 88.12% 89.01% 94.84% 75.11%

It can be seen from Table 5 that the highest accuracy is the neural network optimized
by the bat algorithm, which can reach 94.84%. The HOG+SVM method has the lowest
accuracy rate of only 75.11%. The manual setting and the default value are not much
different and are all below 90%.

4.2. Experiments and Discussion

In order to verify the effectiveness of obstacle avoidance algorithm, this paper designs
the experimental platform of wheeled robot as shown in Figure 8. The platform uses
MATLAB to communicate with the motor drive board through serial port. Matlab sends
the control instructions to two motor drive boards, and the motor drive board drives the DC
motor to realize the obstacle bypass. In this paper, single frame evaluation and continuous
obstacle avoidance evaluation are carried out. The improved bat optimized neural network
trained by the workstation is transplanted to the notebook. The notebook is equipped with
a single 2.40 GHz i7-4700mq CPU, no GPU, and 12 GB memory. The processing time of a
frame of image by the neural network is about 60 ms.
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In the experiment, the single frame image obtained by the wheeled robot is transported
to the neural network for judgment. The detection environment is the environment where
the training set is obtained. Figure 9 shows the output results of some single frame images
by the neural network. The bottom of the picture is the label of the picture, and the green
background above is the network output.
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As shown in Figure 9, the neural network can extract the single frame image informa-
tion obtained by the wheeled robot camera and output the near and far direction of the
obstacles with an accuracy rate of 100%. In the case of good evaluation of a single frame
image, continuous obstacle avoidance experiments are carried out in this paper. According
to the distance and orientation of obstacles by the neural network, the motion rules are
designed as shown in Table 6. In the process of wheeled robot rotation, the first rotation
angle of wheeled robot is 60◦ and the forward speed is 0.5 m/s.

Table 6. The design of movement rules.

The Output of
Neural Network Right Proximity Left Proximity Middle Proximity Right Far Left Far Middle Far

Movement rules Turn left Turn right Turn left Go straight Go straight Go straight
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In this experiment, obstacles are located in different directions of wheeled robot.
In order to verify the generalization of neural network, the detection environment is a new
scene (not included in the training set). As shown in Figure 10, a is the state before obstacle
avoidance, b is the state after obstacle avoidance, the blue point in c is the starting point,
the green point in c is the ending point, the black curve in c represents the robot’s motion
track, and the red block in c is the current obstacle.
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In the continuous static obstacle avoidance experiment, six scenes are selected; the re-
sults are shown in Figure 10. In experiment 1, the obstacle is located far to the left of the
wheeled robot, and the robot should walk straight. The path conforms to the obstacle avoid-
ance rules. In experiment 2, the obstacle is located in the right far distance. According to
the correct rules, the robot should go straight, but the robot turns right. Although there is
no collision, it does not conform to the movement rules. Experiments 3, 4, 5, and 6 show
that the obstacles are located in the middle and far, right near, left near and middle near,
respectively. The robot successfully avoids the obstacles, enters the wide area, and ob-
tains the wall crack image and the building damage information. Compared with laser
ranging obstacle avoidance and ultrasonic ranging obstacle avoidance [21–23], the method
proposed in this paper has the advantages of low sensor price and low cost of obstacle
avoidance system. However, due to the limitation that the optical sensor needs to work
in a bright environment, the method proposed in this paper can only work in an indoor
environment with good lighting conditions. Through the acquired image information,
the remote health monitoring of building can be realized. Figure 11 shows the schematic
diagram of a ground robot equipped with a multispectral camera, and the detection of wall
cracks is realized by carrying Rededge.
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5. Conclusions

This paper proposes an optimized transfer-CNN method based on improved bat algo-
rithm. The image of the front of the wheeled robot is input into the neural network through
the camera, and the neural network outputs ‘Left Proximity’, ‘Left Far’, ‘Middle Proximity’,
‘Middle Far’, ‘Right Proximity’, and ‘Right Far’. For the problem that supervised learning
needs a large amount of labeled data, automatic image classification and far and near
framing are achieved by using camera stacking. The accuracy of the neural network test set
by the improved bat algorithm reached 94.84%. In the six groups of continuous obstacle
avoidance experiments, only one group violates the rules of obstacle avoidance, but there
is no collision, so it can achieve better obstacle avoidance. Through the optimization
transfer-CNN, the unmanned vehicle equipped with the visual crack detection camera
is used to realize the automatic evaluation of the building structure safety. At this stage,
the method proposed in this paper is only for static obstacles, but there are often dynamic
obstacles such as moving humans in the indoor environment. Therefore, the perception
and obstacle avoidance of dynamic obstacles is also the next research direction of indoor
monocular ground vehicle.
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