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Abstract: Detecting and quantifying methane emissions is gaining an increasingly vital role in
mitigating emissions for the oil and gas industry through early detection and repair and will aide our
understanding of how emissions in natural ecosystems are playing a role in the global carbon cycle
and its impact on the climate. Traditional methods of measuring and quantifying emissions utilize
chamber methods, bagging individual equipment, or require the release of a tracer gas. Advanced
leak detection techniques have been developed over the past few years, utilizing technologies, such
as optical gas imaging, mobile surveyors equipped with sensitive cavity ring down spectroscopy
(CRDS), and manned aircraft and satellite approaches. More recently, sUAS-based approaches have
been developed to provide, in some ways, cheaper alternatives that also offer sensing advantages
to traditional methods, including not being constrained to roadways and being able to access class
G airspace (0–400 ft) where manned aviation cannot travel. This work looks at reviewing methods
of quantifying methane emissions that can be, or are, carried out using small unmanned aircraft
systems (sUAS) as well as traditional methods to provide a clear comparison for future practitioners.
This includes the current limitations, capabilities, assumptions, and survey details. The suggested
technique for LDAQ depends on the desired accuracy and is a function of the survey time and
survey distance. Based on the complexity and precision, the most promising sUAS methods are the
near-field Gaussian plume inversion (NGI) and the vertical flux plane (VFP), which have comparable
accuracy to those found in conventional state-of-the-art methods.

Keywords: advanced leak detection; advanced leak quantification; remote sensing; source estimation;
environmental monitoring; landfill; natural gas

1. Introduction

Why is methane so important? Methane is a greenhouse gas (GHG) that has a global
warming potential 86 times that of carbon dioxide in a 20 year time window and is even
larger for smaller time-scales. The mitigation of methane and reducing methane emissions
can help reduce global warming in the near term. The first step is improving the way we
measure emissions in practice, both in accuracy and in frequency. The overall measurement
of methane emissions in oil and gas for example, (top-down vs bottom-up) has been shown
to have discrepancies and is often underestimated [1,2].

For example, 190 oil and gas production sites were explored in [3,4], and the mea-
surements indicated that well completion emissions were lower than previously estimated.
The data also showed how emissions from pneumatic controllers and equipment leaks
were higher than the Environmental Protection Agency (EPA) national emission projections.
In a report titled, “Lessons from a decade of emissions gap assessments” [5], the authors
argued about where we need to be and where we think we are, including the Paris climate
agreement and what steps to take in order to keep global warming below 2 ◦C. One way to
combat this is by detecting super emitters through tiered remote sensing strategies, which
is outlined in [6].
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This approach aims to focus on the detecting and repairing the largest emitters first,
which can contribute a significant portion of the overall emissions of oil and gas systems.
Furthermore, pressure to reduce contributions of climate change from customers and in-
vestors has been seen, insisting on reducing carbon footprints, including from landfills with
much needed debate on inventory methods, direct emission measurements, and account-
ability [7]. The importance of mitigating methane emissions on a wide array of mitigation
strategies is needed to stay on track with the Paris agreement [8].

Who is currently looking at methane? From an anthropogenic point of view (e.g., oil
and gas), companies, such as Picarro (Santa Clara, CA, USA), Aerodyne Research (Billerica,
MA, USA), Bridger Photonics (Bozeman, MT, USA), SeekOps (Austin, TX, USA), Heath
Consultants (Houston, TX, USA), Flir (Global), Scientific Aviation (Boulder, CO, USA),
Avitas (Houston, TX, USA), Ventus Geospatial (Houston, TX, USA), Aerometrix (Canada),
and many more have provided methane detection and quantification solutions in a variety
of technologies.

For example, A quantum cascade laser spectrometer is deployed on a small unmanned
aircraft system (sUAS) for measuring facility-scale emissions using a mass balance approach
with kriging [9]. For biogenic sources in ecosystems, there has been work looking at
permafrost bogs [10,11], lakes [12], small ponds, wetlands [13], and vernal pools [14–17]
to name a few. Seasonal dynamics of methane emissions from permafrost landscapes
are explored in [18], specifically a lagoon pingo, and emissions estimated using a Thin
Boundary Layer approach.

Porewater samples were analyzed using a Quantum Cascade Laser Spectrometer and
combined with high resolution images from sUAS as an input into a neural network for
creating a prediction map to upscale methane flux [19]. The spatial distribution of methane
in the Artic permafrost bluffs was explored in [20] with a backscatter tunable diode laser
absorption spectrometer (bs-TDLAS), namely the Pergam Laser Methane mini.

Flux estimates can be made, typically, using methods based on static measurements,
on foot, by vehicle, manned aircraft, and by satellite. Static measurements consist of:
(1) Eddy Covariance (EC) towers: A footprint modeling technique that looks at the tur-
bulent exchange with the environment and utilizes meteorological conditions with pre-
cision concentration measurements to estimate the flux, (2) Chambers (autochambers):
An enclosed chamber is placed over a target piece of land and is sampled with a syringe
occasionally (to be analyzed at a later time, typically with gas chromatography) or dynami-
cally sampled within a closed loop (such as GASMET’s Fourier Transform Infrared (FTIR)
analyzer [21]).

Measurements made on foot consist of handheld sensors that are used with survey
equipment and the surface. Surface emission monitoring (SEM) is typically a routine
operation for landfills, done quarterly, to maintain compliance with local regulations
to account for emissions lost from gas control systems. SEM is a point-based scanning
technique that can take on the order of a week or so to complete. The concentrations are
measured with devices, such as the flame ionization detector (FID) (regulated by EPA’s
guidance and Method 21), and are integrated along sub divided grids looking for elevated
methane levels (greater than 500 ppmv) [22].

Landfill emissions are generally calculated using inventory-type estimates. Measure-
ments by vehicle consist of methods, such as the Tracer Correlation Method (TCM) and the
environmental protection agency (EPA)’s other test method 33A (OTM33A) [23]. In [24], they
explored vehicle-based advanced leak detection (ALD) with a cavity ring-down spectrometer
(CRDS) from Picarro and determined that five to eight drives will capture a majority of
leaks (>90%) as well as indicate detection limitations (such as wind and soil conditions and
variations in methane enhancements making quantifying emissions difficult).

In [25], a vehicle mounted CRDS (Picarro G2301 and G4302) used empirical formulation
to turn elevated concentration levels (or leak indications), C, to emission rates , Q (based on
the work of [26], ln C = −0.988 + 0.817 ln Q) and used Gaussian plume model to quantify
emissions from site-level emissions in Utrecht and Hamburg, Germany. In work by [27],
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6650 sites were evaluated using inventory and inverse point source Gaussian measurements,
and they found that the methane inventory was underestimated by a factor of 1.5.

A series of campaigns were carried out utilizing TCM and downwind mobile mea-
surements to explore the accuracy of different TCM approaches as well as compare CRDS
with FTIR instrumentation in multiple source separation [28]. Measurements from manned
aircraft have been done using FID, mounted on both fixed wing (Piper (Vero Beach, FL,
USA) Seneca or Piper Navajo twin engine) and helicopter (Bell (Fort Worth, TX, USA) 206
Long Ranger) to detect liquid hydrocarbons from pipelines [29]. In [30,31], they utilize the
next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) to retrieve
methane, carbon dioxide, and water vapor.

In [32], AVIRIS-NG was used to generate the VIsta-CA geospatial dataset to provide
a comparison to the attribution of sources with Calfornia Air Resources Board (CARB)
Pollution Mapping Tool (CARB PMT) and the U.S. Environmental Protection Agency (EPA)
Facility Level Information on Greenhouse gases Tool (EPA FLIGHT). In [33], they investi-
gate the uncertainty for estimating urban fluxes by an aircraft-based mass balance approach.
They assess the sensitivity of the estimated city-wide CO2 and CH4 fluxes for several flight
experiments, including the regional background concentration, depth of the convective
boundary layer, magnitude of the wind speed, and type of interpolation technique.

In [34], they utilized a Sky Arrow Environmental Research Aircraft to measure emis-
sions from multiple landfills and combined steady state Gaussian models to distinguish
the emission coefficients for each individual site. A Bridger Photonics Gas Mapping LiDAR
(GML) system was deployed on a Cessna 172 and blindly evaluated where the detection
limits were as low as 1 kg/h depending on the wind conditions [35].

This method was also introduced to the Fugitive Emissions Abatement Simulation
Toolkit (FEAST) [36] and shown to be comparable to OGI-based methods at equivalent
survey frequencies for the detection and repair of emissions. Optical Gas Imaging (OGI)
was explored in [37,38] and the effectiveness was evaluated in [38]. NASA’s Alpha Jet
Atmospheric eXperiment (AJAX) and the AutoMObile greenhouse Gas (AMOG) surveyor
were used to fuse airborne and ground-based data together (as part of the GOSAT-COMEX
Experiment) using an anomaly approach instead of the typical mass balance approach [39].
Measurements by satellite have been explored in [40], where a ResNet-50 was trained from
ESA’s Sentinel-2 data and labeled with a U-Net to detect smoke plumes.

Other works in the literature where emissions are detected, quantified, mapped,
or localized include: A mid-wave infrared (MWIR) camera was used to compare eight
supervised multivariate methods for detecting oil spills along the coastline in [41]. Using an
array of stationary laser fetches, a controlled release emission is estimated using a Bayesian
Markov chain Monte Carlo (MCMC) approach in [42]. There have been several works
devoted to gas distribution mapping (GDM) using the Kernel DM/V methodology [43],
including simultaneous localization and mapping (SLAM) [44].

GDM and gas source localization (GSL) with micro-drones have been explored in [45].
GDM has also been used in olfactory simulations in [46]. In [47], different GSL strategies
(spiral, surge-cast, spiral-surge, and particle filter) were evaluated using the GADEN gas
dispersion simulator. A mobile ground robot system named ARMEx was used to perform gas
distribution mapping with a Heath Consultants remote methane leak detector (RMLD) [48].

In recent years, sUAS-based sensing approaches have become increasingly popular
amongst practitioners for a variety of reasons, such as the ability to not be restricted to
roadways or land locked areas, the ability to operate within the class G airspace at altitudes
that traditional manned aircraft cannot operate at (improving resolution), the low cost,
and the ability for high frequency deployment for capturing temporal changes.

Here, we provide an overview of some of the recent literature works utilizing sUAS,
such as: a fixed-wing SIERRA sUAS with off axis integrated cavity output spectrometer
(OA-ICOS) instrument was deployed in Svalbard, Norway prior to the NASA Charac-
terization of Arctic Sea Ice Experiment (CASIE) [49]; single and multi-sUAS systems for
source seeking based on the Luenberger observer were explored in [50]; an open path
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GHG analyzer based on vertical cavity surface emitting laser (VCSEL) was developed and
tested in [51] with an aim to provide improved measurements compared to satellites; and
volcanic emissions were captured using thermal cameras [52].

In [53], detection and spatial temporal analysis of a thermokarst lake was done with
RGB images taken from a plane and sUAS. They looked at the bubble characteristics
of the images to determine methane ebulliton. The use of long wave infrared (LWIR),
short wave infrared (SWIR), hyperspectral, and visible cameras were used to detect liquid
hydrocarbons with machine learning in [54]. Detection of methane gas from a custom
open path absorption spectroscopy , mounted on fixed-wing sUAS, was explored in [55].
Emission factors from a combustion source using the EPA-based sensor, Kalibri, were
calculated using a sUAS in [56]. Profiling GHG using sUAS-based AirCore system was
analyzed with CRDS in [57].

Terra Sana Consultants developed a sUAS system with a path-integrated laser absorp-
tion (10 Hz at 30 m with 1 ppm-m) used in the detection of landfill gas. In a field trial, they
compared the sUAS results to ground-based walk-over survey, reporting good correlation
between the two [58]. A bs-TDLAS equipped drone with laser rangefinder was used to
reconstruct 2D plumes under realistic conditions [59]. SEM, drone emission monitoring
(DEM), and downwind plume emission monitoring (DWPEM) with CRDS are used with a
genetic algorithm (GA) to estimate methane emissions from a landfill [60].

The AlphaSense electro-chemical sensor suite was used on a DJI 100 series sUAS that
conducted ziz-zag and spiral localization flights of a stationary source [61]. In [62], red
green blue (RGB), near infrared (NIR), and thermal infrared (TIR) cameras were used to
map the topography and create digital elevation maps for identifying problematic areas
where localized CH4 emissions were present using a static prototype semiconductor sensor.
In [63], a sUAS equipped with a Pergam (Renton, WA, USA) backscatter-based tunable
diode laser absorption spectrometer (bs-TDLAS) and OGI camera were used to detect and
quantify pipeline leaks. The sUAS traveled 4 m from the pipeline during the surveys and
had a minimum detection limit of 0.06 g/s.

In [64], atmospheric particulate matter and carbon dioxide were measured using
sUAS sampling and a bag collection system. The bags were collected and analyzed in a
lab. characterizing termite mounds using ground and sUAS-based laser scanning [65].
In a recent paper, ref. [66] utilized a NDIR instrument to measure CO2 flux (characterized,
corrected, and validated in laboratory experiment at the Integrated Carbon Observation
Station (ICOS) in Steinkimmen, Germany) at an ExxonMobil (Irving, TX, USA) natural gas
processing facility in Germany. They used an on-board anemometer (FT-205) that was gain
and bias corrected prior to the field experiments, where flux measurements were calculated
using the mass balance approach.

General questions one can ask are, “What technologies and methods fall under ad-
vanced leak detection and quantification (LDAQ)?” Does this include mobile and sUAS-
based approaches? These questions, in practice, are unfortunately up to the owners and
operators of natural gas facilities, as they have the choice regarding what becomes adopted.
However, the potential impact that LDAQ can have on improving methane mitigation is yet
to be seen. Is leak grading quantification? What is accurate enough? What size leaks should
we (or can we) care about? In the literature, it is often observed that leak quantification
estimates and variability are reported in the place of accuracy and uncertainty. How can we
determine the necessary and sufficient conditions for application of these methodologies?
To the best of our knowledge, these questions remain unsolved in practice.

In the literature, there have been several reviews conducted on topics that deal with
emissions, including remote sensing, source term estimation, and fugitive gas emissions. A
remote sensing review paper in [67] describes many applications and topics within remote
sensing, including the environmental sensing of volcanic eruptions, soil erosion, and ge-
ological related areas. A thorough review paper on source term estimation techniques
is presented in [68]. In [69], a review was conducted on chemical sensing drones, which
includes the sUAS platforms, sensors, and a brief overview of methodologies.
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In [70], a review was conducted measuring fugitive gas emissions from landfills
using various methodologies, including surface chambers (closed and open), EC towers,
stationary mass balance, aerial mass balance, vertical radial plume mapping (VRPM),
differential absorption LiDAR (DiAL), tracer gas dispersion (stationary and dynamic),
and inverse modeling approaches (stationary, dynamic, and aerial [71]). In [72], several
biogas plants in the UK were evaluated using the point source Gaussian plume model.

In this manuscript, we provide a review on the literature regarding the source rate
estimation of continuous emission sources, focused around UAV-based methodology.
We provide an overview of theoretical methodology as well as establish a quantitative
comparison (for papers that have shown validated accuracy) between existing/current
approaches and with UAV-based approaches in an attempt to shed light on the current
accuracy of these methods. In Section 2, we discuss the problem overview. In Section 3,
we overview some common sensors (chemical and wind). In Section 4, we overview the
LDAQ methodology. In Section 5, we analyze the reported accuracy. Section 6 summarizes
the methodologies, Section 7 discusses possible future directions, and in Section 8, we
conclude the paper.

2. Problem Overview

The general problem in this work looks at methane emissions released into the air in
gaseous form. The release mechanism or interface can vary depending on the application or
system. For instance, in the oil and gas industry, leaks generally appear from tanks, valves,
or hatches in the form of a point source, typically an above ground leak. Underground
leaks also occur in practice, and the resulting emissions can manifest on the surface in
many ways.

This may also be the case for landfills, where many small sources can be present across
a very large area. If the distribution of sources is spatially uniform, we refer to this as an area
source. The distribution of emissions may also vary, as in the case of natural ecosystems
where the amount of methane may be produced at different rates depending on key factors
of natural methane and carbon dioxide production (e.g., temperature, soil properties, water
properties, etc.). Examples of different types of leaks are shown in Figure 1.

Figure 1. Example illustration for source types: (a) continuous point source, (b) uniform area source,
(c) distributed area source, (d) intermittent point source, (e) elevated area source, and (f) underground
point source.

Landfills, which typically have area sources, are required to do quarterly walkover
surveys, based on landfill regulations [73], using SEM on gas collection facilities. Landfills
also have to consider the production and control of hydrogen sulfide gas, which is reviewed
in [74]. Assuming some level of uniformity, chamber measurements have been taken and



Drones 2021, 5, 117 6 of 42

compared against atmospheric tracer methods (or TCM) [75]. The mass flux for chamber
measurements can be calculated as

E =
V
A

p(
∆C
∆t

), (1)

where V is the volume of the chamber, A is the area covered, p is the gas density given the
headspace temperature, and (∆C/∆t) is the change in mixing ratio, which is derived from
linear regression of the temporal observations (four to five headspace measurements to
achieve an acceptable correlation coefficient). However, due to the large size of these sites
they are difficult to accurately measure. For example, four methods (aircraft mass balance,
tracer correlation (TCM), vertical radial plume mapping (VRPM), and static chambers) and
the California Landfill Methane Inventory Model (CALMIN) were compared in a landfill
study in Indiana [76].

A field study comparison of different landfill methods for assessment of fugitive gas
emissions was explored in [77]. This included VRPM, TDM, DiAL, MicroMeteoroligcal
(Eddie Covariance method), and Flux chamber, and VRPM (close to the source, ≈10 m)
and TDM (≈400 m) performed quite well against DiAL. In a paper from the UK, a review
quantification of biogas plants was undertaken with inverse dispersion modeling (e.g.,
bLS), a tracer dispersion model, and OGI for different feedstock cases [72]. Mass balance
approaches have also been applied using UAVs developed in [78].

In [79], chamber measurements were used to compare TIR images to quantify emis-
sions in two landfills. The overall site emissions were verified using TCM (which tends
to be the gold standard). The methane flux from different types of surface emissions
were explored using chamber and FID measurements in [80]. A point-based scanning
method, utilizing a portable gas detector (bs-TDLAS based), was correlated in lab testing
using chamber methods and deployed on a landfill experimentally. This study showed a
positive correlation between ambient methane concentrations and flux as well as directly
proportional to flow rates [81]. Then, using this relation, a spatial map of the emissions
was derived.

In a landfill study, the TCM was quantified for a 6 day campaign during different
wind conditions and found that the methane emitted accounted for 31% of the generated
methane [82]. Based on these findings, it is clear that fast and effective methods for
estimating emissions from landfills are needed.

In natural ecosystems, which typically manifest as distributed sources (sometimes
point sources distributed across a landscape) are generally much lower emissions than
anthropogenic sources. It has been thought that these emissions are small; however, recent
research has suggested that they are still not well understood. For example, digital elevation
maps with SWIR imagery have been used to detect temporal trends in ombrotrophic
peatland [83].

A Patagonia peat bog was examined with a UAV with high resolution color infrared
(CIR). The images were classified using chamber measurements and different microforms
in an attempt to upscale the plot-scale fluxes [84]. Thawing permafrost, peatland bogs, etc.
have been typically measured using chambers [85], autochambers, and Eddy covariance (EC)
towers. Commercialized chambers include those from LICOR, Picarro, and GASMET [21].

Aside from types of sources, wind is a direct input into the flux calculation and it
can introduce a lot of uncertainty into the emission estimation. There are many important
weather related measurements that can provide metrics for quantification methods, such
as atmospheric stability. These stability classification schemes can depend on mechanical
turbulence (roughness length and friction velocity), convective turbulence (mixing depth,
Monin–Obukhov length, and heat flux), wind speed, and wind direction fluctuations [86,87].
These meteorological measures are summarized here: the Monin–Obukhov length is given as

L = − u3
∗T

κgw′T′
, (2)
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where κ is the von Karman constant, g is the acceleration of gravity, T is the average
temperature, w′T′ is the mean covariance between the vertical wind speed and sonic
temperature [88]; and the friction velocity is given as

u∗ =
√
−u′w′, (3)

where u′w′ is the mean covariance between the horizontal and vertical wind speed compo-
nents. The effective plume height, z, can be determined using the following two equations,

Lx,e f f + x0 =
(z/κ2)[ln(cz/z0)−Ψ(cz/L)][1− pa1z/(4L)]−1/2, L < 0,
(z/κ2)[(ln(cz/z0) + 2b2 pz/(3L))(1 + b1 pz/(2L))+
(b1/4− b2/6)]pz/L, L > 0.

(4)

This equation is first initialized by setting the effective distance Lx,e f f = 0, the effective
plume height to the source height z = zs, and solving for the integration constant x0. Lx,e f f
is calculated from the longitudinal distance to the source using the angle to the center of
the plume θp by, Lx,e f f = Lx cos (θ − θp), where Lx is the longitudinal distance from the
source. The stability parameter, Ψ, which is dependent on the effective plume height z and
Monin–Obukhov length L [89], can be calculated (for a given height) as,

Ψ(z/L) =

{
(1− a2z/L)1/4 − 1, L < 0,
−b2z/L, L > 0.

(5)

The coefficient c is dependent on the shape function parameter, s, described in [89]
and given as

s =


1−a1cz/(2L)

1−a1cz/L + (1−a2cz/L)−1/4

ln(cz/z0)−Ψ(cz/L) , L < 0,
1+b1cz/L
1+b1cz/L + 1+b2cz/L

ln(cz/z0)+Ψ(cz/L) , L > 0.
(6)

The remaining coefficients (also from [89]) p, a1, b1, and b2 can be set to 1.55, 16, 5,
and 5, respectively (as used in [88]). The speed of the plume is given as

U(z) =
u∗
κ
[ln(z/z0)−Ψ(z/L)]. (7)

For the interested reader, the Monin–Obukhov similarity theory overview is given in [90].

3. Sensors and Equipment

There are many types of sensors that can be used on-board sUAS, granted they are
light enough for a given platform’s payload capacity. In this section, we overview a
few key sensors used and refer interested readers to a thorough review paper for more
on chemical sensing drones [69]. Sensors used in many of the works reviewed here are
briefly overviewed.

There are generally two types of sensing modalities, passive and active. Passive sens-
ing encompasses any sensor that receives information from the environment. A common
example of this includes optical cameras, such as visual spectrum cameras (e.g., RGB), ther-
mal cameras (e.g., thermal infrared (TIR) [79,91], near infrared (NIR), short-wave infrared
(SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR)).

TIR cameras tend to span a larger bandwidth of wavelengths, whereas hyperspectral
cameras can control which wavelengths to focus on. For example, in [92], Telops (Quebec,
Canada) used a standoff tripod mounted hyperspectral camera to estimate the flow rate by
integrating the mass per unit area and multiplying by the mean velocity of the gas. They
utilized a two layer model to calculate the background radiance,
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Ltot = [Lbkgτplume + Lplume(1− τplume)]τatm + Latm(1− τatm). (8)

When the hyperspectral camera was optimized for methane detection (as in [93],
7.7 µm band), two controlled release tests showed flow rates calculated (measured) were
found to be 25.3± 2.8 g/h (23± 2.3 g/h) and 102.9± 5.8 g/h (100± 10 g/h). The authors
claimed that the approach is 40 to 100 times more sensitive and can potentially be mounted
to an aerial platform, remotely sensing from several hundred meters, deeming it suitable
for both natural and anthropogenic sources. Active sensing encompasses any sensor that
actively transmits information into the environment, probing a response.

An example of active sensing includes tunable diode laser absorption spectroscopy
(TDLAS), which can come in several forms. The working principle relies on the gas species
entering the sensor region or laser path, such that some of the power is absorbed by the
gas, and a power drop is detected. One form of TDLAS is the closed path TDLAS (e.g.,
sensing region enclosed in controlled environment), where the emitter and detector are
apart of the same device at a fixed distance apart, optimized for a desired detection species.

Other variations of the TDLAS include: the open path TDLAS (e.g., sensing region is
open to the environment (see the open path laser spectrometer (OPLS) [94])), the backscatter
TDLAS (bs-TDLAS) where the laser is reflected off the natural environment before being
received at the detector, and long path TDLAS (e.g., used with retro-reflectors not connected to
the physical instrument). Several examples of bs-TDLAS include: LiDAR based (Continuous
wave laser absorption LiDAR, Pulsed Differential Absorption LiDAR (DIAL)), Pergam
Laser Methane Mini [95], RMLD, Gasfinder2 [96], and Gasfinder3 [97]) [98].

Other more sensitive laser based instruments are also used in practice, such as cavity
ring-down spectroscopy (CRDS) and off-axis integrated cavity output spectroscopy (ICOS).
An example of these types of instruments can be seen from the Los Gatos Research Inc.
(LGR) micro greenhouse gas analyzer (MGGA) (also referred to in the literature as the
ultra-portable greenhouse gas analyzer (UGGA)) or the Picarro G2301 and G4302. These
instruments are typically the gold standard for sensing gas, albeit they are also typically
the most heavy as well. Other sensors used consist of non-dispersive infrared (NDIR),
ceramic metal oxide sensors (CMOS) [99–102], photo-ionization detectors (PID, such as the
Honeywell MiniRAE® 3000) and electro-chemical sensors (review of applications [103].

A recent survey paper in [104] outlined new electronic nose technologies and applications.
As the need for low cost sensing solutions increases and becomes commercially available, we
are faced with evaluating the accuracy and characteristics of these sensors for practical use,
such as in the work by [105] where low cost commercially available sensors were evaluated
for precision and accuracy in a gas mixing chamber, providing promise for applications in
continuous monitoring applications. Once these sensors can be evaluated and integrated on a
platform with suitable sensor characteristics, they can be applied in practice.

For example, in [102], they demonstrated a proof of concept using a chemical multi-
sensor payload for gas monitoring based on the DJI S900 platform. Or in [106], a semicon-
ductor type sensor (Testo Gas Detector, Testo SE & Co. KGaA, Titisee-Neustadt, Germany)
was used on a DJI M600 to analyze the spatial distribution of methane at a landfill, as well
as compared different spatial interpolation techniques. This required calibration and
consideration of the vehicle’s critical velocity.

For sUAS, lightweight and accurate wind sensors are needed to provide in situ
measurements that can be used in the quantification methodology. Some examples of
lightweight sensors can range from five hole probes (or multi-hole probes) to ultrasonic
anemometers that utilize time of flight (e.g., Anemoment (Longmont, CO, USA) Trison-
ica used in [107] or the Gill (Lymington, Hampshire, UK) WindMaster used on the OP-
TOKopter [108]) and resonance based (FT Technologies FT742 and FT205 used in [109])
to more custom micro electrical mechanical systems (MEMS)-based solutions (such as
in [110]). These wind sensors can also be applied to general wind profiling and mapping
applications. For example, in [111], they used in situ wind measurements on sUAS for un-
derstanding the atmospheric boundary layer by developing wind profiling measurements
using wind-induced perturbations. Mapping wind distributions over complex terrain
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was explored in [112], where they utilized a Gill WindMaster 3D ultrasonic anemometer
mounted on a octocopter (called the WindLocater).

Wind and temperature profiling from fires were explored in [113] based on wind mea-
surements using the Trisonica. Vertical velocity measurements of aerosol cloud interactions
were compared with ground-based radar in [114]. If payload limitations prevent integra-
tion of an on-board wind sensor, wind estimation techniques can also be explored, such
as in [115,116]. For a more thorough understanding of different sensors and estimation
techniques, we refer the reader to [117].

The choice of a platform and ancillary equipment depends directly on the choice
payload system (e.g., the collection of on-board sensors) that needs to be integrated onto
the sUAS. For LDAQ, this typically includes lightweight methane and wind sensors. Due
to sUAS payload capacity limitations, this often leads to integration problems as the weight
of methane sensors can vary greatly depending on the desired sensitivity and response
time (e.g., from a couple hundred grams to a couple kilograms). Lightweight and low cost
methane sensors (such as CMOS) are slower in response and are less sensitive. For high
accuracy and fast response sensors, which typically weigh more, this ultimately affects the
selection process of sUAS, requiring bigger and more costly platforms to maintain safe
stability and control.

For this reason, ground-based wind sensors are often used (placed adjacent to op-
erating area) with smaller sUAS platforms gathering the in situ methane measurements.
The data from these two systems are collected by a local data acquisition system for live
observation and post-processing. This kind of configuration, implicitly assumes that the
average wind, or mean wind field, represents the overall sensing region quite well. This is
usually only the case in rural areas, where there are little to no obstructions (i.e., trees, hills,
buildings, infrastructure, etc.). Most of the scenarios faced in practice, however, deal with
obstructions and require on-board, or in situ, wind measurements.

This decision requires platform specific knowledge (e.g., hardware setup, autopilot,
co-pilot software, etc.) as well as desired payload knowledge, which will vary depending
on the desired application, sensitivity, measurement mode, and so on. For these reasons,
and since this manuscript’s focus is on detection and quantification methodologies, we
omit these details in this manuscript, and suggest that the interested reader see [118] for a
guide on sUAS platform selection.

Payload integration strategies for methane sensors include several configurations, such
as the boom-mounted, bottom-mounted, or top-mounted (see Figure 2). Boom-mounted
approaches typically consist of TDLAS based sensors, which are subject to disturbances in
the measurement from downwash of the propellers. This is avoided by placing the sensor
out front of the aircraft along a boom and sampling when the effective wind speed over
the sensor is greater than 2 m/s [119].

Figure 2. Payload configuration examples of (a) boom-mounted TDLAS on a DJI M210 used in [120],
© 2020 IEEE, used with permission, (b) top-mounted anemometer in a wind tunnel showcasing the
effect of propellers on the streamlines used in [108], and (c) bottom-mounted RMLD used in [121].

Bottom-mounted approaches are typically used with bs-TDLAS or OGI. The sensor
is mounted on a gimbal system or sometimes hard mounted to the aircraft frame. Top-
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mounted approaches on typically only suitable for bs-TDLAS or OGI based methods.
Point source measurements with TDLAS will, on average, underestimate the concentration
(see [69] for more details). On the contrary, top-mounted wind sensors can provide high
accuracy if translational and induced wind velocities can be removed [108].

4. Advanced Leak Detection and Quantification Methods

In this section, we overview the conventional and sUAS-based advanced leak detection
and quantification (LDAQ) methodology. The LDAQ methods utilize several concepts
and approaches within numerics, control, and optimization as well as approaches based
on different available sensing modalities (see Figure 3 for effective length-scales). In this
manuscript, we divided these approaches into five general categories, namely: Simulation-
based (Section 4.1), Optimization-based (Section 4.2), Mass-Balance-based (Section 4.3),
Imaging-based (Section 4.4), and Correlation-based (Section 4.5).

In the Simulation-based approaches, the methods depend heavily on simulation and
computational tools for solving dynamic partial differential equations, which are used
to determine the source rate estimation. Sometimes other source parameters are also
estimated in the process and this is typically referred to as source term estimation (STE)
or the source determination problem (SDP). Two methods that show up in the literature
are backwards Lagrangian stochastic (bLS) and mesoscale recursive Bayesian least squares
inverse (RB-LSI).

The optimization-based methods showcased in this manuscript depend on some
form of a parameterized system model, which undergoes a model fitting or recursive
optimization (statistical or information based). Many of these methods include several
variations of the point source Gaussian (PSG) solution of the classical Gaussian plume
model. This is seen in the PSG approach based on the EPA’s other test method (OTM) 33A,
where the data is gathered from a single sensor downwind and undergoes model fit of the
peak concentration measured.

Next is the conditionally sampled PSG (PSG-CS) approach that utilizes meteorological
data in the model fitting process using conditionally sampled concentration data based
on the incremental changes in wind direction. Another variation to this is the recursive
Bayesian PSG (PSG-RB) that utilizes a moving sensor and meteorological data to condition
the models likelihood function and prior for updating the posterior distribution that is
used to quantify the source estimate. This approach also considers past knowledge about
equipment characteristics if this is known.

A different approach to the Bayesian way of thinking is to solve for the parameters of
the model conditioned on the observations. This approach also utilizes a particle filter and
Markov Chain Monte Carlo (MCMC) to update the posterior and is referred to as the PSG
sequential Bayesian MCMC (PSG-SBM). The last optimization approach mentioned in this
manuscript is the Near-Field Gaussian Plume Inversion (NGI) approach.

The NGI utilizes fitting the Gaussian plume model based on sampling of a perpen-
dicular plane downwind of the source. The vertical and horizontal dispersion relations
are used to find the center of the plume within the perpendicular plane and minimize,
by least square fit, the difference between the modeled concentration and the observed
concentration (integrated over the lateral dispersion direction).

The next category is the Mass-Balance-based approaches, which includes methods
that utilize equations based on mass conservation and continuity. The simplest approach
is the vertical flux plane (VFP), which takes a control volume approach to estimating the
emission rate by measuring the flux entering and leaving the control volume. Traditionally,
the plume is sampled using a raster scanning approach in a perpendicular plane upwind
and downwind of the source. The sparse set of observations within the plane undergo a
spatial interpolation process and are combined with the wind to estimate the source rate.

A direct variation to this approach is the cylindrical flux plane (CFP), which the
sensing system measures concentrations on successive loops around the source at different
altitudes. The flux going into and out of this cylindrical plane is used to estimate the
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flux. Using different sensing modalities (such as imaging or backscatter-based sensors),
a path integrated vertical flux plane (PI-VFP) method can be formulated. Both aircraft
and sUAS-based approaches to PI-VFP have been implemented, which rely on horizontal
scanning of the area of interest.

For sUAS-based PI-VFP, concentric circles are flown to confirm that sources are con-
tained inside the path before estimating the source rate. A flux plane approach has also
been explored using a series of TDLAS-based laser fetches at different altitudes and utilizes
the time-average of the line-integral of the instantaneous product of the wind speed and
concentration. This is advantageous to other VFP approaches as it provides very good
performance and does not take time to scan the plane. However, it is in ways impractical
as it requires setup of the laser fetches and knowledge of the source geometry.

The next method is the Gauss divergence theorem (GDT) approach. It utilizes the CFP
approach with mass flux continuity as well as the expected time rate of change of the mass
within the control volume to estimate the source rate. Another VFP approach was included
in this review that uses Gaussian plume model optimization with a general linear model
(GLM) to help determine the contributions of multiple sources. This approach is referred
to as the VFP-GLM.

The last Mass-Balance-based approach is vertical radial plume mapping (VRPM).
The VRPM approach uses a ground based laser with retro-reflectors at different altitudes
downwind of the source. The path integrated concentrations are measured at different
radial angles and used to estimate the flux.

The next category is the Imaging-based approaches that utilize MWIR, hyperspectral
cameras, and absorption spectroscopy (such as iterative maximum a posteriori differential
optical absorption spectroscopy (IMAP-DOAS)).

The last category covered in this manuscript is the correlation-based approaches,
which includes the traditional Eddy covariance (EC) method (in brief) and the tracer
correlation method (TCM). The TCM has also been referred to in the literature as the tracer
dispersion method (TDM) and atmospheric tracer method (ATM).

Figure 3. Conventional methods and their effective emission quantification length-scales [70], © 2019
Elsevier, used with permission.

4.1. Simulation-Based
4.1.1. Forward Modeling

Forward modeling is typically used for projecting or forecasting dispersion. Forward
modeling is not directly used in emission quantification by itself, but rather paired with
feedback in the optimization sense. This can include numerically solving a governing set
of equations, such as the advection diffusion equation (ADE) or applying a parameterized
general model (such as the Gaussian plume). It is also common in practice to utilize
existing numerical models, such as the WindTrax 2.0, WRF model, FLEXible PARTicle-
Weather Research and Forecasting (FLEXPART-WRF), SCIPUFF, QUIC, and others that can
be Lagrangian-base, include turbulence e.g., Large eddie simulation (LES), and Reynolds
averaged Navier Stokes (RANS). Interested readers can check the review paper from [122]
on dispersion models.
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4.1.2. Backward Lagrangian Stochastic (bLS)

The accepted backward modeling approach used in the draft OTM- 33A document [23]
and in several applications (e.g., Dairy Farm [123], etc.) is the backwards Lagrangian
stochastic (bLS) approach by [124]. The bLS approach aims to answer the general questions:
What is the proper form of the LS trajectory model? As well as, how can source estimates
be extracted from the particle’s backward LS trajectory? The forward model, formulated as
a generalized Langevin equation, is evolved jointly as a Markov process,

dui = ai(x, u, t)dt + bi,j(x, u, t)dξ j, dxi = uidt, (9)

where the particle position is given by x = (x1, x2, x3) = (x, y, z), and dξ j is a random
increment governed by Gaussian process. The functions ai and bi,j have to be specified
such that the velocity probability density function, ga(x, u, t), satisfies the Fokker–Planck
equation (FPE) [124],

∂ga

∂t
=

∂

∂xi
(ui, ga)−

∂

∂ui
[ai(x, u, t)ga] +

∂

∂xi
[Bi,j(x, u, t)ga]. (10)

This method provides a source estimation for an area source given the source lo-
cation (with unknown source rate) and assuming horizontally uniform surface source
atmosphere in horizontal equilibrium (see Figure 4). To make an emission estimate using
bLS, the method utilizes the dispersion model relation,

Figure 4. A diagram depicting the bLS approach [124], © American Meteorological Society, used
with permission.

UC
Q

= n = f (zm, z0, L, h, G), (11)

where L is the Monin–Obukhov length, h is the depth of the mixing layer, G describes the set
of parameters characterizing the plume, and zm represents the measurement height. As the
particles from the back trajectories touchdown in the source area, the vertical velocities, w0
are logged and used to estimate n,

n(zm) =
C(zm)U(zm)

Q
=

1
N ∑

∣∣∣ 2
w0/U(zm)

∣∣∣. (12)

Once n is known, an estimate of the source rate can be determined using the measured
concentration and wind speed, Q = n/(CU). In this approach, due to the time-averaged
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ensemble, the accuracy improves over time (nominal averaging period of 15 min [124]).
An alternate expression for the emission estimate is given as

QbLS =
C− Cb

(C/Q)sim
, (13)

where Cb is the background concentration and (C/Q)sim is calculated using

(C/Q)sim =
1
N ∑ |

2
w0
|. (14)

This Monin–Obukhov similarity theory (MOST)-based bLS emission estimation method-
ology was validated against the mass balance approach (given the along-wind distance of
the source D),

Qm =
1
D

∫ ∞

0
C(z)U(z)dz, (15)

and field tested in [96,125,126]. A lagoon environmental leak was simulated and explored
with the bLS approach by constructing a large 45 m by 45 m emission source on a pond.
The accuracy was shown to be lower during the summer period due to more frequent
unstable atmospheric conditions [127].

4.1.3. Mesoscale Recursive Bayesian Least Squares Inverse (RB-LSI)

Utilizing the NOAA P-3 aircraft and a wavelength-scanned CRDS, ref. [71] used a
mesoscale bayesian least squares approach to solve the inverse problem of estimating emis-
sions. They use the FLEXPART-WRF to model the forward problem, which was compared
to physical observations and minimized on an iterative cost function that assumes lognor-
mal distributions,

J =
1
2
(ln (y0)− ln (Hx))T(ln (y0)− ln (Hx))

+
1
2

α(ln (x)− ln (xb))
T(ln (x)− ln (xb)),

(16)

where the observed concentration enhancements are given as y0, posterior solutions are x,
FLEXPART-WRF outputs are H, prior fluxes are xb, error covariance matrix from observa-
tions are R, and error covariance matrix from prior fluxes are B in the lognormal space.

4.2. Optimization-Based

In this section, we discuss the emission quantification techniques that utilize some
form of optimization in the methodology that fits a model.

4.2.1. Point Source Gaussian (PSG)—OTM33A

In [88], the point source Gaussian (PSG) is discussed. The measurement involves a
vehicle with a concentration measurement instrument (CMI) to park downwind of the
known source with the vehicle off. The CMI (such as Picarro or LGR UGGA) collects data
at roughly 2.5 m above ground at a known distance from the source. The variations in
the wind direction are measured using a sonic anemometer (e.g., R.M. Young). The PSG
calculations are based off of enhanced emission levels and can be calculated as the fifth
percentile of the concentration time series signal [88]. The PSG estimate then becomes a
simple 2-D Gaussian integration with no reflection term,

SE = 2πσyσzUmCp, (17)

where Cp is the peak concentration from the Gaussian fit, Um is the mean wind speed,
σz and σy are the vertical and lateral plume dispersion that can be determined from the
meteorological conditions, such as the Pasquill–Gifford stability classification curves [128]
(see Figure 5). The accuracy of the OTM33A method is explored in [129,130].
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Figure 5. (A) Depiction of Gaussian plume dispersion with an observer making a stationary mea-
surement downwind. (B) Resulting time-integrated data with a Gaussian fit applied [23].

4.2.2. Conditionally Sampled PSG (PSG-CS)

To capture the ensemble mean of the downwind plume behavior, a dispersion model
is used in [88]. The model is a function of downwind distance and dispersion factors
Dy(x, y) and Dz(x, z), given as

Cm(x, y, z) =
S
U

Dy(x, y)Dz(x, z). (18)

This method essentially aims to determine the source rate, S, using the conditional
mean concentration data, Cm, of the downwind plume. The lateral dispersion downwind
of a continuous point source can be shown to have a Gaussian distribution such that it can
be represented as

Dy(x, y) =
1√

2πσy
[−1

2
(

y
σy

2
)]. (19)

However, the vertical dispersion (assuming vertical eddy diffusivity and wind speed
that scales vertically to a power law) can be formulated as a parameterized stretched
exponential (originally expressed in [131]),

Dz = Dz(x, z) =
A
z

exp [−(Bz
z
)s]. (20)

The parameters z, s, A, and B are functions of the atmospheric stability and downwind
distance, x. A and B can be described using the usual Gamma function, Γ(·) as

A = sΓ(2/s)[Γ(1/s)]2, (21)

B = sΓ(2/s)Γ(1/s). (22)

The conditional averaged concentration can be calculated using

〈C|θ〉 = 1
n

n

∑
θi∈Θ

C(θi), (23)

where the set Θ(θ) = {θi : |θ − θi| < ∆θ/2, ∀i = 1, 2, ..., n} and ∆θ = 2◦. The basic idea is
to capture the plume geometry in the crosswind direction, which is further used to derive
the least squares source estimate,

S =
[ N

∑
i=1

DyDz

U
〈C|Ŷi〉

]
/
[ N

∑
i=1

(
DyDz

U
)2
]
. (24)



Drones 2021, 5, 117 15 of 42

As shown in [88], the lateral dispersion can be determined in two ways: classically,
using atmospheric stability (for constants ay and py) [132],

σy = ayz01.9(Lx/z0)
py ; (25)

and by reconstructing the lateral dispersion,

σy =

√√√√ 1
N

N

∑
i=1

Ŷi, (26)

where the N is the number of values in 〈C|Ŷ〉, and Ŷ are Ŷ values that are greater than the
minimum concentration (i.e., background) and ±40◦ off the plume center θp. The distance
Ŷ is calculated as

Ŷ(θ) = Lx sin (θ − θp), (27)

with θp = arg maxθ〈C|θ〉 (see Figure 6).

Figure 6. (a) Polar plot with the wind direction, θ as the radial axis, and the conditionally averaged
concentration, 〈C|θ〉 as the distance from the center. θp is the peak wind direction located at the
maximum conditionally averaged concentration. (b) Illustration of the wind direction geometry for
conversion of θ to crosswind position Ŷ with the source plume represented by the dashed lines [88],
© 2015 Atmospheric Environment, used with permission.

4.2.3. Recursive Bayesian Point Source Gaussian Method (PSG-RB)

In work from [133,134], a moving sensor measured a point source concentration that
can be formulated as

C(x, y, z) =
S
U

Dy(x, y)Dz(x, z). (28)

The source rate is given as S, the effective wind speed is U, and the lateral and
vertical dispersion is characterized by Dy(x, y) and Dz(x, z), respectfully. The equation is
formulated such that the downwind distance, x, is aligned with the predominant wind
direction. Since the measurement is taken at closer distances to the source, the lateral
dispersion is taken as a random function such that∫ ∞

−∞
Dy(x, y)dy = 1. (29)

This can be advantageous for instantaneous plumes. The integrated lateral concentra-
tion can be written as

Cy(x, z) =
S
U

Dz(x, z). (30)

The choice of the vertical dispersion Dz (originally expressed in [131]) is that of a
parameterized stretched exponential function,

Dz = Dz(x, z) =
A
z

exp [−(Bz
z
)s], (31)
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where z, s, A, and B are functions of atmospheric stability and downwind distance, x.
The lateral dispersion is given as

Dy =
1√

2πσy
exp [−1

2
(

yi
σy

)2]. (32)

Then, by numerically integrating (28) and incorporating the vehicle movement V,

Cy =
∞

∑
i=0

C(xi, yi, zi)∆tV = S
∞

∑
i=0

∆tV
Ui

Dz(xi, zi)Dy(xi, yi). (33)

The recursive Bayesian approach described here is based on well pads and oil and
gas production, which are used to help inform the path planning of the mobile sensor.
For brevity, we will only cover the formulation of the quantification only. Starting with the
definition of the posterior distribution,

p(S|M, W, Λ) =
p(S|W)p(M|S, Λ)

p(M|Λ)
, (34)

where M is the concentration data, W is the ancillary information (e.g., well pad character-
istics), Λ is the meteorological conditions, p(S|W) is the prior, p(M|S, Λ) is the likelihood,
and p(M|Λ) is the evidence (which can be thought of as a normalization constant for the
likelihood [135]). The prior is given as

p(S|W) =
1
β

exp
[
−
(
1 + γ

S− µ

β

)− 1
γ

](
1 + γ

S− µ

β

)−1−1/γ
, (35)

where the hyperparameters need to be fit to the application (for well-pad source, γ = 1,
µ = 0.19, β = 0.23 based on [136]). The likelihood function is chosen to be a Gaussian,

p(M|S, Λ) =
1√

2πσe
exp

[
− 1

2
(Cy − Cy,M

σe

)2
]
, (36)

where Cy,M is the modeled concentration for a given source rate, and σe is the combined
model and measurement error (outlined in [137]). The recursive approach involves replac-
ing the prior with the previous posterior distribution found using the likelihood function,

p(S|W)i =

{
p(S|W), i = 1,
p(S|M, W, Λ)i−1, i > 1.

(37)

As the number of passes increases, the posterior distribution improves and can be
used to estimate the source rate,

S =
∫ Smax

Smin

Sp(S|M, W, Λ)dS. (38)

Variations of this method were seen in [134], where the measurement noise was
assumed to be Gaussian and also included a UAV with sensor noise and utilized the flux
plane mass balance method to estimate the source rate, which was used in the calculation
of the posterior distribution. Further field tests of this method were carried out in [138].

4.2.4. Point Source Gaussian Sequential Bayesian Markov Chain Monte Carlo (PSG-SBM)

Utilizing the Gaussian plume model for the likelihood of a sequential Bayesian Markov
Chain Monte Carlo (MCMC) method, a UAV scans horizontally to update the estimated
posterior distribution in [139]. The parameters are given as Θk = [pT

s , qs, us, φs, ζs]T , were
the position is ps, source rate qs, wind speed and direction us and φs, and the model
diffusion coefficients ζs = [ζs1, ζs2]

T . The point source observations,z1:k = {z1, z2, ..., zk}
are used within Bayes rule to update the posterior,
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p(Θk+1|z1:k+1) =
p(zk+1|Θk+1)p(Θk+1|z1:k)

p(zk+1|z1:k+1
. (39)

The likelihood model,M(pk, ζk), in [139], based on observational data, zk =M(pk, ζk)
+ vk, was taken to be detection event, p(zk|Θk), if zk > zthr,

p(zk|Θk) =
1

σk
√

2π
exp[− (zk −M(pk, ζk))

2

2σ2
k

], (40)

and a non-detection event otherwise,

p(zk|Θk) = (
pb
2
[1 + erf(

zthr − µb

σb
√

2
)]) + pm + (

ps

2
[1 + erf(

zthr − (µb +M(pk, ζk))

σb
√

2
)]). (41)

The three terms in the non-detection event account for instrument noise, turbulence,
and observing concentrations above the threshold, where pb + pm + ps = 1, and µb and σb
are mean background noise and standard deviation, respectively. Using a particle filter,
the posterior can be approximated by a set of n weighted random samples {Θ(i)

k , w(i)
k }

n
i=1,

p(Θk|z1:K) ≈
n

∑
i=1

w(i)
k δ(Θk −Θ(i)

k ), (42)

where δ is the Dirac delta function. The un-normalized weights are then updated using

w(i)
k+1 = w(i)

k · p(zk+1|Θ
(i)
k+1). (43)

Once the weights are determined they can be normalized by dividing by the summa-
tion of all the weights. Additionally, an effective sample size must be considered to avoid
the degeneracy problem. The new samples undergo a MCMC step that is accepted with
the likelihood probability distribution described earlier (see Figure 7).

Figure 7. Example run of the PSG-SBM method at time steps: (a) k = 0, (b) k = 6, (c) k = 16, and
(d) k = 36. The white lines indicate the path of the UAV starting at from the beginning at the white
rectangle to the UAV’s current positions—the white quadrotor symbol. The black circle is the source
location, and the red arrow is the wind direction. The red dots are the random sample approximation
of the source parameter estimates at that respective time step [139], © 2019 Field Robotics, used
with permission.
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4.2.5. Near-Field Gaussian Plume Inversion (NGI)

The near-field Gaussian plume inversion (NGI) method [140,141] is a mass continuity
model in principle, where the upwind and downwind concentration measurements, com-
bined with wind measurements, of an emission source are differenced to quantify emission
flux. The NGI method is typically sampled around 100 m from the source. The sam-
pling aims to capture the time-invariant behavior of the plume, which, under turbulent
conditions, may not map out the characteristic Gaussian plume shape.

This is because it is assumed that spatial variability in the time-averaged plume is
Gaussian. This method was initially carried out with a DJI S900 equipped with a ultra
portable greenhouse gas analyzer (UGGA) by Los Gatos Research Inc. (LGR). The flux
estimate is derived by fitting the experimentally measured flux values, qme, to the modeled
flux values, qm0 given as,

qme = (C− Cb)U(z)ρ, (44)

where the modeled flux is given by the Gaussian model,

qm0 =
Fe

2πσy(x)σz(x)
exp (

−(y− yc)2

2σy(x)2 )(exp (
−(z− h)2

2σz(x)2 ) + exp (
−(z + h)2

2σz(x)2 )). (45)

The lateral and vertical dispersion relations are typically looked up in the PGT sta-
bility tables, however, in this method, they are assumed to be linearly proportional to
downwind distance,

τy = σy(x)/x, τz = σz(x)/x. (46)

Trying to solve (45) is not always well constrained, and thus the method proposes to
separate (45) and fit the model along the z-direction,

qme,y = qme
τzx
√

2π

(exp (−(z−h)2

2(τzx)2 ) + exp (−(z+h)2

2(τzx)2 ))
. (47)

The spatial variability in the z-direction has to be sampled to determine τz. The lateral
spatial variability τy and plume center yc are determined simultaneously,

yc =
∑j(qme,yyj)

∑j(qme,y)
, (48)

τy =

√√√√∑j(qme,yj(
yj−yc

xj
)2)

∑j(qme,yj)
. (49)

Once the unknowns, τz, τy, and yc are determined, the source emission rate, F, can
be estimated by minimizing the least square fit between qme and qmo, given Fe and τz.
The uncertainty in F and the impact of limiting τz are given in [140].

4.3. Mass Balance Based

The mass balance approach aims to estimate an emission source by balancing the
mass flux leaving or entering a control volume. Generally, there are two path planning
approaches to the mass balance method: (1) rectangular vertical flux plane (or curtain)
downwind of the source and (2) a cylindrical flux plane enclosing the source. For a well
behaved plume under stable atmospheric conditions, the downwind plume contains all
the flux. The sampling distance from the source may vary based on each submethod.
The measured flux plane data can be sparse and is typically subject to spatial interpolation.

4.3.1. Vertical Flux Plane (VFP)

The flux plane method generally involves sampling within a plane, vertically or
horizontally, upwind and downwind, of an emission source. It has been applied in sev-
eral works [9,33,37,66,76,78,120,142–149]. The plane is typically sampled using a raster-
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scanning approach, capturing the plume within the width and height of the plane. The emis-
sion rate (in moles s−1) can be estimated as,

Qc =
∫ z

0

∫ B

A
nij(C− Cb)u · n f dxdz, (50)

where nij is the mole density of air (given standard temperature and pressure), (C− Cb)
is the enhanced mole fraction (referenced to air), Cb is the background mole fraction, u
is the wind speed vector, and n f is the flux plane normal vector (see Figure 8). Since the
measurements are sparse, the integral irregularly spaced. To combat this, the sparsely
sampled points are spatially interpolated using techniques, such as inverse distance weight-
ing (IDW) [150] or kriging [151]. This is a common problem in geostatistics to interpret
unknown data, z(s0), from desired spatial locations s0 in domain Ω ∈ R2, only using N
sparse sampling points, z(si), based on some optimal weights, λi,

ẑ(s0) =
N

∑
i=1

λiz(si). (51)

For example, in ordinary kriging [151], a semivariogram is used to model the spatial
variability and, given a spatial distance, h, is defined as,

γ̂(h) =
1

2N(h)

N(h)

∑
i=1

(z(si)− z(si + h))2. (52)

This experimental semivariogram can be fitted to the model semivariogram with
one of several common functions: circular, spherical, exponential, Gaussian, or linear.
The weights are determined by solving

N

∑
j=1

λjC(si − sj) + µ(s0) = C(si − s0), for i = 1, 2, ..N, (53)

where C(·), in this context, represents the point support covariance matrix. This matrix
is related to the semivariogram, γ(h) = C(0) − C(h) [151], and the mean square pre-
diction error is σ2

e = Var(z(s0) − ẑ(s0)), which, for ordinary kriging, is minimized to
make the estimated values ẑ(s0) optimal. Furthermore, the estimator should be unbiased
(e.g., E[ẑ(s0)] = E[z(s0)]), which requires ∑ λi = 1 and the spatial mean to be stationary
E[z(s)] = µ, ∀s ∈ Ω.

If the kriging process is not stationary, it is considered, at best, an approximate
solution to the spatial interpolation problem and incorrect at worst. A better approach
could be to apply a spectral method that takes into consideration non-stationarity and
higher frequencies, namely, the high frequency kriging method [152]. Consideration of
temporal observations could be included as well, see quantile kriging in [153].

An enhanced version of the IDW was proposed in [154] to include an adaptive distance-
decay parameter based on the density characteristics of the sampled points. Available
tools, such as Kriging Assistant (KA) [155], Golden Software Surfer, or ESRI Geostatistical
Analyst for ArcMap have been used in the literature before. For irregular geographical
units with different sizes and shapes, the interested reader should consult [156].

A variation of the VFP technique is illustrated in [157], where a path-averaged long
open path duel-comb spectroscopy is operated from a ground vehicle to a sUAS with a
retro-reflector. A vertical profile is flown downwind of the source to conduct the VFP. This
technique is also vary similar to VRPM.
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Figure 8. Demonstration of using sampled flux plane data and applying kriging to it for spatial
interpolation [11].

4.3.2. Cylindrical Flux Plane (CFP)

A variation to the VFP is the Cylindrical Flux Plane (CFP). This method has been
used with manned aircraft as it is not as easy to raster-scan a rectangular flux plane.
The methodology is essentially vary similar to the VFP and can be found in the work
by [158], omitted here for brevity.

4.3.3. Path Integrated Vertical Flux Plane (PI-VFP)

A variation of the VFP is the path integrated vertical flux plane (PI-VFP). This method
utilizes a bs-TDLAS approach in that the instrument points straight down and scans or
circles the emission source (see Figure 9). In [159], the AVIRIS-NG manned aircraft used
IMAP-DOAS technique to retrieve methane concentrations and estimated fluxes using a
PI-VFP type calculation. This approach was compared with the GDT and Gaussian inverse
approaches during a joint-flight campaign.

(a) (b)

Figure 9. Example of the VFP-PI strategy via a UAV sensing in circular trajectories with (a) being an
internal leak producing a net positive flux and (b) being an external leak producing a net zero flux.
The color of the arcs are indicative of methane flux strength with green being more negative and red
being more positive [121].

The emission rates were estimated by, Q ≈ u · n ∑i Vi∆si, were Vi represents the verti-
cally integrated concentration, and ∆si is a path segment along the boundary. The individ-
ual measurements are integrated together (referred to as integrated methane enhancement
(IME)) such that IME = k ∑ XCH4(i) · S(i). The value XCH4 is the methane plumes that
exceed the minimum threshold of 200 ppm/m and k is a conversion factor.

Using an RMLD sensor fitted to a small quadrotor UAV, a circular scanning approach
can be applied to sample horizontally a site of interest. The sensor uses a bsTDLAS to
measure integrated methane emissions from a known height. The resulting measurements
are then combined with wind measurements to estimate the flux [121,160],

q =
∫ H

0

∫ W/2

−W/2
u× (X− Xb)dxdz, (54)
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where H and W are the vertical and lateral dimensions, and Xb is the background concentra-
tion. This calculation encompasses a single circular loop and if the source is encapsulated,
multiple passes can be used to estimate the source,

Q =
1
n ∑ qi. (55)

In practice, the circular flight path is actually made up of line segments that are box-
like. The source location was also identified by course raster scanning over the area of
interest followed by a more fine flight pattern free approach combined with triangular
natural neighbor interpolation. The maximum observed concentration was used for the
source location.

4.3.4. Micrometeorological Mass Difference (MMD)

Utilizing the technique from [161], sampling the plume far enough downwind of the
source, the averaged MMD can be calculated as

Q =
∫∫

U(y,z)(ρ(y,z) − ρb)dydz =
∫

χ(z)dz. (56)

The work in [162] utilized the time-average of the line-integral of the instantaneous
product of U and ρ in the y-direction. Alternatively, while using a laser fetch, an instantaneous
product of a single wind measurement U and line-averaged laser concentration was used,

χ ≈ ∆yU(z)(ρL(z) − ρb). (57)

This method can also be used to calculate the turbulent fluxes,

Qtur

Q
=

(QUρ −QUρ)

QUρ

, (58)

where QUρ is calculated from the flux term in (57) and QUρ in (59),

χ ≈ ∆yU(z)(ρL(z) − ρb). (59)

This prescription of the flux does not capture the turbulent component of the horizon-
tal flux (albeit wrong), is often necessary due to the short time-scale behavior of the wind
(e.g., limitations in wind measurement devices).

4.3.5. Gauss Divergence Theorem (GDT)

In the paper by [163], Conley et al. they focused on the continuity equation,

Qc =
〈∂m

∂t

〉
+
∫∫∫

∇ · cudV, (60)

where m is the mass of the aerosol, 〈·〉 is the expectation or average, c = C + c′ is the
concentration (comprised of an average term and a deviation term), u is the wind speed,
and V is the volume of the area of interest. The flux divergence can be expanded as,

∇ · cu = u · ∇c + c∇ · u. (61)

The surface integral is taken to be a cylinder, which can be broken into several parts:
the floor, the walls of the cylinder, and the top. The height of the cylinder is taken such
that the emission is encapsulated with the minimum and maximum height. The resulting
emission rate can be calculated as

Qc =
〈∂m

∂t

〉
+
∫ zmax

0

∮
c′uh · n̂dldz, (62)
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where z represents the altitude, and l the flight path. The temporal trend of the total mass
( ∂m

∂t ) within the volume can be estimated from the measurements. The cylinder passes can
be vertically binned and discretely summed up,

Qc =
∆m
∆t

+
z=Zt

∑
z=0

( L

∑
0

ρ · un

)
· ∆z. (63)

4.3.6. Vertical Flux Planes with GLM (GLM-VFP)

In [34], a 3D grid of airborne measurements are collected across multiple landfill sites.
The resulting downwind observational points are then spatially interpolated with IDW and
used to calculate the total mass flux. The multiple steady state Gaussian dispersion models,

C(x, y, z) =
Q

2πσyσzU
exp (

−y2

2σ2
y
)(

1√
2πσz

) exp [
−(z− L)2

2σ2
z

], (64)

are applied to a fixed grid (50 by 50 m), where the mixing ratios found over each individual
landfill was used to calculate a model mass flux (for each site, integrated along the x, y, and z
directions). The experimental measurements are then used with simulation measurements
and a general linear model,

min
α
|MF−

max

∑
i=1

(MMFi · αi)|, (65)

to approximate the emission coefficient, αi, from multiple landfill sources. The emission
findings are further corroborated with a local Eddie covariance tower measurement.

4.3.7. Vertical Radial Plume Mapping (VRPM)

The vertical radial plume mapping approach (compared with other methods in [77]),
utilizes a long path TDLAS instrument from the ground. The laser is aimed at retro-
reflectors, situated perpendicular and downwind of the source. The height of the retro-
reflector constitutes the different radial angles where the path-integrated concentrations
are combined with the normal wind component to estimate the flux (similar to VFP or
MMD). An illustration of this is seen in Figure 10.

Figure 10. A diagram of the VRPM method [77].

4.4. Imaging-Based

In this section, we overview the imaging-based methodology for quantifying methane
emissions. This typically includes techniques that sample images passively, such as TIR,
MWIR, or other OGI-based instrumentation. The methods mentioned here that can quantify
methane emissions are considered as quantitative optical gas imaging (QOGI).
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4.4.1. Mid-Wave Infrared (MWIR) and Hyperspectral

In the work by [164], the detection limits of MWIR band of a hyperspectral data was
explored using the Spatially-Enhanced Broadband Array Spectrograph System (SEBASS)
airborne instrument. They also provided a comparison between LWIR and MWIR (see
Figure 11) using the radiative transfer model,

Rs = (R↑T + R↑S) + t{εsB(Ts) + (1− εs)[
R↓T + R↓S

1− S(1− εs)
]}, (66)

where Rs is th etotal radiance at the sensor, R↑T is the upwelling emitted atmospheric path
radiance, R↓T is the downwelling emitted atmospheric path radiance, R↑S is the scatter path
radiance at the sensor, R↓S total solar radiance that reaches the surface, t is the atmospheric
transmittance, εs is the surface emissivity, and B(Ts) is the blackbody radiation at the
surface temperature.

Figure 11. Methane plume detections in the (A) MWIR and (B) LWIR ranges [164].

Other works, such as [98], have used MWIR cameras combined with two Pergam
Methane Mini G lasers in pipeline leak detection. In [165], a FLIR GF320 and a RMLD
were used together to make volumetric flow rate calculations in the laboratory using a data
fusion approach. In [166], they utilized a thermal camera and steady state energy balance
approach to estimate methane emissions from thermal anomalies in urban landfills.

4.4.2. Iterative Maximum a Posteriori Differential Optical Absorption Spectroscopy
(IMAP-DOAS)

The IMAP-DOAS method was applied to the AVIRIS-NG [30,31] aircraft and measures
reflected solar radiation between 0.35 µm and 2.5 µm with 5 nm spectral resolution and
sampling. Using a nonlinear iterative minimization of the differences between modeled
and measured radiance. The measured concentrations can be applied to the PI-VFP method
to calculate fluxes [159]. Variations in this approach for retrieving methane concentrations
has been seen in [167] for albedo correction and [39] anomaly-based mass balance.

4.5. Correlation-Based
4.5.1. Tracer Correlation (TCM)

The tracer correlation method, or isolated source tracer ratio method, initially proposed
and implemented in works by Lamb et al. [168] and Czepiel et al. [75], aims to quantify the
emission rate of an unknown gas species by releasing a tracer gas at a known flow rate while
measuring both the tracer and the unknown signals collocated downwind. This method
assumes that the location of the source is known and, at the measurement location, the plume
is well mixed. The elevated signal downwind also needs to typically be greater than 50 ppb.
The authors report uncertainty estimates of ±15%. The general equation is given as
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Qm = Qt
Cm

Ct
, (67)

where Qt is the tracer release rate, and Cm and Ct are the elevated mixing ratios of the
unknown source gas and tracer gas, respectively. A comparison study between TCM and
other fugitive emission quantification methods are studied in [77]. The effect of wind
on accuracy of the TCM was explored for landfills using WRF model [169]. An in situ
method was used to evaluate the collection efficiency of gas extraction wells based on
tracer gas [170].

Variations of the quantification of TCM were explored in [28], which quantified
emission rates based on the plume integration of a transect, peak height of the transect
using a scatter plot to calculate the ratio (best fit line), and comparison with fitted Gaussian
plume model. A landfill field comparison of methane emission models were compared to
measured emissions using TCM [171]. The TCM method was also applied to quantifying
emissions from dairy farms in [123].

A dual tracer method was explored in [172]. The second tracer provides for closer
downwind measurements that can be refined by assessment of plume position as well
as in the far-field measurements the second tracer becomes an internal standard to the
measurement. A mobile version of the TCM approach was proposed in [173].

4.5.2. Eddy Covariance (EC)

The Eddy covariance method aims to estimate the emission flux from a footprint area
given the boundary layer meteorology. Historical developments and current implementa-
tions of this method are summarized in [174]. This method generally assumes stationarity
of the measured data and fully developed turbulent conditions [175]. One way it can be
expressed is,

Q =
1

t f − ti

∫ t f

ti

(C(t)− C)(w(t)− w)dt, (68)

where the time-averaged concentration and vertical wind speed is C and w, respec-
tively. There are several assumptions required to make this flux calculation.

5. Analysis of Methods and Assessment

In an attempt to analyze the methods covered in this paper, we decided to use the
following metrics: required assumptions, sample distance, survey time, complexity, aver-
age precision, average accuracy, and average cost. The required assumptions are meant to
inform the practitioner so that the best method can be applied to a given problem. For ex-
ample, if the source location is unknown, the PSG method may not be directly applicable
unless a source location estimate is supplied. The sample distance is defined as the distance
from the source at which the required method needs measurements taken from.

The survey time consists of the time required to make a single flux estimate. Under-
standably, some methods may require multiple flux estimates in order to approximate the
emission source to within an acceptable error. Complexity is the measure of how difficult it
is to implement any given method. In order to determine a value for complexity, a scheme
was developed using figures of merit (FOM) that assigns factors and weights to the metrics
(detailed in Table 1). Determining the values for these factors were based on loose estimates,
inferred from papers found in the literature.

Ranges were assigned to the metrics to capture variations in the factors due to either
the operators or the equipment being used, and are given in Table 2. For example, some
setups may use more expensive equipment or more people for the same method and, as a
result, are reflected in the complexity metric.
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Table 1. Figures of merit for defining complexity of an estimation method.

FOM (%) Low (2.5) Medium (5) Med-High (7.5) High (10)

Operator skill 30 Little Moderate Professional Expert

Number of operators 25 1 2 3 3+

Equipment cost 15 <$10,000 <$50,000 <$100,000 >$100,000

Setup Time 20 <1 h <4 h <8 h 8+ h

Survey Time 10 <0.5 h <1 h <2 h 2+ h

Evaluating methane quantification techniques is important, and much work has
already gone into this topic through controlled release experiments and evaluation frame-
works. Examples from controlled release facilities (CRF) consist of but are not limited to
the following:

In the Joint Urban 2003 study [176,177], static sensors were distributed in an urban
setting to measure the dispersion of tracer particulates. In [178], area-averaged veloc-
ity and turbulent kinetic energy profiles were derived from data collected at the Mock
Urban Setting Test (MUST). Mock Urban Setting test (MUST) was also evaluated with
photo-ionization detectors (PID) [179,180]. MUST was further simulated using MISKAM
6 [181]. In [182], the WRF model was used to model wind and turbulence inside the Quick
Urban and Industrial Complex (QUIC) model for comparing simulated and observed
plume transport. A test plan for Jack Rabbit II was developed in [183], which aimed to
improve chemical hazard modeling, produce better planning for release incidents, improve
emergency response, and improve mitigation measures.

More recently, single-blind tests at the Methane Emission Technology Evaluation
Center (METEC) in Fort Collins, Colorado evaluated several types of LDAQ sensing
modalities as apart of the Standford/EDF Mobile Monitoring Challenge (MMC) and the
Advanced Research Projects Agency-Energy (ARPA-E) MONITOR program (such as by
vehicle, plane, and drone—shown in Figures 12 and 13). In the Standford EDF MMC it
was observed that the drone based technologies performed quite well (e.g., SeekOps) with
an R2 = 0.42 [144].

While the results shown in Figure 12 seem quite promising, there is still exists some
improvements in precision that can be made. In the ARPA-E MONITOR program, 6 of
the 11 participants tested their technologies at the METEC facility in [184] against six
other industry-based participants. Due to confidentiality agreements at the time of testing,
the data gathered from the 12 participants were aggregated to compare the methodologies
based on measurement type (handheld, mobile and continuous monitoring). However,
to the best of authors knowledge, only four of the MONITOR program participants have
published data regarding the METEC tests (shown in Figure 13).

In a white paper by Bridger Photonics, a sUAS-based approach using LiDAR-based
sensor, also demonstrated promising results even though the uncertainty is not given.
In [121], a RMLD was used on a sUAS with the PI-VFP method. In contrast, ref. [185]
utilized a portable TDLAS-based instrument and the PSG method to quantify emissions.
Lastly, ref. [186] used a dual frequency comb spectrometer (from over one kilometer away)
with the non-zero minimum bootstrap method (see [187]) and the Gaussian plume model
to estimate the source rate.

Examples from active operations with comparison to conventional OGI-based methods
are conducted in the Alberta Methane Field Challenge (AMFC) [147,188,189], which aimed
to answer the questions: Are Leak detection and repair (LDAR) programs effective at
reducing methane emissions? As well as, Can new technologies provide more cost-effective
leak detection compared to existing approaches?
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Figure 12. METEC results from the Standford EDF Mobile Monitoring Challenge [144].

Figure 13. Published METEC results of ARPA-E MONITOR program participants from: (a) [185]
using a static on-site portable TDLAS and PSG method, (b) [186] using the dual frequency comb
spectrometer and non-zero minimum bootstrap (NZMB) method [187] with Gaussian plume model,
reprinted (adapted) with permission from [186], © 2019 American Chemical Society (c) Bridger
Photonics’ group white paper using Gas Mapping LiDAR [190], used with permission, © 2019
Bridger Photonics, Inc., and (d) [121] using the bs-TDLAS and PI-VFP methods.
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Table 2. Summary of methods and their assumptions, operational details, complexity, cost, average precision, and average accuracy are generalized over implementations found in the
literature. The average precision and accuracy are given as unitless values, normalized by the true source rate (estimated source rate). (measured using 1 fixed, 2 foot, 3 vehicle, 4 manned
aircraft, or 5 UAV; cost with $ ≤ $10,000, $$ ≤ $50,000, $$$ ≤ $100,000, $$$$ ≥ $100,000; (·) represents precision normalized on estimated source rate.).

Method Assumptions Sample Distance Survey Time Complexity (1–10) Avg Precision Avg Accuracy Avg Cost

bLS
xs, horizontally uniform

surface source atmosphere in
horizontal equilibrium

20–441 m 1 15 min–4 days 1 3.8–8.5 1 ±0.16–0.36 1

(±0.07–0.85) 1 ±0.02–0.30 1 $–$$$ 1

PSG

xs, steady state source rate,
point source, plume evolution

via ground-level Gaussian
dispersion with no

obstructions

441 m 1 18–500 m 3

50 m 5
4 days 1 37–58 min 3

7.22–20 min 5
4.5–8 1 3.6–6.1 3

3.3–5.5 5

(±0.30) 1, ±0.20–0.67
3 (±0.19–0.47) 3

±0.31 5

±0.0022–0.43 3

±0.50 5 $$–$$$ 3

PSG-RB

PSG assumptions, vertical eddy
diffusivity and wind speed

approximated by power law
scheme

20–200 m 3 6 min 3 3.6–6.4 3 — ±0 3 $$–$$$

PSG-CS

PSG assumptions, continuous
source emission, constant
wind speed, vertical eddy
diffusivity and wind speed

approximated by power law

18–106 m 3 20 min 3 3.6–5.9 3 ±0.20–0.67 3

(±0.19–0.47) 3 ±0.02–0.26 3 $$–$$$ 3

NGI

constant source rate, σx and σy
linear functions of distance to
source, plume not capped by
atmospheric temp. inversion

in z-direction

50–82.25 m 5 7.35–29.62 min 5 3.3–5.5 5 ±0.21–0.58 5

(±0.06–0.53) 5 ±0.11–0.13 5 $–$$ 5

MMD xs 12–27 m 1 15 min 1 4.5–8.1 1 ±0.06 1 ±0.10 1 $$$–$$$$ 1

GDT near to no meandering, steady
state source rate 3–8 km 4 1 hr 4 5.5–7.8 4 ±0.07 4 (±0.08) 4 ±0.13 4 $$$–$$$$ 4
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Table 2. Cont.

Method Assumptions Sample Distance Survey Time Complexity (1–10) Avg Precision Avg Accuracy Avg Cost

VFP GDT assumptions 4.875–10 km 4

19.08–510 m 5
1.5–4.5 h 4

20–30 min 5 5.8–8.3 4 3.3–5.5 5
(±0.30–0.53) 4

±0.17–0.0.37 5

(±0.013–0.62) 5

±0.10–0.50 4

±0.03–0.50 5 $$$–$$$$ 4 $–$$ 5

PI-VFP GDT assumptions 3 km 4 0–6.77 m 5 20–30 min 4

15–20 min 5 5.3–7.5 4 3.3–5.5 5 (±0.34–0.58) 4

±0.82 5 ±0.27–52 5 $$$–$$$$ 4 $–$$ 5

CFP GDT assumptions 3–17.84 km 4 1 h 4 5.5–7.8 4 — — $$$–$$$$ 4

GLM-VFP GDT assumptions 0.4–2.2 km 4 2.5 h 4 6–8.3 4 (±0.21) 4 — $$$–$$$ 4

VRPM GDT assumptions 10–100 m1 1 h 1 7.1–8.6 1 ±0.18–0.21 1

(±0.21–0.33) 1 ±0.05–0.43 1 $–$$$ 1

QOGI

temperature and
pressure of gas at

leak location are the
same, gas plume

length in direction of
optical path is small

30 m 1 1 min 1 3–6.3 1 ±0.01–0.02 1

(±0.02–0.03) 1 ±0.20–0.24 1 $–$$$ 1

TCM
leak plume and

tracer plume are well
mixed

100–3546 m 3 0.5–2 h 3 4.6–7.6 3 ±0.06–0.24 3

(±0.06–0.74) 3 ±0.0056–0.17 3 $$–$$$ 3

EC
stationarity, fully

developed turbulent
conditions

25–228 m 1 — 4.5–7.8 1 (±0.08) 1 — $–$$$ 1
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In order to compare the performances of the each of the methods to one another, their
performance metrics were garnered from different studies where the method was utilized in
either a field study or a controlled release scenarios and recorded in Table 2. Performance
values were gathered from the standard deviations of consecutive flux estimates of a
singular source leak scenario. Accuracy pertains to error of the flux estimate to the known
source rate.

This information was limited primarily to controlled release scenarios. For each method,
performances and details were separated into the broad types of sampling strategies: fixed/
static, on foot, mounted on a vehicle, mounted on an aircraft, and mounted on a sUAS. This
prevents convolution of performance values between, for example, long aircraft sampling
flights at far distances and short sampling flights near the source via sUAS.

6. Summary of Methods

After analyzing the quantification methods, we can separate the methods based on
whether they have used sUAS or not. In this manuscript, we observed that the sUAS-
based methods consist of near-field Gaussian plume inverse (NGI), vertical flux plane
(VFP), and the path-integrated vertical flux plane (PI-VFP). The non-sUAS-based methods
consist of backwards Lagragian Stochastic (bLS), point source Gaussian (PSG), recursive
Bayesian point source Gaussian (PSG-RB), conditionally sampled point source Gaussian
(PSG-CS), micrometeorological mass difference (MMD), Gauss divergence theorem (GDT),
VFP, PI-VFP, cylindrical flux plane (CFP), general linear model verticl flux plane (GLM-
VFP), vertical radial plume mapping (VRPM), quantitative optical gas imaging (QOGI),
tracer correlation method (TCM), and Eddy covariance (EC).

When comparing their performances in Table 2, it can be seen that, when categorizing
by means of mobility (i.e., fixed, on-foot, etc.), methods using static sensors show a trend
of having higher complexity values while UAV-based methods display generally lower
complexity values. For a subset of the methods, the survey times, sample distances,
and average accuracies can be seen in Figure 14. This subset was specifically displayed for
these methods had both upper and lower bounds for survey times and sample distances
along with accuracy data, which allowed for the plotting of these quantities for each
method in the form of ellipses on a log–log plot.

When analyzing this plot, it can be seen that the sUAS-based methods are generally
lower in sample distances and survey times as opposed to the aircraft-based method being
the one of the highest in both. The bLS and TCM methods are shown to have the best
average accuracy with several sUAS and mobile methods close in accuracy. The long
sample times of bLS method are due to the values reported in [191], and it is possible that
these values don’t reflect typical bLS sample times. The advantages and disadvantages of
each of the methods can be seen in Table 3 along with what typical application fields that
they were applied in.

The final ranking of the methods depends heavily on the desired application, which
also depends on factors, such as sample distance, sample time, and desired accuracy.
For that reason, it is difficult to rank the methods in general. Thus, we provide a ranking of
the methods in terms of complexity (outlined in Table 1) with highlights from the precision
and cost in Figure 15. The results indicate that the simplest methods, in terms of complexity,
are the sUAS-based NGI5 and VFP5 as well as fixed QOGI1.

The most complex methods include bLS1 and manned aircraft-based approaches.
In terms of precision, bLS1, NGI5, GDT4, VFP5, QOGI1, TCM3, and EC1 tend to be the
best. Thus, for sUAS-based methods, NGI5 and VFP5, are the most promising approaches.
Additionally, the GDT4, TCM3, and EC1 approaches can be treated as candidate methods
for future implementation using sUAS.
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Figure 14. Diagram of summary of methods (based on Table 2) showing the relationship between
typical survey time versus sample distance and there associated normalized accuracy, where lower
values represent more accurate measurements. (measured using 1fixed, 2foot, 3vehicle, 4manned
aircraft, or 5UAV).

Figure 15. Diagram of the complexity ranking of the methods (based on Table 1), showing the
relationship between the method complexity (red), precision (green), and cost (blue). The precision is
normalized on the source estimate multiplied by 10 and the cost is ranked from 0 to 10. (measured
using 1fixed, 2foot, 3vehicle, 4manned aircraft, or 5UAV).
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Table 3. Summary of the method advantages and disadvantages along with fields of application.

Method Application Advantages Disadvantages

bLS General, Oil and Gas, Agriculture Able to quantify area source and
point source emissions

Sensor is fixed, multiple
measurements, negatively impacted

by obstacles

PSG Biogas, Oil and Gas No tracer required

Negatively impacted by obstacles and
low wind speeds due to plume

advection, mobile sensors limited to
roads

PSG-RB Oil and Gas
No tracer required, accurate source

quantification in open
environments

PSG limitations

PSG-CS Oil and Gas No tracer required PSG limitations

NGI General, Oil and Gas

Assumes near-field plume
turbulence and wind meandering,

No assumption of atmospheric
stability class

Near-field ( 100 m), prop-wash
interference if unaccounted for

MMD Agriculture Able to give instantaneous flux
estimates Fixed sensors

GDT Regional Capable of giving emission
quantifications of large areas

Sample around closed volume
typically large areas, unable to

capture instantaneous methane flux

VFP General, Oil and Gas, Landfill Does not require exact source
location, ease of mobility

Stable atmospheric conditions, unable
to capture instantaneous methane

flux

PI-VFP General, Oil and Gas VFP advantages VFP limitations

CFP General, Urban Capable of giving emission
quantifications of large areas GDT limitations

GLM-VFP Landfill VFP advantages VFP limitations

VRPM Landfill Able to give instantaneous flux
estimates Fixed sensors

QOGI Biogas Able to give instantaneous flux
estimates

Gas velocity determined via gas
camera–velocity component parallel

to image plane, can be difficult to
process images

TCM General, Oil and Gas, Landfill,
Urban

Does not rely on meteorological
measurements

Mobile sensors limited to roads,
application difficulty due to outside

methane source interference

EC General, Oil and Gas Can capture emission variations
due to long time series

Fixed sensor(s), stable atmospheric
conditions, sensitive to time of day,

typically requires long sampling
times

7. Future Directions

What areas should we begin to focus and invest in, and where is the field going? One
approach is by looking more into smart sensing using sensor arrays and machine learn-
ing [192]. Leveraging gas dispersion modeling in path planning with source estimation
approaches. A recent paper in [193] showed a joint estimation method (wind and gas)
that performed fairly well compared to existing methods at reconstructing plumes within
enclosed structures.

Can these approaches be used with sUAS for smarter path planning to improve
LDAQ methodology? As these methods develop for outdoor gas dispersion modeling,
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sUAS could potentially use these concepts for improved sensor placement, which can
yield improved quantification results. For techniques, such as SEM of landfills as well as
any 2D plume reconstruction problems, the sUAS-based complex tomography techniques
outlined in [59] could be applied. Additionally, the combination of gas tomography with
mass balance approaches or model-based optimizations could yield improved emissions
estimates as well.

As survey areas become larger and harder to capture with single sUAS systems,
the use of swarms can also be leveraged to improve VFP mass balance based approaches,
such as in [194], or can be applied to the Bayesian inference framework, which aims to
maximize the mutual information, such as in [195] to estimate source parameters. Currently
regulatory hurdles and cost may prevent these systems from being applied in practice
today. Given that low cost methane sensors are being actively researched, it is possible that
swarms of sUAS may be used in the near future.

Considering that some non-sUAS methods (overviewed in this manuscript) may be
adopted by sUAS that require longer sampling times (such as PSG and TCM), the use of
power-over-tether may become desirable for increasing the survey time of sUAS. This is
demonstrated for meteorological applications in [196] and has nearly indefinite flight times.
There has also been advances in the digital transformation of technological applications
and control, where concepts, such as Digital twins are being applied to perform smart
control engineering or industrial artificial intelligence (IAI).

These techniques utilize modeling, machine learning, edge computing, and or internet
of things (IOT) approaches to create digital representations of physical assets that evolve
system parameters over time. They can be used to understand remaining useful life
(RUL) of equipment and perhaps be coupled with LDAQ to understand when to survey
equipment that is projected to fail in the near-term. This can allow the limited resources
of companies and practitioners to focus on problematic areas in an attempt to detect and
mitigate super emitters.

In a previous work, [120], plume modeling was applied to not only improve on
methodology but also aide in smarter path planning (as mentioned above). As low cost
methane sensors become more sensitive, they can be integrated into existing infrastructures
to give system status updates that can be fed back into modeling approaches, such as
with PSG-RB method’s a priori well information [133] and PSG-SBM [139]. Furthermore,
having access to a priori information and digital twins of the plume (e.g., a model of the
system), can allow for improved autonomy of the sUAS. Ultimately, by applying sUAS in
this context, early detection, and repair of methane leaks can be better approached.

8. Conclusions

Overall, this manuscript serves to capture the majority of sUAS-related emission
quantification strategies as well as provide some accuracy comparisons to more conven-
tional and non-sUAS quantification strategies. LDAQ methods based on sUAS can provide
accuracy close to the state-of-the-art conventional methods, while improving the sam-
pling distances and sampling times (see Figure 14). The advantage to using sUAS in
some cases allows for better localization of emission sources and provides more flexibility
in deployment.

Taking into consideration the operator skill, number of operators, equipment cost,
setup time, and survey times, the complexity of the methods were derived. The complexity
ranking of the methods indicated that NGI5, VFP (sUAS-based), and QOGI1 have the
simplest complexity, while bLS1 and the manned aircraft-based approaches have the
highest. Comparing the precision of each method indicated that bLS1, NGI5, GDT4, VFP5,
QOGI1, TCM3, and EC1 have the most precise estimations, while VFP4 and PI-VFP4 are
the least precise. To conclude, for sUAS-based methods, NGI5 and VFP5 are the most
promising approaches.

Additionally, the GDT4, TCM3, and EC1 approaches can be treated as candidate meth-
ods for future implementation using sUAS. Lastly, sUAS-based quantification approaches,
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outlined in this manuscript, can be combined with new modeling and control approaches
and a priori information (e.g., digital twins, machine learning, or the joint estimation
method) to improve autonomy and estimation. For interested readers, the papers and bib
file can be made available upon request.
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Abbreviations
The following abbreviations are used in this manuscript:

ADE Advection diffusion equation
AJAX Alpha Jet Atmospheric eXperiment
ALD Advance Leak Detection
AMFC Alberta Methane Field Challenge
AMOG AutoMObile greenhouse Gas
ARPA-E Advanced Research Projects Agency-Energy
AVIRIS-NG Next generation Airborne visible/infrared imaging spectrometer
bLS Backward Lagrangian Stochastic dispersion technique
bs-TDLAS Back scatter tunable diode laser absorption spectrometer
CALMIM California Landfill Methane Inventory Model
CARB California Air Resources Board
CASIE Characterization of Arctic Sea Ice Experiment
CFP Cylindrical Flux Plane
CRDS Cavity ring-down spectrometer
DiAL Differential Absorption LiDAR Method
DT Digital Twin
EC Eddy Covariance
EDF Environmental Defense Fund
EPA Environmental Protection agency
EPA FLIGHT EPA Facility Level Informationon Greenhouse gases Tool
FEAST Fugitive Emissions Abatement Simulation Toolkit
FID Flame Ionization Detector
FLEXPART-WRF FLEXible PARTicle-Weather Research and Forecasting
FPE Fokker–Planck equation
FTIR Fourier Transform Infrared

GADEN
A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in
Realistic Environments

GDT Gauss Divergence Theorem
GDM Gas distribution mapping
GHG Greenhouse gas
GLM General linear model
GLM-VFP General linear model vertical flux plane
GML Gas Mapping LiDAR™ technology
GSL Gas source localization
QOGI Quantitative optical gas imaging
ICOS Integrated cavity output spectroscopy
IDW Inverse distance weighted
IMAP-DOAS Iterative maximum a posteriori differential optical absorption spectroscopy
LDAQ Leak detection and quantification
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LDAR Leak detection and repair
LES Large eddie simulation
LiDAR Light detection and ranging
LGR Los Gatos Research
MCMC Markov Chain Monte Carlo
MEMS Micro electrical mechanical systems
METEC Methane Emission Testing and Evaluation Center
MGGA Micro greenhouse gas analyzer
MOX, CMOS, MOS Ceramic Metal oxide sensor
MMC Standford EDF Mobile Monitoring Challenge
MMD Micrometeorological mass difference method

MONITOR
Methane Observation Networks with Innovative Technology
to Obtain Reductions

MUST Mock Urban Test Setting
MWIR Mid-wave infrared
NDIR Non-dispersive Infrared
NZMB Non-zero minimum bootstrap
NGI Near-field Gaussian plume inversion
OA-ICOS Off axis integrated cavity output spectrometer
OGI Optical gas imaging
OPLS Open path laser spectrometer
OTM Other test method
PID Photo-ionization detector
PI-VFP Path Integrated Vertical Flux Plane
PMT Pollution mapping tool
PSG Point source Gaussian
PSG-CS Conditionally sampled point source Gaussian
PSG-RB Recursive Bayesian point source Gaussian
PSG-SBM PSG sequential Bayesian MCMC
QOGI Quantitative Optical gas imaging
RANS Reynolds averaged Navier Stokes
RB-LSI Recursive Bayesian least squares inverse
RMLD Remote methane leak detector
SDP Source determination problem
SEBASS Spatially-Enhanced Broadband Array Spectrograph System
SEM Surface emission monitoring
SLAM Simultaneous localization and mapping
STE Source term estimation
sUAS Unmanned aircraft system
SWIR Short-wave infrared
TDLAS Tunable diode laser absorption spectroscopy
TDM Tracer dispersion method
TCM Tracer correlation (or dilution) method
ATM Atmospheric tracer method
TSEB Two source energy balance
UA Ultrasonic Anemometer
UGGA LGR Ultraportable GHG analyzer
VCSEL Vertical cavity surface emitting laser
VFP Vertical Flux Plane
VRPM Vertical Radial Plume Mapping Method
WRF Weather Research and Forecasting Model
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