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Abstract: Explosive ordnance disposal (EOD) robots can replace humans that work in hazardous en-
vironments to ensure worker safety. Thus, they have been widely developed and deployed. However,
existing EOD robots have some limitations in environmental adaptation, such as a single function,
slow action speed, and limited vision. To overcome these shortcomings and solve the uncertain
problem of bomb disposal on the firing range, we have developed an intelligent bomb disposal
system that integrates autonomous unmanned aerial vehicle (UAV) navigation, deep learning, and
other technologies. For the hardware structure of the system, we design an actuator constructed by a
winch device and a mechanical gripper to grasp the unexploded ordnance (UXO), which is equipped
under the six-rotor UAV. The integrated dual-vision Pan-Tilt-Zoom (PTZ) pod is applied in the
system to monitor and photograph the deployment site for dropping live munitions. For the software
structure of the system, the ground station exploits the YOLOv5 algorithm to detect the grenade
targets for real-time video and accurately locate the landing point of the grenade. The operator
remotely controls the UAV to grasp, transfer, and destroy grenades. Experiments on explosives
defusal are performed, and the results show that our system is feasible with high recognition accuracy
and strong maneuverability. Compared with the traditional mode of explosives defusal, the system
can provide decision-makers with accurate information on the location of the grenade and at the
same time better mitigate the potential casualties in the explosive demolition process.

Keywords: explosive ordnance disposal; unmanned aerial vehicle; YOLOv5; UXO

1. Introduction

With the continuous strengthening of practical military training, the proper throwing
of grenades is essential [1]. Due to the manufacturing process of military enterprises, the
turbulence of storage and transportation, and the mishandling during training, an explosion
rate of 100% after throwing a live ammunition grenade is not guaranteed, resulting in
a UXO. Especially while training new recruits who are not familiar with and do not
understand the operations of grenade throwing, coupled with tension and their inner
fears, the probability of UXO in actual training cannot be underestimated, and the UXOs
produced in training can explode at any time, which not only affects training, but also
seriously threatens personal safety [2].

Currently, most unexploded ordnance detection and disposal technologies are con-
ducted manually or with EOD vehicles. They are destroyed, defused, or relocated de-
pending on the situation on-site and the risk factor [3]. There are two main forms of
explosive discharge: direct detonation and ineffective explosives. Both forms have the
characteristics of a slow elimination rate and incomplete detonation. Since there are many
types of grenades and different forms, there is also great uncertainty regarding the disposal
scheme, required equipment, key technology, and EOD equipment for handling explo-
sives. Currently, military training with live ammunition mostly uses the all-plastic hand
grenade without a steel ball, which has a small volume and a dark color. The ground of
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the training area for throwing grenades is uneven, the color resembles the color of the
grenade. Moreover, there are a large number of explosive fragments in the training area,
which further complicates the search for unexploded ordnance. The area surrounding the
grenade throwing site is shown in Figure 1.
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In recent years, the combination of computer vision technology and UAV technology
has become increasingly convergent, removing the basic technical limitations for UAVs in
addressing perceptual problems, secondary development, and application [4,5]. According
to the real needs in explosives search and disposal, we have developed an intelligent EOD
system based on a six-rotor UAV and deep learning technology. The system is able to
detect, recognize, and seize unexploded ordnance on its own. The UAV surveys and films
the site with a high-resolution camera. The transmitter in the sky sends the digital signal of
the captured video, and the ground station detects the returned video to accurately locate
the UXO. A small winch device and mechanical grapple are installed at the base of the
six-rotor UAV. The operator remotely controls the system to grab, transport, and destroy
the UXO. The entire process of removing and destroying UXO is well outside the kill radius
of explosives, significantly reducing casualties, which is important for army security and
stability. Compared to conventional EOD robots, the system has the advantage of accurate
target recognition, rapid action, high mobility, and ease of operation. It overcomes the
shortcomings of the traditional land EOD robot, such as slow action speed, limited field of
view, and poor adaptability to the environment. The main contributions of this paper are
as follows:

(1) An intelligent EOD system based on a six-rotor UAV was developed. Compared
with the traditional blasting method, it reduces the involvement of personnel, shortens the
blasting time, avoids direct contact between personnel and UXOs, and makes the blasting
work safer and more efficient.

(2) Based on the principle of a deep neural network, the target recognition method
is adopted by YOLOv5, which can realize the automatic recognition of UXOs in patrol,
complete the recognition task accurately and efficiently, and provide accurate informa-
tion about the location of the UXOs to the decision-makers in the field during difficult
EOD operations.

(3) Based on the UAV safety and security requirements, a mechanical gripper with
a corrugated inner edge was developed to firmly grip UXOs, and a winch device was
developed to complete the lifting of the mechanical gripper and ensure that the UAV is
outside the kill radius of the UXO’s explosion during the blast removal process.
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The structure of this paper is as follows: Section 2 introduces the related work.
Section 3 describes the research methods of this paper. Section 4 provides the experimental
results and analysis of the proposed algorithm. Section 5 is the conclusion.

2. Related Work

In some military shooting ranges or training grounds, the performance test of weapons
is often carried out, and it is inevitable that UXOs and various bullet bodies will appear,
which seriously threatens the safety of personnel. The existing explosives removal and
transfer work is carried out through two different systems or processes. Professionals
wear special EOD suits and carry out detection in the explosion area with a hand-held
EOD machine. Multi-dimensional scanning should be carried out many times during
detection. There are defects to this method of detection and transfer: (1) when detecting
and transferring, professionals need to wear explosion-proof clothes, the weight of which
is about 10 kg, and the safety of EOD personnel cannot be fully guaranteed, which easily
causes great psychological pressure; (2) the process of detection and transfer is not flexible
enough, and the transfer can only be carried out after the detection personnel leave,
resulting in a long recovery time for EOD. If special tools can be used to automatically
recognize and use machines for grasping and centralized destruction, the danger can
be effectively reduced or eliminated. Most of the general EOD robots are land robots,
which are greatly affected by the harsh environment of the shooting range and can easily
overturn [6–9]. In addition, the EOD vehicle is inconvenient to move in rugged and
mountainous areas with complex geographical conditions. If the UAV can be used for
UXO search as an EOD, it can ensure personnel safety and handle emergencies efficiently.
UAVs are characterized by flexible mobility and quick inspections, which can extremely
improve the efficiency of EOD. Using UAVs to search for UXOs and other dangerous goods
can greatly save costs and ensure personnel safety to a greater extent [10–14]. At present,
the common target detection methods of UAVs are mainly divided into two-stage target
detection algorithms and single-stage target detection algorithms [15–17]. The two-stage
algorithm uses Faster R-CNN as an example. First, the convolutional neural network is
used to extract the features of the input image, and the region proposal network (RPN)
is used to obtain the feature region candidate box more efficiently, which is conducive to
balancing the proportion of positive and negative samples. Finally, the candidate boxes are
classified, and the location information is regressed [18–20]. The single-stage algorithm uses
the ‘you only look once’ (YOLO) series as an example. This target detection model cancels
the extraction of candidate boxes, directly predicts and classifies the target location through
the end-to-end method, and converts target detection into regression prediction with a
single network, which fundamentally improves the detection speed [21–25]. Although the
two-stage target detection algorithm has high accuracy, its speed is slow, making it difficult
to meet real-time performance in practical application scenarios. The development process
of target detection based on deep learning is shown in Figure 2.
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In recent years, with the wide application of a deep learning neural network, the
complexity of target detection algorithms is higher and the model is larger, which brings
great challenges to the computing power of hardware and puts forward higher require-
ments for computing speed, reliability, and integration of processors [26,27]. The YOLOv1
algorithm, proposed by Redmon J. et al., accomplishes the first-order anchor-free detection
and directly uses a convolutional neural network to complete classification and regression
tasks at the same time, but there is a problem of low detection accuracy [28]. Redmon J. and
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others introduced optimization strategies such as batch-normalization (BN) and multi-scale
training based on YOLOv1 and obtained a YOLOv2 target detection algorithm with better
robustness and higher accuracy. The YOLOv3 algorithm adopts the DarkNet53 network
structure and introduces multi-scale prediction and nine anchor boxes of different sizes,
which greatly improves the accuracy of the YOLOv3 algorithm while ensuring real-time
performance [29]. The YOLOv4 network model was proposed by Alexey in April 2020.
The main design purpose of YOLOv4 is to balance the relationship between detection
speed and detection accuracy, such that it can be better applied in a practical applica-
tion environment [30]. The YOLOv5 network model was first released by Ultralytics in
June 2020 [31]. YOLOv5 is considerably higher than YOLOv4 in flexibility and speed, the
optimization of accuracy and speed is more balanced, and it has great advantages in the
hardware deployment of the model. Therefore, the YOLOv5 model was selected to realize
the detection of UXOs. To better release the application potential of UAV in the fields of
explosives search and disposal, to better realize effective hazard protection, and to better
reduce the personal safety risk of front-line staff, it is suggested to speed up the application
of UAV, learn from the application mode and development experience of UAV in other
business fields, and constantly carry out scientific and technological empowerment and
accurate implementation. This will allow front-line staff to make greater contributions to
national security and public security on the premise of ensuring their own safety.

3. Our Approach

During the development of the intelligent EOD system based on a six-rotor UAV,
the use environment and habits of the system are fully considered, and the system has
strong reliability, operability, and completeness. The workflow of the system is shown
in Figure 3. First, the operator delimits the UXO inspection area in the ground station.
The ground station plans the flight path according to the delimited area and sends the
plan to the flight platform to execute the planned path. During the flight process, the
UAV uses the dual-vision-integrated PTZ carried by the UAV to capture the visual image
information of the UAV patrol area in real time. The ground station detects and recognizes
the image information to assist in locating the landing point of the UXO, and then the
operator controls the UAV to complete the subsequent processing, such as grasping and
transferring dangerous objects.
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3.1. Hardware Design

To realize the function of a UAV grabbing grenade and throwing it to the preset area,
the hardware structure of the system is shown in Figure 4. The system uses a PIXHAWK
flight control board to control the six-rotor UAV. The supporting external equipment of
the UAV includes: safety switch, remote control receiving module, power module, dual
GPS (built-in Compass) module, etc. The ground station is used to control and monitor
the flight of the UAV, realize the visual image processing algorithm, and complete the
automatic recognition and positioning of the grenade. The remote controller is used to
control the flight of the UAV and display the visual image information of the dual-vision-
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integrated PTZ and UAV patrol area in real time. The digital transmission module is
used for the ground station to receive and send the flight control system command. The
global navigation satellite system (GNSS) and PIXHAWK flight control system complete
the UAV position estimation and obtain the current flight speed of the UAV according to
the captured satellite data. The winch device plays the role of controlling the up and down
lifting of the mechanical gripper. The mechanical gripper is used to grasp the UXO and
drop it to the designated safe position.
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3.1.1. Design of Winch Device

To achieve the function of grabbing UXOs and throwing them into the preset area,
we integrated the winch device, mechanical gripper, and dual-vision-integrated PTZ pod
with the six-rotor UAV. After the system detects the landing position of the UXO, the
operator controls the UAV to hover over the UXO at a fixed point. To do so, the UAV can
firmly grasp the UXO and safely drop it to a specified position while in the hovering state.
Install a winch device on the load platform under the UAV. The winch device is mainly
composed of a 360◦ continuously rotating steering engine and rotary table. The steering
engine can be controlled by the aircraft model remote controller to continuously rotate
forward and in reverse. To prevent the UAV from being damaged by the explosion in the
process of grasping UXOs, the hovering UAV is connected to the mechanical gripper with
a 5 m suspension wire, which is wound on the winch shaft of the winch device, and the
mechanical gripper is lifted and lowered by driving the winch shaft forward and in reverse
through the steering engine. To realize the remote control of the mechanical gripper, one
end of the suspension line is connected to the remote-control receiver to receive the control
signal of the gripper. The winch device is shown in Figure 5.
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3.1.2. Design of Mechanical Gripper

After the measurement and analysis of the size and weight of the grenade to be
grabbed, it was decided to adopt a closed mechanical gripper composed of hard alu-
minum alloy and glass fiber material. The maximum opening of the mechanical gripper is
110 mm: 110 mm long and 57 mm wide. The internal edge of the gripper adopts a wave
design. After clamping the UXO, using the internal edge of the wave design, the UXO
can be supported from multiple angles, such that the clamping can be more stable. To
meet the requirements of grasping torque, the steering engine of the mechanical gripper
adopts DG-995MG, with a torque of 25 kgf.cm, and the torque at the end of the gripper is
25 kgf.cm/11 cm = 2.28 kgf.cm. The torque transmitted through the mechanical gripper
can meet the requirements of firmly grasping a grenade. The mechanical gripper is shown
in Figure 6.
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3.1.3. Dual-Vision-Integrated PTZ Pod

The recognition and detection module used in the system is the TSHD10T3 dual-vision-
integrated PTZ pod. TSHD10T3 is a professional dual-vision pod with integrated 10×
optical zoom, high-precision two-axis brushless stabilization, and zoom. The PTZ adopts a
high-precision encoder field-oriented control (FOC) scheme, characterized by high stability,
small volume, lightweight, and low power consumption. The visible light movement
adopts a low illumination sensor with 4 million effective pixels. The image extracted by
this system is output by HDMI interface, which outputs 1920 * 1080 pixel high-definition
color image, and the output frame rate is 60 FPS. The pod meets the needs of recognition
and ensures the real-time performance of image recognition. The dual-vision-integrated
PTZ pod is shown in Figure 7.
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3.2. Software Design

The software architecture flow of the intelligent EOD system of the six-rotor UAV
is shown in Figure 8. The software part mainly includes the UAV control module, UXO
recognition module, and multi-process information communication module. The UXO
recognition module is mainly used to recognize UXOs. The multi-process information
communication module is mainly responsible for the timing coordination and information
sharing of software processes in the scheduling system and the coordinated operations,
such as creating processes and closing processes to prevent software collapse caused by
process blocking. The biggest advantage of this architecture is its flexibility, i.e., the system
can expand new functional modules at any time according to the actual needs by opening
a new subprocess-supporting shared memory.
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3.2.1. UAV Navigation Control Module

The system cannot only control the flight of the UAV by a remote controller, but it can
also control its flight through the UAV ground control station. The ground station is the
command center of the entire UAV system. Its main functions include mission planning,
flight route calibration, etc. The operator delimits the patrol area in the ground station and
the ground station plans the flight path in the delimited search area and sends the planned
digital signal to the flight platform through the digital transmission device to execute the
planned path. When the UAV detects the patrol area during flight, if a UXO is found on
the ground or in the grass, the detection and recognition software on the ground station
will send an alarm of “UXO found” to remind the operator. During the mission, the UAV
maintains contact with the ground control station through a wireless data link.

3.2.2. UXO Detection Module

The system adopts the YOLOv5 detection model to accomplish the dual-vision intel-
ligent detection of visible light and infrared light of the UXO, which greatly reduces the
restrictions on the use and scope of the equipment, and the model can perform tasks the
entire day. The model does not rely on a high-performance computing platform and can
better complete the task of UXO detection. YOLOv5 is the latest real-time target detection
algorithm of the YOLO series. It inherits the advantages of the YOLOv4 algorithm and
optimizes the backbone network to improve the accuracy of small target detection. The
mosaic data enhancement method is adopted as the input of YOLOv5, and random scaling,
random clipping, and random arrangement are used for splicing to improve the detection
effect of small targets. In addition, the algorithm integrates adaptive anchor box calcula-
tions. During each training, the optimal anchor box value shown in different training sets
is adaptively calculated. In network training, the network outputs the prediction frame on
the basis of the initial anchor frame, compares it with the real frame to calculate the gap
between them, and then reversely updates and iterates the network parameters. Since the
size of the training images cannot be guaranteed to be the same, the original YOLO images
are uniformly scaled to a standard size, as shown in Figure 9, and then sent to the detection
network [32]. The introduction of an adaptive image scaling algorithm reduces the black
edges at both ends of the image height, and the number of calculations will be reduced
during reasoning, i.e., the speed of target detection will be improved.
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The input part completes basic processing tasks such as data enhancement, adaptive
picture scaling, anchor box calculation, etc. The feature extraction network of YOLOv5
performs down-sampling and convolution on the input image and obtains feature images
with different scales while obtaining feature information. The feature maps of deep neural
networks are sparse and have poor spatial geometric feature representation capabilities, but
their receptive fields are wide and can obtain high-level semantic information. However,
the feature map of the shallow neural network is dense, so it has strong spatial geomet-
ric feature details with a small receptive field and weak semantic representation ability.
Combining the high-level semantic information in the deep network and the geometric
information in the shallow network can improve the detection performance of the neural
network. If down-sampling is carried out in the network and the characteristic map with
the same scale as the input image is used for calculation, the number of parameters and cal-
culation will increase sharply, the requirements for hardware equipment will be improved,
and it is difficult to realize engineering application. Therefore, before inputting the image
into YOLOv5, we will reduce the image size. The network structure of YOLOv5 mainly
includes a feature extraction network, feature fusion network, and detection network. The
feature extraction network serves as the backbone network for target detection and extracts
feature information from images. As the backbone network, the backbone part includes a
focus structure and CSP structure. The key step of the focus structure is slicing, as shown
in Figure 11. For example, the original image 416 × 416 × 3 is connected to the focus
structure and transformed into a feature map of 208 × 208 × 12 through a slicing operation.
Next, 32 convolution kernel operations are performed to transform into a feature map of
208 × 208 × 32 [35].
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The main function of the neck network in the target detection network is to fuse the
features extracted by the backbone network, improve the model’s detection ability for
targets of varying scales, and diversify the features learned by the network. The neck
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feature fusion network uses a PANet pyramid structure to realize the fusion of different
scales, which aids in the detection of small targets and the recognition of targets of the
same size and different scales. Predictions include bounding box loss function and non-
maximum suppression (NMS), which is used to classify and locate targets. The loss function
used in YOLOv5 is defined as:

GIoU_LOSS = 1− GIoU = 1− (
A ∩ B
A ∪ B

− |C− (A ∪ B)|
C

) (1)

where A is the target true position frame, B is the prediction frame, and C represents the
smallest circumscribed rectangle of frames A and B. GIoU_LOSS used in YOLOv5 as a
loss function effectively solves the problem when the bounding boxes do not coincide. In
the target detection prediction result processing stage, NMS is performed for many target
frames, i.e., the category prediction frame with the maximum local score is retained, and
the prediction frame with a low score is discarded to obtain an optimal target box.

For grenade model training, PyTorch is the software framework, and the hardware
uses CPU: Intel(R) Core(TM) i9-9940X and GPU: 4 NVIDIA RTX 2080 Ti. To better obtain
the characteristics of the data and improve the model performance and generalization
ability, the model training adopts the cosine annealing algorithm, setting Epoch to 50 and
batch size to 32. The visualization results of the model training are shown in Figure 12.
The x-axis in the figure represents the epoch. Objectness represents the average value of
target detection loss, and the smaller the value, the more accurate the target detection. The
accuracy rate indicates the proportion of correct predictions in the prediction results. The
recall rate represents the proportion of all targets that are correctly predicted. Val GloU
indicates the GloU loss of the validation set. Val Objectness refers to the loss targeted
by the prediction in the validation set. mAP@0.5 means that when the intersection over
union (IoU) threshold is set to 0.5, the average precision (AP) of each category is calculated,
and then all categories are averaged to obtain the mean average precision (mAP) value.
mAP@0.5:0.95 represents the mAP obtained by averaging AP calculated at different IoU
thresholds (from 0.5 to 0.95, step size 0.05: 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95).
The results demonstrate that the training model achieves a good model performance and
satisfies the accuracy requirements of real-time target detection.
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4. Experimental Results and Discussion

To comprehensively evaluate the feasibility and practicality of the intelligent EOD
system of a six-rotor UAV, a real-life UXO capture test was carried out in this paper. The
physical display of the system is shown in Figure 13.
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Figure 13. Intelligent EOD system based on six-rotor UAV.

The system planned the UXO search area through the ground station and sent the
corresponding flight command to the UAV through a digital transmission communication
to control the movement of the six-rotor UAV. The dual-vision-integrated PTZ pod carried
by the UAV was used to capture the visual image information of the UAV patrol area
in real-time, which then transmitted and processed the visual image signal through the
image transmission sending end. The image transmission receiving end received the video
signal and then introduced the data to the ground station. Real-time video is detected and
recognized by the ground station, which can locate the UXO position, then we operate
a platform system to complete the follow-up process, i.e., grasping and transfer. Taking
the grenade UXO as an example, the flying altitude of the UAV is 3 m, the detection and
recognition results of the system in a crater, night, soil, grass, and gravel are shown in
Figure 14. It can be seen from the figure that the algorithm used in this paper has high
accuracy in the actual scene test and can well provide auxiliary positioning for follow-up
UXO capture and processing.

When the system recognizes a UXO, the ground station will trigger an alarm. At this
time, the UAV pilot controls the winch device and mechanical gripper through the model
remote control to accurately grasp the UXO. In this process, the operator can maintain a safe
distance for operation, which greatly reduces the probability of casualties in the process of
explosion removal. The workflow of the intelligent EOD system of the six-rotor UAV is
shown in Figure 15. First, the target area is patrolled for the UXO. Second, if the UXO bomb
is found, a retracting device lowers the mechanical gripper. Third, the mechanical gripper
firmly grasps the UXO. Fourth, the UAV places the transfer UXO in the explosion-proof
barrel. Fifth, the UAV flies away and the EOD work is completed.
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Figure 15. System EOD workflow. (a) UAV take off. (b) Patrol UXO. (c) UAV hover. (d) Lowering of
mechanical gripper. (e) Holding of a UXO. (f) Raising of mechanical gripper. (g) Transferring UXO.
(h) Placing of a UXO in an explosion-proof barrel. (i) UAV flying away.
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5. Conclusions

The traditional methods of explosives search and disposal rely on hand-held detectors
or explosives search dogs to search for UXOs, and then destroy, dismantle, or transfer them
on-site according to the actual situation. The basic principle is that the movable UXOs are
transferred first. However, it is easy to cause casualties during the transfer process. In view
of this situation, this paper designs an intelligent EOD based on a six-rotor UAV. The system
is a UAV platform with comprehensive functions and high integration. Combined with
UAV autonomous navigation, deep learning, and other technologies, intelligent explosion
detection and EOD tasks can be completed safely and efficiently. The experimental results
show that the system has good practicality and can ensure the powerful promotion of
EOD to the greatest extent. In the future, the system can also be widely used in many
aspects, such as emergency early warning, battlefield reconnaissance, material sampling in
dangerous areas, disaster relief, and express delivery.
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