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Abstract: Unmanned aerial vehicles (UAVs) are becoming integrated into a wide range of modern
IoT applications. The growing number of networked IoT devices generates a large amount of data.
However, processing and memorizing this massive volume of data at local nodes have been deemed
critical challenges, especially when using artificial intelligence (AI) systems to extract and exploit
valuable information. In this context, mobile edge computing (MEC) has emerged as a way to bring
cloud computing (CC) processes within reach of users, to address computation-intensive offloading
and latency issues. This paper provides a comprehensive review of the most relevant research works
related to UAV technology applications in terms of enabled or assisted MEC architectures. It details
the utility of UAV-enabled MEC architecture regarding emerging IoT applications and the role of
both deep learning (DL) and machine learning (ML) in meeting various limitations related to latency,
task offloading, energy demand, and security. Furthermore, throughout this article, the reader gains
an insight into the future of UAV-enabled MEC, the advantages and the critical challenges to be
tackled when using AI.
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1. Introduction

The Internet of Things (IoT) paradigm is constantly expanding to cover many fields
and applications. IoT devices present many benefits for improving services in a broad
range of contexts. The number of connected devices is forecasted to reach impressive
heights in the coming years. According to CISCO, more than 70 billion devices will be
connected by the end of 2025 [1,2]. Recently, unmanned aerial vehicles (UAVs), typically
known as drones, have attracted considerable attention from academia and industrial
communities due to their excellent capabilities and attractive features. They promise to
bring an ideal contribution to the field of IoT, based on their unique characteristics. They
offer elastic and flexible mobile features, as required in many omnipresent IoT applications,
making their integration into wireless network communication easy and feasible.

Moreover, integrating embedded intelligent devices such as cameras and sensors on
UAVs offer many advantages when monitoring hostile and unreachable environments.
In addition, they can potentially provide many services in the context of modern IoT
interconnection, such as smart cities, smart farming, smart factories, smart grids, and
intelligent transportation. The development of communication protocols and networks
has also improved the tracking and maneuverability of drones to cover many application
requirements, as well as their contribution as a critical component of the communication
network [3]. UAVs can also guarantee reliable connectivity in hostile areas with limited
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or unavailable communication infrastructure. Typically, UAVs can be deployed as aided
communication networks by integrating them into the peripheral network as flying base
stations (BSs) [4,5], relay nodes [6], or terminal nodes [7]. Therefore, they act primarily as a
means of enabling flexible communication services in remote areas when interconnections
with existing networks are lost. To this end, UAVs can be used in edge-computing (EC),
fog-computing (FC), and as crucial equipment in cellular networks [8].

IoT networks enable comprehensive connectivity for many mobile users by enabling
various emerged application services (e.g., automatic surveillance, unmanned control
vehicles and object recognition). Centralized servers, such as cloud computing (CC)
facilities and data centers, generally process and analyze the generated data by carrying out
computational intelligence based on artificial intelligence (AI). These centralized systems
are quick to deploy, inexpensive to maintain, and practical when data need to be centrally
controlled. However, they are mostly constrained by their high failure rate, security risks
and access delay. Data processing at the central level causes considerable time delays that
affect the overall system quality of service (QoS), especially regarding the response-time
requirement for latency-sensitive applications. Decentralized and distributed systems have
emerged to solve the issue of centralized system constraints. The decentralized system relies
on servers that are supposed to store a copy of the resources. Users in distributed systems
have equal access to data, yet user rights can be enabled as necessary, and data ownership
can be shared efficiently. Hardware and software resources are also allocated between
users, increasing truthfulness, reducing component failure, and enhancing reliability.

EC has recently been introduced to provide intermediate devices between the data
generator and CC services. This reduces latency and provides efficient bandwidth uti-
lization. However, due to their limited computing power and battery life, mobile devices
struggle to provide these services. To this end, mobile edge computing (MEC) solutions
have been employed to ameliorate the intensive computation and offloading bottlenecks
between end-nodes and centralized data servers [9]. They allow mobile devices to offload
their computation duties onto servers at the edge of the IoT network, such as cellular BSs
or access points. In contrast to traditional CC, MEC servers can be close to end-users. As a
result, MEC servers can deliver low latency and secure services, while saving energy for
mobile users.

Recently, UAVs have been integrated as air–ground equipment to fulfill the processing
and storage needs at IoT network edges. As a promising solution, they could provide ultra-
low latency support for latency-sensitive applications, facilitate the distribution of big data
processing and analysis, improve the scalability and management of massive mobile con-
nectivity, as well as content caching and mobile delivery [10]. The advantage presented by
their flexible mobility has facilitated the integration of UAVs with MEC services to provide
UAV-enabled MEC networks. UAV-enabled MEC is typically deployed in unpredictable
environments such as in wild, desert, and complex landscapes. Furthermore, the computa-
tion performance may be adapted based on the distance that UAVs can smoothly control.
This combination of UAV technology with MEC makes the system more advantageous
and flexible than traditional MEC systems, which are constrained by high deployment
costs due to their fixed architecture. In addition, the integration of UAV-enabled MEC
with the most recent security approaches, such as the blockchain structure, increases the
security level [11]. The blockchain is a distributed ledger that gives a secure, immutable,
transparent, and trustworthy environment for the UAVs to store their data as a transaction
in a chain of blocks [12]. This is a viable solution to mitigate the security and privacy issues
related to UAV networks. Therefore, integrating blockchain into UAVs ensures the MEC
system’s trustworthiness with the additional, advantageous features of automating data
transaction, decision-making, storage, and verification [13]. Therefore, UAVs can play a
crucial role in enabling MEC capability in IoT applications. However, many critical issues
have yet to be addressed to improve the performance of UAV-enabled MEC. Most of the
impairments are related to drones as they are autonomous and battery-powered, with
limited resources. Furthermore, given the broadcast nature of communications between
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ground-based users and UAVs, many performance aspects should be addressed, including
security, task offloading, energy consumption, resource allocation, computing capacity, and
user latency performance under various channel circumstances.

Since this topic is revolutionary in the IoT research field, reviewing the current sci-
entific achievements and technological limitations of UAV-enabled MEC networks is of
paramount importance. Furthermore, the limits of existing surveys on UAV-enabled MEC
in IoT applications have motivated us to put forward a detailed review. This paper explores
the use of UAVs in emerging IoT applications and the utility of both deep learning (DL)
and machine learning (ML) in UAV-enabled MEC systems. For instance, the authors of [14]
have elaborated a review about the energy efficiency constraints related to UAV-enabled
MEC systems for IoT devices. Additionally, the authors of [15,16] have presented a survey
about communication and networking technologies for UAVs. The research work presented
in [17] has addressed both fundamental and recent advances of computation offloading
in UAV-enabled MEC. However, only a few of the challenges are mentioned in the above
works, including energy, communication facilities, and limited resource allocation issues.
In this paper, the most critical issues and challenges of UAV-enabled MEC based on AI are
accurately outlined and discussed.

Indeed, there are several recent reviews about the UAV-enabled MEC paradigm. How-
ever, most of the previous reviews have focused on UAV energy efficiency, communication
technologies connecting various UAVs, and computation offloading in UAV-enabled MEC.
Our review considers a more practical and recent scenario wherein massively generated
data need to be processed and analyzed using AI algorithms for decision-making at the
edge of networks. This has not been considered in the previous works. Adopting AI
methods would affect all the requirements that have already been investigated, such as
energy efficiency, communication technologies, processing capacity, privacy and security,
and the autonomy of UAV-enabled MEC. Almost all domains are currently relying on AI
to outperform the traditional systems and provide decision-making systems. For instance,
Industry 4.0 has newly emerged as a revolutionary paradigm in which intelligent and
autonomous drones based on AI would be the key element. However, the integration of
autonomous UAVs based on AI is not obvious in most practical cases. This is why UAV-
enabled MEC based on AI would enable many applications in the industry community to
deploy their solutions, by cooperatively executing and processing the massive volumes
of confidential data near the users at the edge of the network. Consequently, the current
review highlights the most recent challenges and open issues of UAV-enabled MEC based
on AI, considering their various architectures and applications. We will discuss the most
recent related works on data processing at the edge, based on AI, and their advantages and
inconveniences regarding the UAV environment. We will even emphasize the effect of AI
on energy efficiency, communication technologies, processing capacity, and security when
UAV-enabled MEC architecture is considered. In addition, we propose a list of applications
with open issues that have to be taken into account when considering a UAV-enabled MEC
architecture.

The rest of this paper is structured as follows. Section 2 gives an overview of UAVs and
highlights some of their related applications. Section 3 focuses on the possible opportunities
enabled by UAVs, focusing on MEC servers. Section 4 highlights the UAV-enabled MEC
based on AI. Section 5 lists significant issues and open research directions related to UAV-
enabled MEC systems. Finally, Section 6 presents a conclusion.

2. UAV System Model

Recently, there has been an increase in customer demand for airborne intelligence
missions, which has led to the design and development of various types of UAVs in various
shapes and flight modes. This section highlights the different styles and characteristics of
UAVs and their application scenarios.
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2.1. UAVs Classification

Deploying a UAV network (known as swarms in IoT contexts) is becoming a practical
and necessary requirement for many applications. Various UAVs are currently available
on the market, with distinctive features such as supportable altitude, speed, and battery
autonomy, for multiple applications. Generally, the selection of any UAV model should
fulfill many of the criteria of the targeted application, such as QoS, energy capacity, envi-
ronmental restrictions, and federal rules [18]. There are three types of UAVs: low-altitude
platforms (LAPs), high-altitude platforms (HAPs), and satellites. Since this work focuses
on UAV-enabled MEC, UAVs are described based on many aspects.

Figure 1 categorizes UAVs into the LAPs category based on their type, size, range,
and type of rotors. Figure 2 shows the shape and form of three kinds of commercialized
UAVs: a rotary-wing drone (Figure 2a), a fixed-wing drone (Figure 2b), and a fixed wing
hybrid VTOL UAV (Figure 2c).
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Typically, UAVs present unique characteristics, being dynamic, agile, easy to repair,
easy to deploy, and offering the potential to provide various measurements wherever
and whenever required. They provide a low-cost alternative for collecting and providing
information to intelligent systems that can undertake the necessary data analysis (e.g.,
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real-time image or video analysis). UAVs will substantially promote the progress of
farming, defense, insurance inspection, law enforcement, emergency assistance, pollution
monitoring, disaster recovery, and package delivery.

The data are collected remotely through controllable devices installed on UAVs, each
triggered via the platform. The collected data are processed locally onboard the UAVs or
are offloaded to cloud servers, based on the required power. Deploying a practical UAV-
based IoT framework requires an orchestrator platform that recognizes various contextual
information about UAVs, such as flight trajectories, IoT equipment, and battery status.

Two main UAV communication networks exist: ad hoc UAV networks and UAV-
assisted aided communication networks. The former is characterized by a flexible topology
and self-organized architecture, while the latter’s main feature comprises flexible schedul-
ing at the edge side of the network.

UAVs can collect data massively by being equipped with sensors of different sizes,
forms, features, and capabilities. Many remote sensing devices for airborne and satellite
platforms are now adopting miniature and low-cost versions for UAV platforms, such as
multispectral, hyperspectral, short/medium-wave range cameras (e.g., thermal imaging
camera), and light LiDAR. Table 1 gives a list of the sensors and cameras integrated with
UAVs and their usefulness for monitoring various applications. The characteristics and
specifications of each type differ according to specifications. For example, the RGB camera
can be helpful for visual analysis, mapping and classifying objects and tracking animals
and people. Moreover, UAVs with lightweight thermal infra-red sensors can deal with
complex natural tracking such as monitoring volcanoes and forest fires, tracking animals,
and in hydrothermal scientific studies.

Table 1. Examples of UAV onboard sensors and cameras.

Sensor/Camera Utility Ref.

RGB Camera

• Visual analysis
• Mapping
• Landing
• Object classification
• Vehicle detection
• Tracking animals and people

[20]

UAV LiDAR

• Vegetation canopy analysis
• Estimation of forest carbon
• Absorption
• Mapping cultural heritage
• Building information

[21]

Hyperspectral sensors

• Land cover/land use mapping
• Vegetation indices estimation
• Biophysical, physiological, or biochemical parameter estimation
• Agriculture and vegetation disease
• Detection, including disaster damage
• Assessment

[22]

Lightweight cameras

• Visual analysis, vegetation detection and analysis, crop monitoring
• Mining
• Soil moisture estimation, fires
• Detection, water level measurement
• Land cover/land use mapping

[23]

Lightweight thermal infra-red sensors

• Tracking creatures
• Volcanoes
• Detection, including forest fires
• Hydrothermal studies, urban heat monitoring
• Islands and hazardous area tracking

[24]
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2.2. UAV-Enabled Services

UAV technology’s appealing flexibility and mobility characteristics have drawn atten-
tion in terms of integration with other networks as a way to address various challenging
applications. UAVs can be a part of IoT networks, referred to as the Internet of Flying
Things (IoFT) [25]. The IoFT can improve the availability of IoT services in areas with poor
communication coverage and limited infrastructures. For instance, UAVs can provide FC
and EC services and cellular communications in rural or developing regions and submarine
environments. As a result, reaching hostile and congested environments has become easier
and faster, thus improving emergent intervention wherever and whenever it is required.
As support to communication networks, UAVs can be dispatched as peripheral nodes with
various operating units, such as flying BSs, relay nodes, or end-node stations [7]. UAVs act
as relay/terminal nodes related to disconnected nodes, stabilizing communication links
in an ad hoc manner. A set of deployed UAVs can thereby form a flying ad hoc network
(FANET), which is a subclass of the mobile ad hoc network (MANET) [26].

In IoT networks, UAVs can potentially adopt many recent cellular and non-cellular
wireless communication networks to control the UAV on the one hand, and to enhance
the coverage and latency services on the other. The most prominent communication pro-
tocols that can be used with UAVs are IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMax), IEEE
802.15.4 (LRWPAN), cellular networks (3G/4G), IEEE 802.15.1 (Bluetooth), LoRaWAN
(LoRa), SigFox and narrowband IoT (NB-IoT) [27–31]. Typically, the choice of communica-
tion protocol depends on the desired achievable throughput, power consumption, range,
implementation cost, reliability, delay, and security. Grouped according to application
requirements, the characteristics of the most-used communication protocols are presented
in [32]. As described in Table 2, there are various available communication protocols that
can be used in UAV-enabled MEC. Each protocol is given a list of advantages and disad-
vantages regarding data rate, coverage, deployment cost, energy consumption, latency,
spectrum availability, and the number of supported users. Thus, the use of communication
technology depends literally on the application requirements.

Along with high mobility and scalability, UAVs can offer many potential opportu-
nities in terms of enabling services such as pervasive connectivity, aerial intelligence,
self-maintenance capabilities for communications, and sensor deployment. Therefore,
UAVs act as airborne BSs [33], data collectors, relay nodes [34], jammers [35], monitors [36],
edge- and cloud computing servers [37], and power suppliers [38] to support IoT applica-
tions. These will extend network coverage and provide diversified and flexible intelligence
facilities for new potentialities in modern IoT applications. In summary, as illustrated
in Figure 3, UAVs can facilitate a wide range of solutions in IoT applications. They can
provide intelligent communications by establishing wireless networks in inaccessible and
hazardous environments; they also enable parallel intelligent areal services, such as CC,
EC, and LC.
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Table 2. Characteristics of the most-used communication technologies employed in UAV applications.

Protocol Max Data Rate Max Range Deployment Cost Energy Latency Spectrum Max Connectivity Pros/Cons

NB-IoT UL: 158.5 kbps
DL: 106 kbps 15 km High

(>15,000 $/BS)

Low
(3 µA rest,
Tx: 74–220 mA,
Rx: 46 mA)

1.6 s Licensed Sub-GHz
Massive
(>50,000 sensor
devices)

+ Support remote healthcare monitoring,
+ Energy-efficiency
+ Provide fast, reliable network
− High maintenance costs
− Operational cost since it is on the

licensed spectrum
− Cost of SIM card purchase
− No mobility support

LoRa LoRa CSS: 0.3–5 kbps
FSK: 50 kbps

5 km
(Urban) 15 km (Rural)

High
(100–1000 $/BS)

Very Low
(2 µA resting, 12 mA
Listening)

>1 s Sub-GHz ISM band Massive
(40,000 sensor devices)

+ Long communication range
+ Energy efficiency
+ Low operational cost
− Low data reliability
− Interference issue
− High deployment cost

SigFox UL: 100/600 bps
DL: 600 bps

10 km (urban), 50 km
(rural)

High
(>4000 $/BS)

Very Low
10–100 mW
(<0.01 mA resting, Tx:
28 mA, Rx: 10.5 mA)

10 s Sub-GHz ISM band Massive
(40,000 sensor devices)

+ Long communication range
+ Energy efficiency
+ Low operational cost
− Interference issue
− High deployment cost
− Low data reliability
− No mobility supports
− Limited number of messages per day

(140 Message/day, 12 bytes/message)

ZigBee 250 Kbps <1 km Low
(1–5 $)

High
30 mA
(3.16 µW–1 mW)
−25 to 0 dBm

15 ms ISM Moderate
(255)

+ Free license
+ The node supports
+ Flexible architecture and ease to install
+ Support mesh networking
+ Easy to control and monitor
− Security issues
− Energy consumption
− Short transmission distance
− Prone to network interference due to the

use of 2.4 GHz band

Bluetooth
IEEE 802.15.1 3 Mbps 100 m Low

(5–10 $)

Low
(1 W)
1–10 mW
0–10 dBm

3 ms ISM
(2.4–2.4835 GHz)

Low
(Over 1000 in Bluetooth
mesh networking)

+ Free of charge
+ Simplicity
− Low connectivity
− Energy consumption
− Short coverage
− Security

BLE 2 Mbps 240 m High
(>25 $)

Low
(0.01–0.5 W) 50 ms ISM

(2.4–2.5 GHz) Low

+ Low power consumption
+ Fast Connection establishment
+ Free of charge
+ Reliable for small size data transfer,

especially in IoT
− Open to interception and attack
− Short coverage
− Limited data rates
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Table 2. Cont.

Protocol Max Data Rate Max Range Deployment Cost Energy Latency Spectrum Max Connectivity Pros/Cons

5G/6G 1 Gbps (5G)
>10 Gbps (6G) 200 m High

(>13,000 $) Medium 1 ms (5G)
0.1 ms (6G) Licensed cellular

Massive
1 million/km2 (5G)
10 million/km2 (6G)

+ Increased connectivity
+ Lower latency
+ Energy efficiency plans
+ AI adoption
− High deployment cost
− Security and privacy issues
− Limited coverage

Wi-Fi
IEEE 802.11

11/54/300 Mbps
7 Gbps

250 m
100 m

High
(100–1000 $ per BS) Medium >20 ms Unlicensed ISM

(2.4–5 GHz)
Moderate
(255)

+ Mobility
+ Cost
+ Convenience
− Range
− Security
− Reliability

LTE M (Rel13
and Rel14)

1 Mbps
(LTE M Rel13)
4 Mbps
(LTE M Rel14)

12 km High
(>5000 $) Medium >150 ms Licensed LTE frequency

band
Massive
(20,000 sensor devices)

+ Support remote healthcare monitoring,
+ Energy efficiency
+ Provide fast reliable network
− Limited network capacity
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2.3. UAV Applications

Despite the strict restrictions on the civilian usage of drones, they play a promotional
role in providing many facilities and enhancements in different application scenarios.
Moreover, with the rapid development and emergence of new communication paradigms
to achieve global connectivity, drones will positively facilitate many intelligent features.
Table 3 shows a list of UAV applications in various domains, their advantages and disad-
vantages, and current research challenges.

• Agriculture:

Drones have been used to monitor large agricultural fields to detect specific diseases
that threaten the quality of plants at an early stage. The implemented system can predict
farm diseases in real-time by exploiting image processing and AI classification based on IoT
architecture, using real-time data acquisition [39]. In ref. [40], the authors have proposed an
architecture combining UAVs and wireless sensor networks (WSNs) with IoT approaches to
provide precise ecological agriculture. Another architecture for crop mapping monitoring
and disease assessment-based satellite imagery using the DL approach has been proposed
to analyze the images acquired through UAV airborne multispectral sensors [41]. Addi-
tionally, UAVs can efficiently enhance the productivity of farming activities, as referenced
in [42–44]. In addition, UAVs play an exciting role in crop monitoring by facilitating many
tasks previously restricted to the laborer and farmer [45–47].

• Industry 4.0:

The increasing demand for fast and low-cost productivity has encouraged the indus-
trial and research communities to incorporate robotics into the industrial process. UAVs
have recently attracted the attention of industrial solution providers in response to the
increased need for productivity; for instance, the authors proposed an industrial IoT-based
system that collects data by a UAV camera and sends it to a cloud server for process-
ing [48]. The design aims to monitor the industrial zone to prevent undesirable incidents
in the production process, relying on the robust intelligence of computer vision (CV) ap-
proaches [49,50]. The mining industry has also increased the level of interest in drones for
3D mapping, mine safety, and mine management [51].

• Environment:

UAVs are being adopted as a means to monitor and survey various environmental
areas. They can be used for the monitoring and data aggregation of archeological sites. For
example, the authors of [52] have reported that UAVs can present accurate and precise
images of the studied archeological space, compared to terrestrial measurements. UAV
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technologies can also be deployed in ecological monitoring systems to track wildlife in
heterogeneous territories and topographically challenging areas as a supporting platform
for traditional techniques [53]. Besides, this technology may facilitate geological researchers
when collecting remote data about many species and animals [54]. Moreover, the authors
of [55] proposed an intelligent model based on UAV, dedicated to monitoring several types
of plants using the latest computer vision algorithms and cloud computing technologies.
UAVs are also used to track wild animals over large areas [56].

• Health and emergency:

Drones can offer several benefits for public health emergencies, for instance, tackling
epidemics and contagious diseases such as COVID-19. For instance, during the COVID-19
pandemic, some governments and countries adopted drones to survey the rapid spread
of the virus, diagnose patients, and then predict the mortality risk factor by applying AI
approaches to the collected data. The drones have been used to observe crowds, broadcast
critical public announcements and information, spray disinfectants, and carry out extensive
temperature measurements in several residential areas [57]. Additionally, the lifeguard
community uses UAVs for search and rescue missions requiring rapid intervention. Their
versatility also allows obtaining a quick overview of the rescue situation instead of using
human-crewed airplanes that may take extra time to deploy [58]. Relying on UAV-enabled
MEC, AI, and CV schemes could lead to new applications that simulate visual reality,
thus enabling faster and real-time decisions in emergency interventions. For instance,
UAVs typically detect obstacles by flying over them, gathering data, extracting the most
prominent features, and making decisions based on machine vision and pattern recognition
technologies. In this manner, people with visual impairments can maneuver comfortably.
This technology is expected to be a key solution in the healthcare revolution [58].

• Smart cities and smart homes:

The urban environment is expected to acquire a massive number of dynamically
connected devices due to diverse activities wherein UAVs as mobile vehicles will have many
pivotal roles, including real-time traffic control [59], transportation [60], infrastructure
control and management [61], and buildings observation [62]. Accordingly, UAVs are
expected to provide communication services to heterogeneous smart devices in urban
areas, to improve the smart city from application perspectives [63]. For example, the
authors of [64] have proposed an architecture for 5G hierarchical IoT networks where the
UAVs play a fundamental role as a data fusion center, formation controller, and network
gateway. In another context, UAVs were used to perform lightweight parts delivery to
workstation operators within a manufacturing plant, where GPS could not provide a
practical solution for indoor positioning, in addition to intelligent shipping, intelligent
monitoring, and intelligent control [65].

• Natural disaster tracking:

During natural disasters, a rapid and effective response is required to assist the popu-
lation, avoid increasing the number of victims, and minimize the economic impact. UAVs
can respond quickly to earthquake help requests, find missing people, and facilitate the
monitoring and rescue of victims in danger of drowning during floods [66,67]. Collecting
a large amount of data from different sensors deployed in the environment, using UAV-
enabled MEC with AI algorithms, can help to rapidly predict and intervene in natural
disasters such as tornadoes, volcanic eruptions, tsunamis, and storms.

• Construction:

UAV-enabled MEC and computer vision techniques are promising solutions for the
condition assessment of civilian and public infrastructures. UAVs are being used increas-
ingly in many construction tasks, such as building inspections [68], building condition
monitoring, damage assessments of buildings after disasters [69], public site surveying
and mapping [70], safety inspections of construction sites and workers, and monitoring
the progress of construction [71].
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Table 3. Comparative study of UAV application objectives.

Application Domains Objectives Pros/Cons Future Insights Ref.

Agriculture/Precision agriculture

3 Optimizing spraying process
3 Crop monitoring
3 Crop maturity monitoring
3 Detection and prediction of various

crop diseases
3 Irrigation management
3 Artificial pollination
3 Greenhouse temperature and humidity

monitoring
3 Water assessment

+ Basic knowledge and skills are required to
operate

+ UAVs with greater capabilities cost more
− Weather conditions limit the utilization

of UAVs
− Limited energy of drones

3 Multi-UAV integration
3 Difficult to fly in harsh conditions
3 Energy efficiency
3 UAV-based autonomous decisions
3 Autonomous decision-making based on DL
3 Short-range coverage of BLE-enabled UAVS

(100 m)
3 Interference (Wi-Fi, Zigbee, and regular

Bluetooth technologies)
3 Interoperability with new raised

communication technologies
3 More work on using AI to model crop growth

and disease management is expected based on
on-farm and meteorological data

3 When developing laws and regulations for IoT
in agriculture, the involvement of the
government or agricultural department must
be assured

3 More effort should be addressed to enhance
real-time monitoring features

[72]

Industry/Construction

3 Mining industry (surface mining, underground
mines, abandoned mines)

3 Regular (e.g., monthly) routines and control of
safety and risk management

3 Strategic planning

+ Easy to control
+ Fast and real-time intervention
− The battery life limits the flying time of drones.
− Coexistence of obstacles in underground mines
− Humidity or water leakage damage the

electronic components
− Battery issues

3 More effort should be addressed to the design
and structure of UAVs dedicated to
underground environments

3 Applying ML techniques
3 Real-time processing of drone photos, recorded

movies, and efficient data collection algorithms
3 Enhance the security through blockchain

[51]

Environment/Natural disasters

3 Monitoring, forecasting, early warning systems
3 Disaster information fusion
3 Search and rescue missions
3 Damage assessment
3 Standalone communication systems

+ Reducing cost and economic losses
+ Fast intervention
+ Easy to install
− Bad weather conditions
− Limited battery
− Limited flying time

3 Data fusion and handover issues
3 Improve the UAV localization systems
3 Design efficient schemes for UAVs

[32]
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Table 3. Cont.

Application Domains Objectives Pros/Cons Future Insights Ref.

Smart cities

3 Urban security management
3 Traffic and crowd management
3 Civil security control (smart home)
3 Mobile processing units
3 Natural disaster monitoring
3 Health emergencies
3 Used to maintain connectivity

+ Enhance energy efficiency of IoT devices on the
ground in intelligent cities

+ Delivering collected data in real-time
+ Enhancing the quality of life
+ Reducing cost and economic losses
+ Low latency services (fog-computing architecture)
− Drone equips many different IoT devices,

which affect processing services and energy

3 Big data processing issues
3 Ethical and privacy
3 Licensing and legislations
3 Development of automated image data

compression algorithms,
3 Development of a network-centric infrastructure
3 Precision flying should be improved under all

weather conditions
3 Communication constraints
3 Security threats should be addressed by using

new emerged technologies (i.e., blockchains)
3 Applying ML techniques between edge/fog

computing (drone) and the IoT cloud
3 Real-time processing of swarms of drones’

photos, recorded movies, and data collection
necessitates implementing and designing
efficient power-distributed algorithms

[72]

Logistics and Transportation
3 Food delivery services
3 Delivery of official documents
3 Delivery of lightweight commercial products

+ Faster delivery of food
+ Faster response
− Data security on the transmission line
− Drones’ batteries are limited

3 Air traffic control
3 Bad weather conditions
3 Liability insurance
3 Legislations
3 Navigation system should be developed to

enable autonomous flying of UAVs
3 Limited flight time
3 Equations of motion

[73]

Wireless and cellular systems
3 Provide aerial wireless BSs
3 Used to maintain connectivity
3 Enable cellular communications

+ Low cost and no significant infrastructure
are required

+ Allows on-demand communication
+ Possibility of coverage and network

capacity enhancement
+ IoT support
+ Enhancing the performance of delivering

communication services
+ Maintaining QoS
− Battery limitation
− Interference
− Interoperability

3 Energy limitation of the UAVs
3 Channel modeling and interference

management
3 The autonomy and self-control of drones can

be improved
3 Flight time constraints
3 Performance analysis under mobility

considerations
3 Spectrum sharing with cellular networks
3 Mobile edge computing with UAV-BSs requires

more research efforts to enhance its applicability

[3]
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• Wireless and cellular networks:

Many efforts have been dedicated to harnessing the full potential of UAV communi-
cations for cellular and wireless communications in the networks industry. The research
community explored the opportunity of UAV-mounted utilization via flying relays and BSs
that can dynamically reposition themselves to boost network coverage, increase spectral
efficiency, and improve user QoS. The UAVs enable low-altitude supports beyond line-of-
sight (LOS) control and reliable communications [72]. Furthermore, UAVs can bring many
facilities to cellular IoT-based networks by providing processing facilities near the ground
for users.

2.4. UAV-Enabled and -Assisted MEC Architecture

Centralized networks are easy to maintain because they have just one point of failure.
However, due to the instability of the system categories, this design is insufficient to
respond to ubiquitous applications. A single issue affecting the core server might destroy
the entire system. Unlike centralized networks, distributed networks are deemed more
stable due to their decentralized architecture, since the entirety of the information system
is dispersed among a vast number of nodes that maintain similar conditions. This feature
improves distributed system security by making it challenging to target many users.

Furthermore, blockchain is a peer-to-peer (P2P) distributed ledger that provides a
secure, immutable, transparent, and trustless environment due to its distributed architec-
ture. Integrating this approach with UAVs allows them to record their data in the chain of
blocks as a transaction, ensuring their trustworthiness [74]. The essential foundations of
blockchain technology are intelligent contracts and consensus mechanisms. This method
eliminates the requirement for a trusted third-party system to protect data privacy since
consensus techniques maintain data integrity. The use of cryptographic methods guaran-
tees that data on blockchains are secure. These exciting blockchain characteristics increase
the applicability of UAVs in a variety of civil and mission-critical applications that use
UAV-enabled MEC architecture. Moreover, distributed systems outperform centralized
systems in terms of network speed, since the information is not stored in a central lo-
cation, and the number of users attempting to access a server is more significant than
the server can support, causing long waiting times and slowing down the system for
decentralized architecture.

Moving all computing activities to the cloud has proven an effective mechanism to
process data since the cloud offers greater processing capacity than network edge devices.
However, data-processing speeds have risen rapidly due to the size of communicated data
and the networks’ bandwidth. Therefore, CC suffers from bottlenecks due to the massive
volume of data generated in real time. Cameras in UAVs capture a tremendous amount
of video data, which the system should process in real-time to enable good decision-
making. Sending data from UAVs to the cloud server would mostly result in longer
delays. Deploying a large number of IoT devices, such as UAVs, would restrict bandwidth,
reliability and security. Therefore, processing data at the network edge would yield shorter
response times, more efficient processing, and less pressure on the network.

MEC is widely acknowledged as a vital technology to implement many methods for
next-generation IoT applications. Due to their versatility and ease of deployment, UAVs
can play various roles in delivering edge computing services. UAV-enabled MEC designs
can be classified and dedicated to a specific application scenario. A UAV can be considered
as a mobile EC server, an IoT node, or a relay. Firstly, UAVs can participate in the system as
mobile devices when they offload their computing to an MEC server. Secondly, the UAV
can act as the MEC responsible for monitoring a group of mobile end nodes. Thirdly, the
UAV can serve as a relay or gateway between mobile end nodes and an MEC server.

The UAV may be regarded as a specific user that could offload those computing tasks
exceeding its memory and processing capacity to a MEC server, as shown in Figure 4a.
UAVs typically have limited battery capacity and insufficient memory and computing
power to execute complex computational tasks. As a result, offloading their processing to
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the ground MEC server for computation may increase its battery life. In another situation,
as shown in Figure 4b, the UAV may keep the MEC server on board and fly to assist the
ground-based users with the task of computing once the ground-based users offload their
computation responsibilities to the latter. In the third scenario depicted in Figure 4c, the
UAV serves as a central relay, assisting mobile users to offload their computing tasks to a
specific MEC server.
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Despite the substantial benefits afforded by the architecture of UAV-enabled MECs
to provide low latency and high-reliability services to IoT devices, numerous challenges
remain. These challenges are found in intra-UAV communication, UAV security, air data
security, data storage, and management. Moreover, the coordination between UAVs and
ground-based users requires considerable improvement due to the system’s mobility
characteristics, which complicate communication. Another significant limitation of UAVs
is found in their low onboard battery capacity. In addition to the energy spent in hovering,
accelerating/decelerating, and climbing up/down, additional energy is consumed due to
onboard computations. Therefore, designing efficient methods for resource and energy
management is urgently required.

Furthermore, one of the major design problems regarding computation task require-
ments is the joint trajectory design in UAV-enabled MEC networks. In this regard, research
efforts should emphasize how to forecast mobile user movement and follow the trajectory
so that computing activities can be offloaded quickly, and computation results may be sent
back to users on time. The trajectory design is especially challenging when dealing with
multi-UAV-enabled MEC services. Another challenge is found in the integration of the
blockchain into UAVs. As standalone technologies, UAVs face many challenges such as pri-
vacy issues, air traffic violations, quantum attacks, ML, and algorithmic game-theory-based
attacks [13].

3. UAV-Enabled and Assisted MEC State of the Art

The rapid spread of smart devices has led to intensive computation in many appli-
cations, such as virtual reality, face and object recognition, and automatic driving. This
poses a severe challenge when intelligent devices with limited computing and energy
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resources need to perform the required tasks locally [75]. CC can be considered as an
expensive solution to overcome these impairments. In addition, the CC solution suffers
from high communication expenses and high transmission delays due to the core network’s
involvement. To this end, some prominent alternatives have been proposed to explore the
latency delay, including recalling the computation resources from the cloud to the edge of
the network.

As an extension of the edge concept, recently, MEC was intensively investigated.
MEC can bring information technology (IT) services and cloud-computing capabilities
to a mobile network, guaranteeing ultra-low delays and offering high bandwidth to the
user [76]. UAVs can be embedded with lightweight CPUs (central processing units) or
GPUs (graphics processing units) to offer computation services. Therefore, UAVs fly MEC
servers in the sky, offering controllable mobility and high-quality communication links,
supplying the existing MEC servers on the ground. In this regard, we summarize the
state-of-the-art situation regarding UAVs’ possibilities as MEC enablers or as part of a
MEC system in an IoT environment where end-nodes and actuators cannot deal with the
generated data onboard.

The research on UAV-enabled MEC or UAV-assisted MEC is in its early phases, includ-
ing using the fog and edge computing concepts instead of cloud computing to enhance
latency and computation performances in IoT users. A summary of related research activi-
ties regarding UAV opportunities as an MEC enabler or as part of a MEC system in the IoT
is listed and highlighted in Table 4.

Table 4. UAV-enabled MEC and assisted MEC research activities.

Ref. Year Evaluated Performance Metrics Summary

[77] 2021 • Communication security issue
in the dual-UAV-MEC system

A secure communication mechanism was created, dedicated to the
dual-UAV-MEC system. The main objective of this task was to
maximize the user’s security and computing capacity by optimizing
the resources and trajectory of the UAV server. The authors relied on
mathematical techniques, including the sequential convex
approximation (SCA) and block coordinate descent (BCD) algorithms
to enhance UAV-enabled MEC security and computing capacity.

[37] 2020 • Computation offloading

A hybrid DL and fuzzy c-means clustering-based algorithms were
proposed to predict the positions of ground-based users and UAVs in
a hybrid MEC (H-MEC) network. As a result, IoT devices can
efficiently offload their intensive tasks to the UAV servers.

[78] 2020 • Computation offloading
• Latency

The authors proposed an intelligent task-offloading algorithm (iTOA)
for UAV-enabled MEC services. The proposed approach intelligently
perceives the network’s environment and decides the offloading
action using the deep Monte Carlo tree algorithm. This method
outperforms game theory and greedy search-based methods in
latency performance.

[79] 2021 • Computation offloading
• Latency

UAVs were adopted in 5G mobile networks to reduce the end-to-end
latency and improve communication reliability. Using UAVs with
MEC has provided effective traffic management, resulting in
decreased latency and better offloading operations.

[80] 2021 • Energy

A novel system called GEESE was proposed to provide computation
services on the network’s edge by integrating cloudlets on multiple
aerial UAVs. The system performance has been investigated to
understand the relationship between energy efficiency and
computation task offloading.
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Table 4. Cont.

Ref. Year Evaluated Performance Metrics Summary

[81] 2021
• Energy
• Computation handling for

innovative logistic applications

The energy management of UAV-enabled MEC was investigated in
the context of a realistic autonomous delivery network. A
computational management solution was designed explicitly for
MEC-based task offloading and scheduling strategies. The integrated
solution includes both static task offloading and dynamic resource
scheduling. The experimental results have revealed that the system
can handle a greater UAV payload while using less energy.

[82] 2021 • Energy consumption

The authors addressed the issue of the energy consumption of IoT
devices in UAV-enabled MEC networks. The energy and offloading
requirements have been improved by optimizing the UAV trajectory
planning, communications, and computing resource allocation.

[83] 2020 • Energy consumption
• Trajectory planning for UAVs

A UAV-assisted MEC system, in which the UAVs acts as edge servers,
was designed to provide computing services for IoT devices. The
proposed approach is based on a k-means clustering algorithm to
minimize the energy consumption of the system by planning the
trajectories of UAVs efficiently.

[84] 2020 • Energy consumption

The Lagrangian duality method and successive convex
approximation techniques were proposed to reduce UAV-assisted
MEC computational complexity. The proposed approach aimed to
minimize total energy consumption, including
communication-related energy, computation-related energy, and
UAV energy. This was achieved by optimizing bits allocation,
time-slot scheduling, power allocation, and UAV trajectory design.

[85] 2019 • Energy consumption
• Bandwidth allocation

The authors proposed a UAV-enabled MEC architecture in which the
UAVs were considered as MEC servers. The objective of this
approach was to minimize the energy consumption of both UAV and
ground-based users by scheduling computation resources and
optimizing the UAV trajectories.

[86] 2019
• Energy consumption
• Time slot allocation
• Computation tasks

The authors have investigated a UAV-enabled MEC system based on
the time division multiple access (TDMA) model. A TDMA-based
scheme was proposed to minimize the user’s energy consumption by
optimizing the UAV coordinates, time-slot allocation, and
task partitioning.

[87] 2020 • Energy consumption
• MEC deployment

A two-layer optimization method was provided to address
deployment and task-planning issues in a UAV-enabled MEC system.
This approach proved efficient for power consumption optimization.
The proposed method was based on a differential evolution
algorithm with a removal agent.

[88] 2021 • Energy minimization
• UAV trajectory optimization

A multi-UAV architecture was proposed in which the UAVs act as
computer servers to process the ground-based user’s data and to
minimize energy consumption. In this approach, a two-layer strategy
was used to optimize the UAV’s task scheduling based on dynamic
scheduling-based bidding, whereas the second layer addressed bits
allocation and the UAV’s flight path.

[89] 2021 • Energy optimization
• Tasks offloading

UAV-enabled MEC architecture based on the Markov decision
process (MDP) was proposed to optimize mobile users’ energy
demands and task offloading. In this work, the UAVs were
considered intelligent mobile users.

[90] 2020 • Energy-saving
• Task offloading

An algorithm based on block coordinate descent and successive
convex approximation techniques was proposed to optimize data
offloading. By considering a single UAV, the proposed system
improved the tasks of offloading and energy consumption.
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Table 4. Cont.

Ref. Year Evaluated Performance Metrics Summary

[91] 2020 • Latency

A UAV-assisted MEC method was proposed, in which the UAVs
acted as intermediate devices between the ground-based users and
MEC servers. This method leveraged airborne computing and
storage facilities to minimize the execution time of offloaded tasks for
IoT users. Therefore, the task scheduling and flight path of the UAVs
were jointly optimized.

[92] 2020
• Latency
• Offloading tasks
• Security

The authors proposed a low-complexity iterative algorithm to
optimize security and privacy, subject to latency, offloading, and energy
constraints. This method was proposed to optimize the UAV location,
the user’s transmission power, UAV jamming power, offloading ratio,
UAV computing capacity, and offloading user association.

[93] 2018
• Latency
• Reliability
• Computation

An air/ground framework for MEC was proposed to combine the
capabilities of ground vehicles with UAVs in terms of
communication, computing, and storage.

[11] 2020 • Limited offloading tasks

An automatic offloading approach based on the MEC architecture
has been proposed to deal with the limited processing capabilities of
MEC servers and ground-based users. The UAVs have been used to
cache the generated data from the IoT devices and then send it to the
MEC servers, which operate in a private blockchain network.

[94] 2017 • Network connectivity

A UAV-based MEC infrastructure was proposed to improve the
network connectivity in uncovered areas. The system helped terrestrial
users to compute their tasks in circumstances such as natural
catastrophes or in rural locations without communication coverage.

[95] 2019 • Offloading tasks
• QoS

UAVs were used as MEC-aided systems in wireless communication
systems to ensure high QoS for ground-based users. The UAVs flew
around the users to provide computing services in an orthogonal way
over time.

[96] 2021 • Path planning
• QoS

A multi-UAV-enabled MEC platform was investigated to assess RL
QoS and path planning. The study studied the autonomy and
self-hovering ability of a network of UAVs relying on RL algorithms.

[97] 2019
• Power consumption
• Computing services
• Resources allocation

Mobile peripheral computing was deemed a promising technique to
address computationally intensive issues. UAV-assisted MEC based
on NOMA (non-orthogonal multiple access) can provide flexible
computing services for mobile terminals (MTs) in large-scale access
networks, as NOMA methods can be adaptive to massive
connectivity. In this work, an optimization approach was presented
to minimize the power consumption of MTs by jointly optimizing
trajectory, task offloading, computing, and resource allocations.

[98] 2018 • Propagation losses
• Energy harvesting

The authors proposed a UAV-enabled MEC and wireless-powered
architecture to tackle propagation packet loss in the IoT era.

[8] 2019 • QoS
A joint architecture using the edge and cloud models based on UAV
swarms was proposed to assure high service qualities in
resource-intensive and real-time applications.

[10] 2018 • Radio access networks
• Edge caching and computing

An AGMEN (aerial–ground integrated mobile edge network)
architecture was proposed to address many EC network issues, such
as communication, computing, and caching. The objective of this
approach was to optimally allocate computing and storage resources.
The authors deployed a set of UAVs to ensure spatial and temporal
coverage, as well as ensuring data delivery for mobile IoT users.

[99] 2021 • Real-time
• Computation overhead

A traffic monitoring system based on the multi-EYE method was
presented to detect and estimate the velocity of unmanned vehicles using
aerial image tracking. The image processing was executed in real-time
on an embedded edge-computing platform installed on the UAV.
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Table 4. Cont.

Ref. Year Evaluated Performance Metrics Summary

[100] 2020 • Reduce cost

The concept of EC with UAV was used to perform mapping and
lodging assessment in a rice crop without human interaction to
reduce maneuvering cost and improve the quality of productivity.
The process relies mainly on UAV as an edge server to execute the
DNN algorithm while processing the images.

[101] 2021 • Resource allocation

In this work, AI methods have been used in a UAV-enabled MEC
based on the NOMA system. This approach allows terrestrial mobile
users to offload their computing duties intelligently. This is intended
to increase connectivity and minimize transmission latency and
power consumption.

[102] 2019 • Resource allocation
• Energy

The authors intended to extend a 5G network for a video surveillance
application using a flying ad hoc network consisting of UAVs and EC
services. The authors aimed to increase the performance of the entire
MEC aerial platform, reduce latency, and ameliorate the reliability of
the system’s source usage.

[103] 2021
• Resource allocation
• Power control in a MEC

based system

Two approaches were proposed to deal with resource allocation and
power control in a UAV-enabled MEC system. The first approach was
a centralized multi-agent RL (MARL) algorithm, which has been
used to optimize the system’s power consumption and resource
allocation. The second approach is a federated multi-agent
reinforcement learning (MAFRL) algorithm, which has been
proposed to guarantee security and privacy.

[104] 2019 • Security
A cyber-defense approach based on a non-cooperative game
algorithm was proposed to protect a UAV-enabled MEC from
network and offloading attacks.

[105] 2019 • Security
• Privacy

A MEC server-based authentication framework was proposed to be
integrated into UAVs. This was mainly to enhance the privacy and
authentication of UAVs.

[106] 2020 • Task offloading
• Resource allocation

A UAV-assisted multi-user MEC system based on frequency division
multiple access (FDMA) under Rician’s fading channels was proposed
to test task offloading and resource allocation performances.

[107] 2019 • Task offloading
A theoretical game strategy based on three types of players was
proposed to formulate and solve the problem of offloading task
calculations in UAV-enabled MEC networks.

[108] 2018 • Task offloading
• Throughput

In this work, a UAV was used as a mobile edge server to manage
offloading processing tasks in real-time for ground-based users. A
hybrid scheme based on a semi-Markov decision process and DL was
proposed to maximize the throughput requirement.

[109] 2020 • Task offloading

Two offloading schemes for multiple UAVs-enabled MEC networks
were proposed to optimize computation time and energy
consumption. A game theory model was adopted to validate the
proposed strategies.

[110] 2018 • Transmission power
• UAV trajectory

A UAV-assisted MEC environment over the social internet of vehicles
(SIoV) with a three-layer integrated architecture was adopted. Total
utility maximization was achieved by jointly optimizing the
transmission power of the vehicle and the UAV trajectory.

4. UAV-Enabled MEC and Assisted MEC Based on AI

MEC is an effective method for overcoming time-constrained computing challenges
in resource-constrained mobile IoT devices. The objective is to bring CC services closer
to customers to minimize latency and backhaul network congestion. UAVs with storage
units, processing, and communication capabilities can function as flying MEC servers at
the IoT system’s edge. In this context, resource-constrained IoT devices may offload their
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computing activities, either partially or totally, to MEC-server-mounted UAVs through
direct line-of-sight connectivity. Nevertheless, the system faces many challenges related to
task prediction, UAV deployment, users’ association, signal processing, and joint resource
allocation. Considering the EC architecture, UAVs with flexibility and mobility are likely
to deliver decentralized solution perspectives significantly. The flying edge architecture is
intended to improve the CC capabilities of latency-sensitive and real-time IoT applications.
This enables computing offloading at the edge of IoT devices rather than centralized data
centers, reducing communication latency and facilitating real-time decision-making and
control. Since the IoT system operates with many end-devices, a large quantity of data
is offloaded to the edge devices; this requires developing mechanisms that manage and
exploit the data for various purposes, such as auto-maintenance, self-monitoring, and
prediction. There is a considerable difference between EC devices and centralized cloud
servers regarding their processing capacities and memory, limiting multiple AI technolo-
gies for data processing at the edge. Therefore, numerous criteria should be considered
when incorporating any AI technique to profit from their robustness, due to memory ca-
pacity and energy consumption constraints [111]. EC delivers resources in a decentralized
manner, allowing faster addressing of user demands than a regular CC, even with limited
computational capability. Various challenges arise, such as task scheduling, resource allo-
cation, and offloading, substantially influencing the overall performance. Nevertheless,
most of the proposed solutions are characterized by non-convexity and complexity, as
they enable continuous learning ability for the dynamic environment and make a real-time
inference with low computational complexity. Applying AI to networking challenges has
gained popularity over the past few decades. For instance, ML has been widely used
in the networking domain due to its ability to interact with complex environments and
make decisions. It may also provide eminent solutions to improve network performance in
many subdomains, such as resource allocation, network traffic prediction and classification,
congestion control, and routing [32].

In most UAV-enabled MEC architectures, a controller called the follow-me cloud
(FMC) collects information about overall system states (i.e., users, UAVs, and MEC servers).
This control unit is in charge of managing offloading activities using AI technologies.
Figure 5 displays an example of a cloudlet mounted on a UAV for a UAV-assisted MEC
system. The UAV receives offloaded tasks from an IoT device and sends the results back
upon fulfillment of the task’s execution. Furthermore, the UAV could transport the received
data to the nearest ground servers in case of complex processing requirements that overfit
the onboard cloudlet’s capabilities. The system may contain a set of UAVs that serve a
massive area of deployed IoT devices that include mobile phones, sensors, vehicles, and
robots. The data generated by the users is analyzed and treated via onboard cloudlets with
the help of the AI approach.

As shown in Table 5, the DRL, DL, and GA can be utilized to solve task offloading
challenges such as energy consumption limits, processing, and latency. Furthermore,
for resource allocation management issues, the algorithms RL, DRL, GA, and RL-ACO
might be utilized to regulate the energy consumption in UAVs and reduce the latency and
reaction time. Moreover, the later algorithms, DE and ACO, can be applied to address
joint optimization difficulties, whereas DL may enhance UAVs’ security and path planning
performance.

MEC networks should offer seamless connection, meet the QoS needs of many sensors,
and handle a vast volume of data created by physical surroundings. AI approaches offering
robust analysis, learning, optimizing, and intelligent recognition capabilities may be inte-
grated into UAV-enabled MEC systems to intelligently carry out performance optimization,
information discovery, advanced learning, structure organization, and complex decision-
making. Relevant AI techniques include supervised learning, unsupervised learning, and
reinforcement learning.
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For instance, DRL does not require labeled training data for resource allocation. Thus,
it may enhance the process of offloading choices based on various states of the channel en-
vironment. This results in reducing the energy bandwidth and computations. To that end,
an MDP method was provided to reduce the delay, energy consumption, and bandwidth
in UAV-assisted MEC by analyzing the instability of energy arrival, stochastic computation
tasks that are provided by wireless users, and a time-varying channel state [112]. According
to the authors of [113], UAV-assisted MEC-based DL and DRL would ease the develop-
ment of next-generation communications. This is particularly true for joint optimization
challenges to improve system efficiency. Furthermore, UAV communication will be incor-
porated with 6G networks, where IoT device mobility might lead to position uncertainty. In
this case, DRL, as a hybrid of DL and RL, can offer decision-making solutions and optimize
handover issues in real-time. This approach allows UAVs to move dynamically and in
real-time while assuring and minimizing communication delay [114].

Table 5. AI-based approaches used in UAV-enabled MEC.

Addressed Issues AI Approach Metrics References

Task offloading

RL Energy consumption, processing time, latency [115]
DRL Energy consumption, latency, cost [116]
GA Energy consumption, latency [117,118]

DL Security, privacy, task prediction, and
computation offloading [119,120]

FI Execution time [121]

Resources allocation

RL Resources allocation, energy [122,123]

DRL Latency, response time, resource utilization,
energy consumption [124,125]

GA Energy consumption, latency [126]
RL-ACO Throughput [123]

Joint optimization issue

RL Security and privacy, energy consumption [127]
DRL Cost, energy consumption, latency [128]
GA Energy consumption, makespan [129]
DL Energy consumption, cost [130]

RL-ACO Energy consumption [131]

Security RL Security caching [127]

Path planning RL Path planning [35,132,133]
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Authors in [134] have proved that the deep supervised learning (DSL) method min-
imizes the computation and offloading overheads and cost of mobile users in the MEC
system. This technique allows terrestrial users to obtain an optimal offloading policy, with
energy-saving and processing speed enhancement.

The authors of [91] have investigated the challenges associated with applying AI
techniques to UAV-NOMA-MEC networks. They proposed an architecture that relies
on AI-based approaches, particularly on federated learning and reinforcement learning.
The proposed framework was dedicated to enabling terrestrial mobile users to offload
their computational tasks simultaneously, intelligently, and flexibly, thus enhancing their
connectivity and reducing their transmission latency and energy consumption.

The authors of [135] used RL and transfer learning algorithms to reduce the latency and
energy consumption in UAV-enabled MEC networks. They proved that transfer learning,
when combined with RL, could significantly enhance the system training performance
when the users operated dynamically.

An optimization problem based on MDP was formulated by the authors of [35] to
address UAV trajectory optimization in UAV-mounted MEC networks. The approach
aimed to enhance the overall system QoS, maximize the long-term system reward, and
meet the QoS constraint, including the computation tasks of mobile users. In [136], the
authors have used the semi-Markov process and DRL-based algorithms to address the
UAV-enabled MEC networks’ offloading decisions and resource management policies.

The authors of [137] have developed a platform known as a flying UAV MEC, in which
UAVs are outfitted with computing resources and provide task-offloading services to users.
The suggested architecture’s primary purpose was to maximize UAV aerial trajectory,
user association, and resource allocation. The trajectory control method has been used
to address the optimization issue, assisted by an RL-based technique. The results of this
approach outperformed the results of the equivalent benchmark methods. Moreover, the
authors of [138] formulated an ML-based novel framework to optimize UAV trajectories
by estimating the user’s mobility data to find optimal initial UAV placement locations.
The joint problem, consisting of UAVs trajectories and power control to improve the sum
rate and maintain the data rate requirements of mobile users, was also addressed in the
employment of a multi-agent Q-learning-based technique. A smart offloading based on the
deep Q-learning approach was proposed by the authors of [139] to optimize performance
in terms of the delay perceived by ground devices connected to the FANET, to enable MEC
in the 5G field.

5. Discussion and Open Issues

Computational intelligence, when combined with UAVs, has improved the underlying
technologies and implementations of IoT applications. Nevertheless, researchers should
address the remaining challenges. Therefore, some significant issues need more attention
in order to benefit from UAVs for the realization of flying ECs. These issues may be
related to scientific, technological, and societal problems, including challenges regarding
the technical aspects of the technology, security and privacy concerns, and standardization.
The challenges concern both the UAVs themselves and EC devices. Therefore, great effort
is needed to address the following challenges.

Energy consumption: In any UAV-enabled IoT system, most sensors, edge devices, and
drones are battery-powered and can only remain powered for a limited period. Therefore,
efficient energy consumption protocols and mechanisms are essential for UAVs and IoT de-
vices to ensure a long network lifetime. Improvement efforts should address the hardware
and software architecture of the IoT components by integrating energy-harvesting solutions
or efficient routing protocols. For example, AI schemes can be adopted to predict a UAV’s
residual energy and energy dissipation through the precise adjustment of transmission
and control parameters concerning channel changes. The processing energy dissipation,
communication energy, storage energy, and environmental reliability should be considered
to mitigate the energy of UAVs [115,140]. Moreover, the issues listed below should also
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be considered to mitigate energy consumption, to extend the on-air flying time of the
UAVs employed.

Interference: The communication links between UAVs and IoT devices may become
disconnected due to interference, which reduces latency performance and may also affect
the overall network, especially when the UAVs act as a mobile BS. Therefore, the problem
of interference should be addressed, especially in urban and industrial environments,
where the number of interconnected devices on the same frequency band is very dense. An
AI-based solution can be applied in UAV-enabled MEC to predict the signal-to-interference
ratio, based on the collected channel state information (CSI). It is then possible to decide on
the most appropriate scheme to combat the impact of interference or to adjust transmission
parameters in order to reduce power consumption.

Interoperability: In any IoT environment, many devices are expected to handle the
required tasks without any effort from the end-users. These devices try to connect and
interact with each other using different protocols and communication paradigms. With
this diversity, it is sometimes challenging to orchestrate the system smoothly. Therefore,
further investigations are necessary to unify the controller and communication protocols to
ensure interoperability among them.

Mobility and path planning: UAVs require auto-maneuvering without distant hu-
man pilot intervention in random dynamic IoT applications. Therefore, many intelligent
methods should be considered to enable autonomous UAV flights that include collision
avoidance. AI algorithms are the most viable solutions that can be used to detect obsta-
cles and avoid collisions [141]. For instance, DL techniques can enable learning from the
gathered data, which makes their integration into UAV a significant solution. A serious
effort should be considered to develop green-federated AI solutions, such as RL, to ensure
accurate auto-flying decisions and path and trajectory planning [35,132].

Scalability: The scalability challenges concern resources, applications, load balancing,
and connections. Enabling high scalability requires designing efficient schemes that could
effectively manage heterogeneous mobile devices and servers in a UAV-enabled MEC
environment, with its highly dynamic demand behavior. For example, some mobile appli-
cations, such as UAVs and autonomous driving, require high data throughput offloading to
successfully provide such services, despite heterogeneity in the number of mobile devices
and the dynamic demand behavior of the applications mentioned in the MEC environment.
The MEC system should have an acceptable degree of scalability regarding the number
of servers and services required. As a result, it is challenging for difficult areas to estab-
lish connections and communications between mobile devices and servers. To achieve
convenient and cost-effective mobility and scalability, resulting in continuous service, it is
necessary to have a stable connection, even in adverse environmental conditions.

Security: Drones enable ubiquitous services on an IoT scale. The communications
and controls are realized through P2P wireless transmissions and thus are open to many
security threats. Therefore, unauthorized connections threaten the system’s privacy. It is
necessary to propose and design security mechanisms to improve UAV-enabled MEC sys-
tems’ security [142]. The effort should focus on the physical, application, and MAC layers.
The solutions should integrate recent robust techniques such as blockchains, especially
in IoT applications where UAVs are expected to facilitate communication networks. The
combination of UAVs with blockchain and AI is now an exciting avenue of research to
predict all sorts of attacks and malware that threaten the system’s privacy [127]. However,
while there has been significant progress in this area, more work needs to be done. Power
consumption might be a critical constraint for blockchain-based applications as they need
more computing power. Increasingly complex attacks, such as quantum attacks, ML, and
theory-based game attacks, could challenge the privacy of blockchain systems [143]. More
research is needed to make private blockchain networks more immutable and secure in
UAV-enabled MEC architectures. Moreover, blockchain-enabled softwarization for secure
UAV network systems is also a critical challenge. Blockchain implementation in UAV
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systems presents a complex system integration problem requiring rigorous testing before
concrete implementation [12].

Integration of AI schemes: Recently, the utilization of AI schemes among DL, ML, and
RL has become increasingly of interest, to benefit from their powerful performance. AI
schemes are being integrated into UAV-enabled MEC systems as a way to make contextual
decisions and learn from aggregated data gathered from previous tracking experiences. The
data collected by the sensors in real-time can be profitably exploited for the autonomous
piloting of UAVs. Therefore, processing tasks demand strict computing and storage
requirements at computing facilities, to be executed exceptionally at the edge. UAVs
also have energy and storage limitations; thus, portable and lightweight RL, ML, and DL
algorithms should be designed to cope with these constraints.

Regulations: Despite the rapid emergence of this technology, UAV regulations are
still in their infancy, and a lack of heterogeneity of national rules and varying levels of
implementation can be observed. These regulations differ from state to state, and the type
of regulation is based on the requirements of that use. Several problems are associated with
UAV regulation, including delays in flight approval and poorly documented administrative
processes limiting the desired flexibility, preventing widespread use of the technology [144].

Latency and computation issues: Communication latency and computing optimization
remain concerns in MEC-enabled UAV applications, affecting transmission efficiency and
reaction time under communication and computing constraints. UAV transmission success
may be accomplished by offering effective methods that decrease response delay. In
one study [145], for example, stochastic geometry and queueing theory approaches were
studied to minimize the response delay for a MEC-enabled UAV network.

Resource allocation: Due to UAV battery concerns and trajectory constraints, resource
allocation is critical in UAV-enabled MEC networks. Resources allocation is involved in
three processes: computing task offloading, local computing, and UAV hovering. Design-
ing an appropriate trajectory can ultimately compromise the calculated performance and
operating costs. According to the authors of [146], resource allocation may be structured to
meet various goals, including computing bit maximization, energy minimization, compu-
tational efficiency maximization, cost minimization, completion time minimization, and
the consideration of fairness.

UAV-enabled IoT for B5G and 6G issues: Data-gathering faces several problems in IoT
that extend beyond the fifth-generation (B5G) and upcoming sixth-generation (6G) wireless
mobile networks. A large amount of data will be generated by heterogeneous devices,
particularly IoT devices and smartphones at the mobile edge; these data are fragmented and
dispersed among several machines. Therefore, distributed solutions such as UAV-enabled
MEC should be leveraged near mobile users to offload and process the data. Meanwhile,
growing privacy concerns make data collecting increasingly challenging. This consumes
more energy and decreases the system’s offloading time [147].

6. Conclusions

The development of wireless communication technologies and IT services has made
the role of drones more ubiquitous in various fields of application. Drones can serve
as a link between smart devices and cloud data centers, to provide many services that
can increase the performance of a given IoT system. To the best of our knowledge, this
paper is considered the first work that provides a review of drone-enabled MECs based on
AI. This work discusses the current research trends and provides future insights into the
potential uses of UAV-enabled MEC in the field of IoT. It highlights the potential roles that
UAVs can play in enabling communications and intelligent computing in the IoT era, by
referring to the most widely emerging AI techniques that are employed. As mentioned,
UAVs as MECs are attracting considerable interest in scientific research, to address the
various problems and challenges experienced in order to improve the performance of such
applications in different scenarios, such as resource allocation, energy efficiency, latency,
task offloading, and security. UAV-enabled MEC present an emerging concept that require
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more effort to achieve the necessary performance in every scenario of UAV application in
IoT environments, especially regarding MEC.
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Abbreviations
The following abbreviations are used in this manuscript.

Abbreviation Definition
AI Artificial intelligence
CC Cloud computing
CPU Central processing units
CV Computer vision
DRL Deep reinforcement learning
EC Edge computing
FANET Flying ad hoc network
FI Fuzzy inference
GA Genetic algorithm
GPU Graphics processing units
IoFT Internet of Flying Things
IoT Internet of Things
ISM Industrial scientific medical
LC Local computing
LoRa Long-range
TDMA Time division multiple access
MEC Mobile edge computing
ML Machine learning
NOMA Non-orthogonal multiple access
QoS Quality of service
RL Reinforcement learning
UAV Unmanned aerial vehicle
VANET Vehicular ad hoc network
BLE Bluetooth low energy
RL-ACO Reinforcement learning based on ant-colony optimization
DRL Deep reinforcement learning
VTOL Vertical take-off and landing
HTOL Horizontal take-off and landing
LiDAR Light detection and ranging
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