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Abstract: Unmanned air vehicles (UAVs) used as aerial base stations (ABSs) can provide commu-
nication services in areas where cellular network is not functional due to a calamity. ABSs provide
high coverage and high data rates to the user because of the advantage of a high altitude. ABSs
can be static or mobile; they can adjust their position according to real-time location of ground user
and maintain a good line-of-sight link with ground users. In this paper, a reinforcement learning
framework is proposed to maximize the number of served users by optimizing the ABS 3D location
and power. We also design a reward function that prioritize the emergency users to establish a
connection with the ABS using Q-learning. Simulation results reveal that the proposed scheme clearly
outperforms the baseline schemes.

Keywords: aerial base station; reinforcement learning; k-means clustering; line of sight; non line
of sight

1. Introduction

The third generation partnership project (3GPP) has finalized its 17th release to enable
the development and deployment of the fifth-generation (5G) wireless systems. The 5G
new radio (NR) implements a flexible physical layer to support mmWave communications
and massive antenna systems. Service-oriented 5G network architecture has been presented
that has the potential to enable functions according to service requirements. The major
target of 5G (and beyond) communications systems is to meet the diverse requirements to
enable low-latency, broadband communications, and massive machine-to-machine (M2M)
communications [1]. To achieve this, unmanned air vehicles (UAVs)-enabled airborne
communications have recently attracted researchers’ and industrialists’ attention [2].

The demand and popularity of UAVs, also known as aerial base stations (ABSs), has
increased in the past few years. ABS can be rapidly deployed with a low cost to enable mo-
bile communication services during disaster situations [2–4]. ABS can assist in establishing
line-of-sight (LoS) communications that in turn reduce the effect of shadowing and fad-
ing [5]. Moreover, it can be used in the Internet of things (IoT) to assemble information from
IoT devices on the ground, that are installed in a specific area where mobile infrastructure is
not available. The main advantage of ABSs is that they can be deployed on target locations
without having any infrastructure, whereas for terrestrial BSs, infrastructure is required
to deploy any new BSs. ABSs can also be used as relays for improving link performance.
They provide wireless connection between far users in various military applications to
increase throughput of the system. Moreover, the deployment of UAVs can also assist in
gathering necessary data from the faulty sensors deployed, to gather data from wireless
sensor networks [6].
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Moreover, Figure 1 shows that ABS can acts as a relay and can enhance services in
any geographical areas. They can be connected with ground BSs for media and wireless
connectivity. They can also be connected through satellite for basic connectivity with the
core network. ABSs can provide basic services like calls and can also provide advanced
features of video calling, data streaming, heavy file downloading and live gaming at good
data rates. Sum-rate maximization will be key to provide advanced features to the users, as
these features require high data rates and seamless connectivity.
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Figure 1. Deployment of multiple UAVs in wireless communications.

Besides the discussed advantages, ABS’s 3D deployment poses certain challenges to
improve coverage, maximize user association, improve energy efficiency, and enhance sum
rates. Recently, many schemes have been proposed to improve the coverage, maximiz-
ing user association, and maximizing users’ sum rates. For instance, in [7] the authors
modeled the user association and ABS placement problem as a mixed-integer nonconvex
optimization problem with the goal of maximizing users’ total achievable data rates. They
divided the problem into two subproblems and proposed an iterative solution to solve
the nonconvex problem. A comparison with the state of the art demonstrated that the
developed algorithm was convergent and capable of producing good results. Similarly,
in [8], the authors presented a placement algorithm for multiple ABSs with in-band wireless
backhaul that jointly optimized resource allocation and user association. To simplify the
optimization problem, an equivalent spectrum efficiency was defined given the optimal
resource allocation. Simulation results were provided to validate the effectiveness of the
proposed method. The solutions discussed above used traditional methods, such as game
theory and convex optimization, that require additional accurate network information from
the environment.
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To solve these challenges, machine/deep-learning-based solutions have recently made
remarkable progress over traditional ABS deployment schemes. In machine/deep-learning-
based solutions, three major types of schemes exist such as supervised, unsupervised,
and reinforcement learning (RL) schemes. Reinforcement learning scheme has proved to
be more efficient in the implementation of resource allocation, ABS placement, and user
-association as it can interact directly with the environment without requiring prior training.
As a result, it has the potential to provide the best possible action to maximize the decided
reward. In the literature, there exist several schemes that addressed the ABS placement
and user association problem using RL schemes. For example, in [9], a smart user associ-
ation algorithm named reinforcement learning handoff (RLH) was developed to reduce
redundant handoffs in UAV networks, and two methods of UAV mobility control were
designed to work in combination with the proposed RLH algorithm to achieve maximum
system throughput. The RLH algorithm proved to reduce the number of handoffs by 75%.
Hence, motivated by this, we adopted an RL-based solution to solve the challenge of ABS
placement and user association to enable emergency communications.

This paper is organized as follows. We summarize the related work in Section 2 of
the paper. The detailed system model is presented in Section 3. We formulate the problem
in Section 4 and propose the prioritized user association scheme in Section 5. Simulation
results are discussed in Section 6 and finally the paper is concluded in Section 7.

2. Related Work

In the literature, to maximize ABS coverage, an ABS altitude optimization scheme that
considered maximum path loss was proposed in [5]. Similarly, an efficient 3D placement of
ABSs was proposed in [10], that aimed at maximizing the coverage by using the minimum
transmit power. They decoupled the ABS placement problem into horizontal and vertical
dimensions. An optimal placement algorithm was proposed that proved the increase in
coverage of users and significant savings in terms of transmit power.

A multiple UAVs deployment along with directional antennas was studied in [11],
where the authors proved that ABS placement was a function of altitude and antenna gain.
Moreover, they also proved that the ABS altitude must be properly adjusted in accordance
with the beam width of the antenna to maximize coverage. Results revealed that optimum
altitude and location were determined on the basis of the number of UAVs and the beam
width of directional antennas. To deal with the problem of traffic congestion, a UAV-aided
cellular communication network was presented in [12]. Here, UAVs used reinforcement
learning methods to select relay policy for mobile users, when base station was heavily
congested. Results showed the reduction in bit error rate and transmission energy.

The authors in [13] proposed a coverage enhancement solution for a single UAV, to
provide wireless coverage for indoor users during a disaster situation. Their objective
was to minimize the total transmit power with maximum path loss using a gradient
descent algorithm. A method to optimize the height of a UAV to maximize coverage and
minimize outage probability was presented in [14], where they adopted a decode and
forward-relaying method.

In [15], the authors jointly optimized user association, trajectory, and power for each
user to improve data offloading by observing QoS requirements. They decomposed the
problem into subproblems and then iteratively solved each problem. The results showed a
significant performance gain compared to existing schemes.

The authors in [16] presented mobile-edge-computing-assisted UAV communications
to enable emergency communications. They addressed the key challenges of user associ-
ation and resource allocation for energy efficient UAV deployment at edge. To solve this
challenge, they adopted RL-assisted resource allocation and user association, which in turn
proved beneficial compared to existing solutions.

To improve the throughput in overloaded and outage situations, an RL-based ABS 3D
deployment approach was proposed in [17], where UAVs found their optimal location to
increase system performance gain. Similarly, 3D ABS deployment was presented in [18] to
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maximize users’ coverage by finding ABS optimal altitude and location using a bisection
search algorithm.

Throughput maximization by adjusting the position of UAV in software-defined disas-
ter areas was presented in [19]. The results showed that a 26% throughput improvement
was achieved by optimizing the ABS altitude. In [20], the joint optimization of ABS 3D
placement and path loss compensation factor was presented to obtain the ABS maximal
coverage. The results improved the coverage by consuming less energy.

The deployment of UAVs equipped with intelligent reflecting surface (IRS) was pre-
sented in [21] to maximize the sum rate by optimizing the base stations’ power allocation,
phase shift of the IRS, and horizontal position of UAV using deep reinforcement Learning.
The ABS efficient placement as a relay node was studied in [22] with the objective to maxi-
mize throughput. They firstly adopted a particle swarm optimization algorithm to identify
the optimum ABS location, and then three different approaches were adopted to maximize
throughput that involved equal power allocation, water filling, and modified water filling.
The results showed that the water filling method gave better results as compared to the
other two methods.

The deployment of a UAV by optimizing its trajectory to maximize the mean opinion
score using a deep Q-learning method was presented in [23]. Similarly, the data rate
maximization of an ABS-assisted downlink cellular system using RL was presented in [24].
Here, the Q-learning technique was used to optimize the ABS location, where simulation
results revealed that RL performed better than a k-means algorithm to find the optimal
ABS positions. Similarly, in [25], a Q-learning approach was proposed to solve the resource
allocation challenge by considering the user’s fairness and several other quality-of-service
(QoS) constraints. We also summarize some of the key papers with their contributions in
Table 1.

As the deployment of ABS is a challenging task considering that it should provide a
proper coverage to the ground user, maximize user association, maximize sum rate as well
as optimize power consumption. To optimize the ABS deployment, the 2D location as well
as the altitude of the ABS to cover a maximum number of ground users are considered
important factors during deployment. Another challenging task is the deployment of
multiple ABSs compared to a single ABS, because of increased cochannel interference
from using the same frequencies to improve the spectral efficiency. It is difficult to deploy
an ABS in such a way that interference between the ABS to the ground BS is minimum.
The position of the ABS should be flexible to cover more users with less interference.

Recently many conventional schemes have been proposed to improve the coverage,
maximize user association, and maximize sum rates. However, recently, machine learning
has made remarkable progress and RL is considered to be most effective in tackling ABS-
assisted communication challenges. RL is the machine learning technique that interacts with
the system and optimize its performance by finding the best possible action to maximize the
given reward. RL gets the raw data and uses a trial-and-error method to detect the errors at
the output, and then feeds it back to the system to enhance the system efficiency. Moreover,
the RL is usually categorized into two main categories: model-free and model-based
approaches as shown in Figure 2.
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Table 1. Summary of related papers.

Paper Problem Statement Technique/Scheme Used Improvement Observed

[5] An optimal ABS platform to maximize
coverage by finding the optimum altitude Analytical approach Maximum coverage was achieved at

optimal low altitude

[10]

A 3D placement of UAV-BS by decoupling
vertical from horizontal dimensions to

maximize the coverage of users by
minimizing the transmit power

Optimal placement algorithm Savings in transmit power and
maximized coverage were achieved

[11]

Deployment of multiple UAVs having
directional antennas and optimization of the
altitude of UAVs to maximize the coverage

area and lifetime of UAVs

Circle-packing theory

The optimum altitude can be
obtained on the basis of the number

of UAVs and beam width of
directional antennas

[12] UAV-aided cellular communication network
against jamming Reinforcement learning

A minimized bit error rate and
energy saving for the

cellular network

[13]
Single UAV to provide wireless coverage for

indoor users when cellular network
goes down

Gradient descent algorithm A minimum transmit power with
maximum path loss was obtained

[14] Optimizing the height of a UAV to maximize
coverage and minimizing outage probability

Decode and
forward-relaying method

Maximum coverage with minimum
outage was obtained by finding the

optimum height of a UAV

[17]
A 3D deployment of UAV to improve

throughput in overloaded and
outage situations

Reinforcement learning A maximum performance gain in
terms of throughput was achieved

[18] A 3D deployment of UAV to maximize
revenue of the network Bisection search algorithm The maximized revenue of the

network was achieved

[19]
Throughput maximization by adjusting the

position of a UAV in software-defined
disaster areas

Centralized algorithm The throughput was improved by
26%

[26]
Channel model of backhaul and delay-aware
was taken into account to minimize delay by

finding the optimum height of a UBS

Backhaul and delay-aware
positioning of UBS
(BaDPU) algorithm

It was observed that the delay was
less for low arrival rates and

increased for high arrival rates

[27] Optimal UAV placement to maximize the
sum rate by using a minimum transmit power Genetic algorithm

The optimal placement of UAV was
achieved with minimum transmit

power and minimum path loss

[21]

Deployment of a UAV equipped with
intelligent reflecting surface (IRS) to

maximize the sum rate by optimizing the
power allocation of a base station (BS), phase
shift of the intelligent reflecting surface (IRS),

and horizontal position of the UAV

Deep reinforcement learning An enhanced sum rate was obtained

[22] Efficient placement of a UAV-BS serving as a
relay node to maximize throughput

Equal power allocation method,
water filling method and

modified water filling method

Results showed that water filling
method gives better results as

compared to other two methods

[23]
Deployment of a UAV by optimizing its
trajectory to maximize the mean opinion

score (MOS)
Deep Q-learning The maximized mean opinion score

(MOS) was achieved
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Figure 2. RL categories; model-free and model-based approaches.

Hence, RL was adopted to solve the problems of maximizing user association and
sum rate. RL is the best option to optimize location of the ABS according to the environ-
ment and users’ density. In RL, the agent (ABS) will optimize its location according to
the requirements.

2.1. Contributions

Most of the presented solutions in the existing literature mostly considered a con-
ventional cellular network scenario where the challenges are different compared to an
emergency communication scenario. Thus, their presented solutions are not valid for
emergency communication scenarios without proper modification. Motivated by this,
in this paper, we propose a prioritized user association solution that adopts a Q-learning
algorithm and prioritize the emergency users by using the proposed reward function, that
in turn significantly enhances the sum rate and reduces the outage. Moreover, we also
compare the impact of varying the number of deployed ABSs on the system sum rate and
outage probability.

2.2. Reproducible Research

The simulation results can be reproduced by updating part of the code available at:
https://github.com/ZeeshanKaleem/Unmanned-Air-Vehicles-UAV-Simulator-for-Placement-
and-Power-Allocation- accessed on 31 January 2022.

3. System Model

In this paper, we considered M− 1 multiple ABSs accompanied by a single antenna
and one ground base station (GBS) (m = 0) in a downlink heterogeneous network model,
with the total base stations represented by the setM. We randomly distributed the total
U of users inside the coverage area where the total users are represented by the set U .
The ABSs were deployed with the GBS where both used the same frequency, which may
cause intercell interference. Resources were allocated orthogonally within the cell to avoid
intracell interference. The coordinates for the users are represented as (xu, yu) and the 3D
coordinates of the ABSs are represented as (xm, ym, hm) for the base stations, as shown in
Figure 3. However, to model the emergency communication scenario, we considered that
the GBS did not exist and the remaining users were connected with the ABSs based on their
priority. The key notations and symbols utilized in the paper are summarized in Table 2.

https://github.com/ZeeshanKaleem/Unmanned-Air-Vehicles-UAV-Simulator-for-Placement-and-Power-Allocation-
https://github.com/ZeeshanKaleem/Unmanned-Air-Vehicles-UAV-Simulator-for-Placement-and-Power-Allocation-
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Figure 3. System model.

Table 2. Notations and description.

Notations Description

ABS Aerial base station
GBS Ground base station

N Number of users connected with ABS
(xm, ym, hm) ABS coordinates
(xu, yu) Users coordinates

Pm ABS transmit power
θu Elevation angle
a, b Environmental parameters
fc Carrier frequency
d Distance between ABS and ground user

ηLoS Mean additional loss for LoS
ηNLoS Mean additional loss for NLoS

γth SINR threshold
rt, st, at Reward, state, action at time t

ŝt, ât Next state and action
β Discount factor
α Learning rate

The channel model from ABS to ground user communication can be line-of-sight
(LoS) or non-line-of-sight (NLoS). LoS communication depends on factors such as building
density, users’ location, and placement of the ABS as well as the angle between the ABS
and the user. The LoS channel is modeled as Rician fading whereas the NLoS is modeled
as Rayleigh fading. Therefore, the channel distribution of the channel fading, l is given by:

fl(l) =

{
fLoS(l) for LoS case
fNLoS(l) for NLoS case

where fNLoS(l) and fNLoS(l) follow a noncentral Chi-squared distribution and exponential
distribution, respectively, and are given by [28]
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fLoS(l) =
1 + K(θu)

HL
exp

(
−K(θu)−

1 + K(θu)

HLoS
l
)

× I0

(
2

√
K(θu)(1 + K(θu))

HLoS
l

)

=
1
2

exp
(
−K(θu)−

l
2

)
I0

(√
2K(θu)l

)
fNLoS(l) =

1
HNLoS

exp
(
− l

HNLoS

)
= exp(−l).

where I0(·) is the first kind with zero order Bessel function, and HLoS = 2 + 2K(θu) and
HNLoS = 1 are the mean of the LoS and NLoS fading gains, respectively.

The probability of LoS is defined as:

PLoS =
1

1 + e−b(θu−a)
(1)

Here, a and b are environmental constant, θu is the elevation angle that depends on
the ABS height and also on the distance between users and ABSs. From the above equation,
we can notice that by increasing θu, the LoS probability increases, where:

θu =
−180

π
tan−1

(
hm

r

)
(2)

The horizontal distance du,m between the mth ABS and user u is calculated as

du,m =
√
(xu − xm)2 + (yu − ym)2 (3)

where (xu, yu), (xm, ym) are the locations of a user and the ABS, respectively. By using the
probability of LoS, the probability of NLoS communications can be calculated as

PNLoS = 1− PLoS (4)

The LoS path loss for a connected user is given as

LLoS = 20 log
4π fcdu,m

c
+ ηLoS (5)

Furthermore, due to buildings and tree, the LoS could disturb the communication,
and the loss for a reflected signal with an NLoS component is calculated as:

LNLoS = 20 log
4π fcdu,m

c
+ ηNLoS (6)

Here, fc is the carrier frequency, c is the speed of light, ηLoS means an additional loss
for the LoS, and ηNLoS is the mean additional loss for the NLoS. As a result, the probabilistic
mean path loss is defined as:

L = LLoS × PLoS + LNLoS × PNLoS (7)

Let us assume A = ηLoS− ηNLoS, B = 20 log 4π fc
c + ηNLoS, and h2

m + d2
u,m =

(
du,m

cos (θu)

)2
.
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By using Equations (5) and (6) in Equation (7) we have:

L =
A

1 + ae(−b 180
π θu−a)

+ 20 log
(

du,m

cos (θu)

)
+ B (8)

We observe from the above equation that the path loss changes by changing both
the height and location of the ABS or by varying either one of them. Hence, the data rate
between user u connected to the ABS is calculated as:

Cu = log
(

1 +
PmGuL
I + σ2

)
(9)

where Pm is the ABS power, I is the cochannel interference, Gu is the small-scale fading
channel gain, and σ2 is the noise variance.

We analyzed the outage probability considering the interference and the ABS main
links, and it is given by:

p0 = P[γ(θu) < γth] (10)

where γth is the target SNR, defined as γth = 2
Cmin

B − 1 for the target minimum required
rate Cmin and the bandwidth B.

4. Problem Formulation

In this paper, our objective is to maximize the user association (ψu,m) and the sum rate
of the prioritized ABS under the constraints of ABS 3D location (xm, ym, hm), power budget,
and users’ priority (δu,m).

The 3D ABS optimal placement plays a significant role in maximizing the number of
associated users’ matrix Ψ = (ψu,m), due to the joint optimization of the ABS 3D positions
(xm, ym, hm). Hence, the proposed optimization framework is mathematically expressed as

max
xm ,ym ,hm ,pm ,Ψ

U

∑
u=1

M−1

∑
m=1

δu,mψu,mCu,m, ∀m ∈ M, m 6= 0, (11a)

Cm ≥ Cmin, ∀m ∈ M (11b)

∑
m

ψu,m ≤ 1, ∀u ∈ U , ∀m ∈ M (11c)

ψu,m∗ = 1, m∗ = max
m
Rm, ∀u ∈ U (11d)

|du,m|2 ≤ R2, ∀m ∈ M (11e)

hmin ≤ hm ≤ hmax ∀m ∈ M, m 6= 0 (11f)

Pmin ≤ Pm ≤ Pmax, ∀m ∈ M (11g)

δu,m ∈ {0, 1}, ∀u ∈ U , ∀m ∈ M (11h)

ψu,m ∈ {0, 1}, ∀u ∈ U , ∀m ∈ M (11i)

We aim at maximizing the users’ sum rate in Equation (11a) under the constraints of
ABS location, associations, and transmit power. Constraint (11b) maintains the minimum
sum-rate requirements of the users associated with the GBS. Constraint (11c) imposes
that each user is associated with at most one ABS at a time and the constraint (11d)
guarantees that a user is associated with the ABS that maximizes the reward functionR.
Constraint (11e) ensures that the user u lies inside the ABS coverage when located within a
distance R from the ABS center (xm, ym). Constraints (11f,g) impose that the ABS altitude
and transmit powers must be within the feasible region. psiu,m and δu,m are the association
and priority binary variables, respectively.

5. Proposed Prioritized User Association Algorithm

The problem proposed in Equation (11a) is mathematically challenging because of a
nonconvex objective function and nonlinear constraints. Therefore, it is not easy to provide
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an optimal solution to this problem. To solve this challenging problem, we adopted a
Q-learning-assisted ε-greedy algorithm that maximized the proposed reward function (R)
defined as

R = Cm,m 6=0C2
m,m=0︸ ︷︷ ︸

(a)

− (Cm,m=0 − Cmin)︸ ︷︷ ︸
(b)

− (Cm,m 6=0 − Cmin)
2︸ ︷︷ ︸

(c)

(12)

In Equation (12), the term (a) implies that the higher the sum rate for users, the higher
the reward. Moreover, we can notice that the GBS user sum rate is squared, which in
turn prioritizes the emergency users in the proposed scenario. The terms (b), (c) are the
deviations of the users’ rate from their defined threshold, which in turn are subtracted from
the reward.

The key steps involved in the proposal are to apply the k-means algorithm to form
a cluster that places the ABS in the optimum 3D position and then assign the optimum
power and associate the users to the ABS and GBS by adopting the Bellman’s equation
given by:

Q(st; at) = max
a

(E[Rt + βQ(ŝt, ât)]) (13)

Here, E is the expectation operator and β the discount factor that lies in the range
0 ≤ β ≤ 1. In Q-learning, the temporal difference (TD) is used to approximate the Q-
function. For the Q-learning approach, the easiest one-step approach, adopted here, is to
calculate

Q(st, at)← (1− α)Q(st, at) + αmaxât(Rt + βQ(ŝt, ât)) (14)

where α is the learning rate.
After defining all the initial parameters, the agent (ABS) performs actions by allocating

discrete power between Pmin and Pmax in every state and calculates the corresponding
reward, and then updates the Q-table. Once the Q-table is updated, it results in a maximum
number of connected users with the highest reward for the given optimized ABS location.
Iterations are performed until the maximum reward is achieved. We summarized the
proposed scheme in Algorithm 1.

Algorithm 1: Prioritized User Association for Sum-Rate Maximization Algorithm.

1 Input: Declare key variables and initialize the Q-table (Q(st, at) = 0);
2 Output: Optimized user association;
3 for iterations = 1 : maxIteration do
4 Choose action (at) from a given set of actions (i.e., user association

combinations for various ABS heights);
5 Take action and observe the reward using (12), and move to the next state

(xt+1);
6 Update the Q-table using

Q(st, at)← (1− α)Q(st, at) + αmaxât(Rt + βQ(ŝt, ât));
7 end
8 Return Optimum user ABS association that maximizes the sum rate.

6. Simulation Results

In this section, we consider the downlink heterogeneous environment where we
deployed the ABS to improve the coverage of a destroyed BS. We modeled the short-term
fading as a flat fading and the large-scale fading using a probabilistic path loss model
given in Equation (7). A UAV network was simulated with M ABSs, where each ABS
supported a minimum of one aerial user. As ABSs were deployed close to each other, they
introduced interference between users and their neighbors. To meet the QoS requirements
of users, we increased the density of deployed ABSs from M = 1 to M = 16. We also
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assumed that all the ABSs were operating at a carrier frequency of 900 MHz. The allocated
power in the range [Pmin, Pmax] was divided into 20 discrete steps with a step size of
1.5 dBm. The minimum sum-rate (Cmin) requirement for each user was set to 0.5 bps/Hz.
We considered a noise power equal to −174 dBm/Hz. The remaining key simulation
parameters are summarized in Table 3.

Table 3. Simulation parameters.

Parameters Value

Users (U) 40
ABS (M) 16

Pmin −20 dBm
Pmax 25 dBm

Step size 1.5
hmin 100
hmax 600

radius(R) 250 m
α 0.5
β 0.9

maxIteration 50,000

The performance of the proposed scheme was tested to show the effectiveness of the
proposed Q-learning-based prioritized user association scheme compared to the conven-
tional signal-to-noise (SNR)-based user association scheme, where users are associated
with the ABS receiving the maximum SNR. During simulations, we randomly deployed
40 users in the coverage area following a uniform distribution. We varied the number of
deployed ABSs to obtain optimized ABS locations, user association, and transmit power. In
this section, we verify the performance of the proposed scheme during an outage on the
basis of the sum rate. The simulations were performed using MATLAB.

First of all, we plotted the optimal deployment positions for four ABSs in Figure 4,
where clusters were found using the k-means algorithm. Here, each ring shows the coverage
range of the respective ABSs. For example, the red ring shows the coverage range of the
red ABS and the users lying inside this ring are connected to that ABS, and similarly, for the
green, blue, and black rings, respectively. Users were associated with an ABS on the basis
of the maximum reward defined in Equation (12). The coverage range of each ABS was 225
meters, that is, the radius of each ABS. The ABSs were deployed to minimize the coverage
overlap among ABSs. The altitude of ABSs was variable as shown with the dotted lines,
where each ABS moved between the defined altitude range.

Figure 4. Optimized 3D ABS deployment of ABSs and users using the proposed scheme.
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Figure 5 shows the sum-rate performance for the proposed prioritized user association
scheme compared to a conventional SNR-based association scheme. In the proposed
scheme, the Q-learning algorithm was implemented to optimize the power compared to
the conventional scheme, which, in turn, considered the real-time environment resulting
in significant performance gain. Moreover, we can notice that the sum rate increases as
the number of ABSs increases but if it increases above four then the sum rate begins to
decrease. The reason is that as the number of ABSs increases, interference among them
also increases, which lowers the sum rate. By comparing these two schemes, we achieved
a maximum value for the average sum rate of around 36.55 bps/Hz compared to the
conventional scheme.
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Figure 5. Comparison of sum-rate performance under the proposed and the conventional SNR-based
user association scheme.

Finally, we compared the user outage performance for both schemes in Figure 6.
The simulation results show that the number of associated users is maximum when the
number of deployed ABSs are four, under the proposed scheme, as the percentage of
outage is far less in that case. By increasing the number of ABSs above four, the interference
among users rises, which decreases the received SNR below the threshold. Moreover,
by comparing the proposed scheme with the conventional one for a varying number of
deployed ABSs, we observe that the number of outage users are less in the proposed
scheme. Hence, the proposed scheme performs better in terms of user association than the
conventional scheme.

To verify the efficacy of the proposed scheme, we also compare the mean sum-
rate performance of the proposed prioritized-based user association scheme with the
following schemes:

• Benchmark: we tried every possible combinations of ABS user associations, which
resulted in the highest mean sum rate compared to other schemes.

• SINR-based user association: users are associated with the ABS from which they
received the maximum SINR.

• Distance-based user association: users are associated with the nearest ABS.
• Random user association: users are associated randomly with any ABS in the vicinity

without caring about any requirement.
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Figure 6. Outage performance comparison.

From the results in Table 4, we can clearly notice that the benchmark algorithm has the
best mean sum rate because it tries every deployment positions and associate users with
the ABS that maximizes the sum rate. The proposed scheme has the 2nd best performance
because it prioritized the users with emergency communication requirements. In distance-
based association, performance degrades because users can be associated with the nearest
base station, but this does not guarantee good channel conditions. Obviously, in random
association, the performance is worst because it disregards any QoS requirements.

Table 4. Sum-rate comparison of different algorithms.

Algorithms Mean Sum Rate (bps/Hz)

Benchmark 30.5
Proposed prioritized user association 24
SINR-based user association 1.5
Distance-based user association 1.3
Random user association 1.1

7. Conclusions

Unmanned air vehicle placement and user association is an important challenge to
enable emergency communications. In this paper, we handled the problem of optimizing
the user sum rate by associating the prioritized users to the deployed emergency aerial
base stations. Simulation results verified that the performance under the proposed scheme
significantly increased in terms of sum rate and the reduction in the number of users
experiencing outages compared to the conventional SNR-based user association scheme.
Moreover, we noticed that the sum rate increased as the number of ABSs increased, but after
deploying more than four ABSs, the sum rate began to decrease. The reason is that as the
number of ABS increases, interference among them also increases, which lowers the sum
rate. By comparing these two schemes, we achieved a mean sum rate of around 23 bps/Hz
compared to the conventional SINR-based user association scheme. In the future, we plan
to further improve the system performance using state-of-the-art deep learning algorithms
and also compare the proposal with game- and graph-theory-based approaches.
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