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Abstract: The security of key and critical infrastructures is crucial for uninterrupted industrial process
flow needed in strategic management as these facilities are major targets of invaders. The emergence
of non-military use of drones especially for logistics comes with the challenge of redefining the
anti-drone approach in determining a drone’s harmful status in the airspace based on certain metrics
before countering it. In this work, a vision-based multi-tasking anti-drone framework is proposed
to detect drones, identifies the airborne objects, determines its harmful status through perceived
threat analysis, and checks its proximity in real-time prior to taking an action. The model is validated
using manually generated 5460 drone samples from six (6) drone models under sunny, cloudy, and
evening scenarios and 1709 airborne objects samples of seven (7) classes under different environments,
scenarios (blur, scales, low illumination), and heights. The proposed model was compared with
seven (7) other object detection models in terms of accuracy, sensitivity, F1-score, latency, throughput,
reliability, and efficiency. The simulation result reveals that, overall, the proposed model achieved
superior multi-drone detection accuracy of 99.6%, attached object identification of sensitivity of
99.80%, and F1-score of 99.69%, with minimal error, low latency, and less computational complexity
needed for effective industrial facility aerial surveillance. A benchmark dataset is also provided for
subsequent performance evaluation of other object detection models.

Keywords: aerial surveillance; anti-drone communication; drone detection; deep learning; facility;
security; weapons

1. Introduction

In recent times, the influx of drones and its derivatives in the airspace due to the
emergence of drone transportation system (DTS) for logistics and other civilian-military
purposes [1] has sparked global concerns on the viability and verity of the existing anti-
drone designs that focus mainly on detecting drones rather than the object attached to or
conveyed by the drone. This surging influx has resulted in illegal usage and unsolicited
intrusion of drones into private properties, as well as protected areas [2]. Drones are
used in carrying out series of remotely coordinated sophisticated attacks especially on
critical infrastructures such as nuclear plants, thermal and hydro-electric stations, industrial
equipment, telecommunication gadgets, monumental buildings, tourist sites, etc.—thereby
disrupting socio-economic activities and causing untold hardship [3,4]. The perceived
threat of a drone in the airspace is a function of the object attached to it [5]. Therefore,
the object attached to or conveyed by a drone is key to determining the harmful status of
a drone in the airspace—hence the need to re-invent the approach to anti-drone system
design not just to detect drones but the object airborne by the drone.

The increase in the challenge to quickly detect and identify such unmanned aerial
vehicles (UAV) to which drones belong is occasioned by the dynamism in its underlying
technologies [6,7]. Despite sophistication in security technologies, the incidences of attacks
on industrial facilities and key infrastructures with the aid of drones and its derivatives are
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on the increase. This is demonstrated in the premeditated crashing of a drone into a French
nuclear plant [8] and the flying of drones over thirteen nuclear plants in Paris [9] and
Saudi Arabia [10] with little or no effort to counter them. Up to now, there has only been
a successful interception of a drone attack once, and it was military grade [5]. Inaccurate
and non-real-time detection, lack of simultaneous adaptive multi-drone detection, and
safe-channel neutralization, as well as poor feedback and response procedures, contributed
largely to the occurrence of these incidences [5]. Developing and deploying an advanced
detection approach in high priority areas with key and critical infrastructures for seamless
and preemptive aerial communication in curtailing threats cannot be over-emphasized.

Drone detection entails estimating a drone’s location for defense and detecting the
drone before it flies into a sensitive area. On the other hand, drone identification is con-
cerned with determining the legality or illegality, harmfulness or otherwise of a drone in
sight which invariably determines the neutralization strategy to adopt (jamming, hunting,
or re-assembling to overwrite control) through flexible secured authentications to counter
and keep the illegal drone or its derivatives within the authorized area [11,12] as depicted
in Figure 1. These concepts are the integral components of an anti-drone system, which
is a multi-tasking, multi-modal, and complex hard real-time critical mission network-
controlled system used in engaging drones and other aerial vehicles in the airspace [13].
This suggests that attempting to address the detection concerns in isolation without con-
sidering the other components of the anti-drone system is counterproductive—hence a
multi-tasking approach.

Figure 1. Components of an anti-drone system (Adapted from [5]).

Previous research efforts have been directed towards industrial facility surveillance
and safety. The authors [14] deployed drones for mapping raised bog vegetation com-
munities using machine learning and deep learning classifiers. In another related work,
Sergio et al. [15] proposed a remote management architecture solar power plants surveil-
lance using a fleet of UAVs. Though these works provided an invaluable insight into
surveillance, it focused on using drones to detect objects rather than detecting drones
and cannot perform automatic simultaneous detection and neutralization, as it requires a
human expert’s assistance. Other attempts to detect drones in the airspace have focused
mainly on drone detection with little emphasis on the attached objects/payload, which is
critical in guaranteeing industrial facility surveillance and safety [13,16–19].

With the dynamic changes in intelligent transportation systems, the use of drones
and its derivatives for logistics purposes and transportation has changed the landscape of
anti-drone system designs. This disruption in technology not only heightens the complexity
of drone detection approach but also stresses the need for timely attached object/payload
visual identification. With payload identification comes the problem of tiny, distant, and
obscure object identification especially in a hazy/cloudy environment. In addition, there
is a lack of simultaneous adaptive and scenario-based drone detection and neutralization
in the existing solutions [5]. Inaccessibility and unavailability of a reliable and robust
vision-based drone dataset for performance evaluation are a challenge. Finally, the need to
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de-militarize the existing anti-drone system design to meet with the increase in demands is
the motivation for this study.

Several state-of-the-art drone detection approaches are deployed to match up with
the ever-dynamic drone technologies. These approaches blend in radar technology [20],
vision technology [12], radio frequency (RF) technology [11], thermal technology [21],
and acoustic technology [22] convergence to achieve better results (availability, mobility,
installation flexibility, and detection precision/scope), thereby cushioning the inherent
limitations of each technique. Examples include but are not limited to kinetic means, drone
vs. drone, electronic warfare, cyber-warfare techniques, directed energy weapons using
high-powered microwave or lasers, etc. [3,23]. However, these approaches are highly
militarized, have legislative bottlenecks in its implementation for civilian deployment,
and lacked simultaneous multi-drone detection and an identification mechanism. Only
a vision-based detection technique provides exact and clear visual representation of a
detected object [24], which is of critical importance for an adaptive countering strategy.
Unarguably, timely, early, and accurate detection and safe-channel neutralization strategy
is needed to minimize incidences of drone attacks on key infrastructures.

The danger posed by a drone in the airspace is a function of its illegality and/or
harmfulness. Illegality is a function of license issuance/permit, navigation boundary, route,
or flight path. Harmfulness, on the other hand, is a function of the object attached, payload
being conveyed, and the source of the drone [25]. Therefore, a modern drone detection and
identification system (as an event-triggered critical-mission based real-time system) must
have specialized environment-sensitive multi-drone detection capability, intuitive multi-
drone visual identification ability, multi-drone defensibility, co-operative inter-connectivity
and security, system portability and mobility, as well as non-militarized situation-based
response strategy to handle emerging UAVs. Such task of real-time detection and adaptive
neutralization of illegal drones using civilian approaches demands an investigative and
innovative alternative that can meet up with emerging threats to cushion the technical
competition between anti-drone and drone industries. Artificial intelligence, especially a
deep Convolution Neural Network (CNN), has proven to be a veritable tool for solving
these aforementioned complex and dynamic-driven challenges with high precision and
accuracy [26].

This paper therefore seeks to provide such novel approach for real-time multi-drone
detection, payload identification, and adaptive neutralization leveraging on the potential
of CNN for safety of key industrial facilities with the following contributions:

1. To develop a deep learning model to detect tiny drones and as well as recognize the
attached objects in real-time;

2. To formulate a perceived threat analysis model for determining the harmful status of
a detected drone in the airspace;

3. To formulate a framework for determining the legality status of a detected drone in
the airspace;

4. To establish a scientific basis for adaptive neutralization response to counter a harmful
drone in the airspace;

5. To provide a benchmark dataset for subsequent drone detection performance evalua-
tion in the public domain.

The rest of this paper is divided into Related Works presented in Section 2, Proposed
Method and System Design in Section 3, Result Discussion and Performance Evaluation in
Section 4, and finally Conclusions in Section 5.

2. Related Works on Drone Detection Techniques and Technologies

A vision-based drone detection technique is an object detection and pattern recognition
technique that use infra-red or electro-optical camera sensors (as seen in Figure 2) to
automatically identify a moving object against its background [27,28]. Just like other drone
detection techniques, it has inherent issues of occlusion, inability to distinguish smaller
objects, and detection range [12].
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Figure 2. Vision-based drone detection and aerial communication system illustrating airborne object
detection around an industrial facility.

Visual-based object detection is usually achieved by combining three different com-
puter vision approaches, namely traditional feature engineering (motion features and
appearance features) [27], Machine Learning (ML) approach [28], and several Deep Learn-
ing (CNN) approaches to achieve faster detection with higher accuracy [29]. A typical
anti-drone system for an industrial facility inspection and surveillance adopts these ap-
proaches as its underlying drone detection operational paradigm.

A traditional feature engineering approach to object detection makes use of an ob-
ject’s appearance properties such as colors, contour lines, geometric forms or edges, etc.
and its motion features such as analyzing the consecutive frames of the captured im-
age) [30]. Examples include appearance-based, template-based, part-based, region-based,
and contour-based methods. The drawback of traditional feature engineering lies in its
great difficulty in distinguishing drones from other similar small objects like birds and/or
other flying objects in obscure/camouflage backgrounds without motion information. In
addition, there is difficulty in differentiating a moving drone from a gliding bird [31].

Similarly, the ML approach fuses these traditional computer vision methods to achieve
better object classification and detection results [32]. Examples of ML Approaches in-
clude Haar Wavelet features [33]; Haar-like features and motion information, Implicit
Shape Models, Histogram of Oriented Gradients (HOG) [34], Covariance descriptor, and
Extended Histogram of Gradients (ExHOG) [35]. The drawbacks of the ML approach
include time-cost in image extraction, limited range of image detection, low resolution
of extracted image feature, and scalar/static image detection, which makes it unfit for
real-time drone detection.

Modern drone detection methods based on CNN are grouped as One-stage Detectors,
Two-stage detectors, or Hybrid detectors. One-stage detectors, otherwise called Single Stage
Detectors (SSD), perform sequential image detection and processing, which makes them
very fast but with low detection accuracy. SSDs include Single Shot Multibox Detectors,
RetinaNet, MobileNet, and You Only Look Once (YOLO) family [36]. Two-stage Detectors
also known as Region-based Convolution Neural Networks (R-CNN) [37] perform more
accurate image detection and feature extraction than SSD but require more memory and
power to run, use complex pipeline, and adopts a sliding window method that is expensive—
thus rendering two stage detectors unsuitable and impracticable for real-time detection
necessary for a time sensitive and mission critical anti-drone system. Common examples
include R-CNN and Faster R-CNN. Hybrid detectors fuse SSD and R-CNN to blend speed
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and accuracy in performance [38]—for example, VGGNet, ShuffleNetV2, COCO Model,
ResNet-101, and Yolov5.

Several studies have made attempts at improving the detection accuracy of YOLO
architecture for distant and tiny objects. Authors [39] proposed a strip bottleneck (SPB)-
YOLO model to solve the problem of scale variations and dense distributions of objects. The
model is an end-to-end detector that has the SPB module that used the attention mechanism
approach to solve the dependency of scalar variations of UAV images. In addition, by the
up-sampling of the detection head of YOLOv5 in the addition of a detection head based on
the Path Aggregation Network, the challenge of dense object distribution was mitigated.
Authors [40] in their work demonstrated that the YOLOV5 architecture is not only a fast
object detector but also achieved accuracy that is plausible to that of Faster R-CNN. In a
similar study, authors [41] proved that the YOLO model can adequately classify and detect
multiple objects in real-time, which makes it suitable as an underlying detector for the
anti-drone system. However, the disparity experienced in the detection and classification
of flying objects in different weather conditions and altitudes is still a research gap.

The surveillance of an industrial facility site or key infrastructure using a static surveil-
lance system is counter-productive for efficient wide-area coverage of a distant impending
danger, especially illegal drones with harmful objects. In an anti-drone system, deter-
mining the legality/illegality and harmfulness or otherwise of a detected flying drone
can be achieved via active or passive identification. With the use of Radio Frequency
Identification (RFID) tags, the legality of an approaching drone can be periodically and
passively identified [42]. However, for prompt and proactive counter drone decision, an
active identification strategy is the key in determining a hazard level through proper threat
analysis of the detected drone via drone tracking/flight estimation [43]. Hence, exact visual
representation of acquired surveillance information is a critical resource.

Therefore, a robust anti-drone model should have the capacity to visually identify
a wide range of flying objects irrespective of their features, and its identification system
should be able to accurately recognize the payloads attached to the drone, access its
proximity to a defined perimeter, determine its threat level based on defined metrics, and
take responsive and adaptive decision about it [44]. This is the motivation of this proposed
approach and design.

3. Materials and Methods
3.1. Proposed System Design

An ideal drone detection and aerial communication system (otherwise known as
anti-drone system) is a complex, multi-tasking, and multi-modal system that fuses several
technologies such as heterogeneous sensors, networks, security protocols, data acquisition
and synchronization mechanism, feature extraction and prediction technology, tracking
controllers, databases, etc., while engaging a drone in the airspace. These interwoven tech-
nologies help an anti-drone system to achieve its main task of drone detection, localization
or tracking, and decision-making. Hence, it is imperative for an anti-drone system to have
automatic and high detection accuracy, high density deployment management strategy,
ultra-fast network feedback mechanism, prompt, and adaptive safe-channel neutralization
mechanics, and operate in a cost-efficient manner.

This study focuses mainly on the drone detection component and partly on the neu-
tralization scheme of an anti-drone system with emphasis on the deep learning model
for accurate determination of the status a sighted drone within a field of view. However,
such an important concept cannot be presented in isolation considering its relationship
with other critical components of a typical anti-drone system. Hence, the neutralization
component is partly discussed based on the changing landscape in the anti-drone system
development sector.

The proposed drone detection design as condensed in Figure 3 provides the surveil-
lance information flow from the input, detection process, and neutralization response
strategy, respectively.
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Figure 3. Proposed aerial drone detection design for industrial facility inspection highlighting the
flow of input, process, and output components.

During surveillance, an anti-drone system acquires images/signals within its defined
perimeter (field of view) using different underlying data acquisition technologies (cameras,
radars, LIDARS, etc.) and sends such data to the ground station via a secured network
where further processing is carried out. With a vision-based anti-drone system, visual
images of drones and other aerial objects are captured within the peripheral and central
vision as input using infra-red or electro-optical camera sensors at different distance,
altitude, and climatic conditions (sunny, cloudy, evening) as illustrated in Figure 2. These
visual data are transmitted to a ground station via a secured network for the processing
phase to commence. Drone capturing and transmission operation is carried out in real
time as long as there is an object in the airspace. Hence, a reliable and fast communication
network is key because of the cost of a split second’s delay in data transmission.

Then, the acquired input is fed into the proposed underlying deep learning model
for processing via feature extraction as discussed in Section 3.2. The functionality of the
proposed object detector model is to accurately detect and distinctively classify not just the
different drones in sight but also to identify the potential attached object’s harmfulness or
otherwise, without being hindered by obscure climatic conditions or the object’s altitude.
Based on the proposed detector framework, outputs are generated according to the class
of probability for the classification and identification task; drone or not drone, harm f ul or
not harm f ul, as discussed later.

The output from the feature extraction process is thereafter transferred to the
neutralization/decision-making component where it is utilized by the neutralization super-
positioning strategy as presented in Section 3.3 to determine the best alternative approach to
adopt in countering the drone from invading an industrial facility area such as a warehouse.
In addition, the neutralization component carries out a drone’s legality status determina-
tion using underlying technologies and metrics in conjunction with the feedback from the
detection module prior to taking a cognitive action.

This flow suggests an intuitive, real-time, multi-tasking, and synergistic approach to
checkmating targeted attacks and other illicit activities around an industrial environment
without disrupting or undermining the flow of the airspace activities such as logistics and
transportation that are carried out using drones and its derivatives as captured in Figure 3
and elaborated in subsequent sections.

3.2. Proposed Drone Detection Model

In this study, the proposed drone detection model, DRONET, is designed to overcome
the problem of detection of tiny distant objects under harsh or hazy weather conditions
that exist in YOLOv5. As an object detector framework, YOLO architecture is a robust
model that has undergone several evolutions to enhance object detection by integrating
several breakthroughs in computer vision for ease of use, model ensembling, precision,
and hyperparameter characterization. Its series are namely small (YOLOv5s), medium
(YOLOv5m), large (YOLOv5l), and extra-large (YOLOv5x) network architecture with
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the same structure as summarized by Figure 4, but with different depth and width size,
which consequently contributes to the model’s overall performance in terms of size, speed,
and accuracy.

Figure 4. Compact drone detector model showing backbone, neck, and head as its components,
networks, and convolutions.

Although YOLO as an object detector has been proven to have the capability of
extracting 140 frames per second (fps) [45,46] in real time, which is very crucial considering
the quantity of data needed for the surveillance operation, its drawback is feature extraction
from very tiny objects with high accuracy [47]. Therefore, this proposed model is designed
to tackle this problem inherent in YOLOv5, which is pivotal in an anti-drone system design
while retaining its robust operational capability. In addition, the similarity and disparity,
and tininess of objects in the airspace created the necessity for instance segmentation; that is,
the need for explicit detection, exact classification, and precise localization of various object
instances in an image—hence the addition of Path Aggregation Network to the proposed
custom drone detector to enhance the propagation of low-level features for improved
performance as captured in Figure 4.

The proposed detector model has three distinct blocks (as seen in Figure 4); Backbone,
Neck, and Head. The Backbone uses Cross Stage Partial Network (CSPDarknet) for image
feature extraction. The Neck uses feature pyramid network (FPN) and Path Aggregation
Network (PANet) to perform feature aggregation. The Head does the predictions using
anchor boxes for eventual object detection.

The captured and transmitted image (via the secured network by the electro-optical
camera) as an input goes into the CSPDarknet (designed based on DenseNet architecture)
to upgrade the learning ability of the CNN by reducing the complexity of large gradient
information, thereby truncating gradient flow of the optimized network while preserving
accuracy. CSPDarknet separates the feature map of the base layers into two; one goes
through the dense block while the other part is fused with a feature map and relayed to
the next stage as shown in the feed-forward propagation and weight update equation
expressed herewith in Equation (1):
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⇒ Ij = Wj × [I0′′ , I1, . . . , Ij−1]

It = Wt × [I0′′ , I1, . . . , Ij]

Iu = Wu × [I0′ , It, ]

⇒Wj′ = f (Wj, g0′′ , g2, g3, . . . , gj−1)

Wj′ = f (Wj, g0′′ , g2, g3, . . . , gj)

Wu′ = f (Wu, g0′ , gt);

(1)

where Ij is the input of the (j + 1)th dense layer; w is the weight; and g is the gradient
information of the network. With CSPDarknet, the model size is scaled by reducing the
image size, number of layers, and number of channels. After the feature extraction is
carried out, the output is fed into the Neck for feature fusion or aggregation using the
PANet.

PANet (as an image instance segmentation network) shortens the information path
of the output from the backbone, improves the feature pyramid process, and enhances
accuracy of image localization. It adopts bottom-up path augmentation, adaptive feature
pooling, fully connected fusion, and mask prediction as shown in Figure 5.

Figure 5. Path Aggregation Network showing the underlying components and process; FPN Backbone,
Bottom-up Path Augmentation, Adaptive feature pooling, Box branch, and Fully connected fusion.

This framework tries to boost the localization capability of feature extraction hierarchy
by propagating the low-level patterns. With bottom-up augmentation, feature levels are
created with the same spatial size denoted as P2 to P5. Then, the spatial size is reduced
to generate new feature maps; N2 to N5. Each Ni goes through convolution layers with
strides for spatial size reduction. Next, each of the Pi and reduced map are laterally
summed to produce a fused feature map, which goes through another convolution layer
to create new Ni+1 for the next sub-network. To perform adaptive feature pooling, each
proposal is mapped to different feature levels. Thereafter, a fusion operation is carried out
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where the feature grids are fused together at various levels using Region of Interest (ROI)
alignment. The fully connected layer does the actual prediction by allowing parameters in
its layers to train more samples, thereby increasing the generality of distinct differentiation
of the foreground from the background mask characteristics. Unlike the standard YOLOv5
architecture, PANet is added to YOLOv5 architecture to improve the image feature process
by taking a single object of an arbitrary size as input and outputs it in proportional sized
feature maps of multiple levels in a fully convolution manner. The outputs from the Neck
are fed into Head.

Finally, the Head carries the eventual detection and prediction of different drones
and the attached objects by applying anchor boxes on the features and generates output
vectors containing class probabilities, object scores, and bounding boxes with a sort of
characterization to determine the overlap expressed in Equation (2):

⇒ Iou =
Ai
Au

; (2)

where Ai is Area of Intersection; Au is Area of Union; and Iou is Intersection Over Union,
which returns a value between 0 and 1 with a common threshold of >0.5. To ensure
nonlinearity in the network, leaky ReLU and Softmax activation function is adopted to
classify multi-class outputs. Softmax function returns the probability of each class expressed
by the Equation (3):

σ(Si) =
esi

∑k
j=i esj

, (3)

where σ is softmax, (Si) is the input vector, esi is the standard exponential function for
input vector, k is the number of classes in the multi-class classifier, and esj is the standard
exponential function for output vector. In addition, to perform optimization, the ADAM
and stochastic gradient descent optimization function is used.

3.3. Airborne Object Identification and Safe-Channel Response Strategy

As a drone approaches an industrial environment, it is pertinent to determine in
real-time the source of the drone, the proximity of the drone to the facility, the drone’s
intention, and the potential objects airborne by the drone (such as explosives, weapons,
guns, radio-actives, etc.). An accurate determination of these parameters is a precursor to
the response strategy to be taken intently. Having detected and classified the object in the
airspace as a drone (see Section 3.2), the model proceeds to check the drone’s harmful and
legal status. In order to achieve this, perceived danger and threat analysis of the drone in
the airspace is carried out using Equation (4):

⇒ δDt = Σ(Pt, Pa), (4)

where δDt is overall danger posed by a drone in sight, Pt is a drone’s physical feature threat
quantifier, and Pa is the facility perimeter/Area of Interest (ai) classifier based on priority
level. While Pa value determines the legality/illegality of a detected drone, the Pt value
defines the harmfulness or otherwise of such drone.

3.3.1. Perceived Threat Analysis

The perceived physical threat or damage (Pt) likely to occur by a drone in the airspace
is achieved through a super-positioning strategy that involves categorization of the avail-
able drone according to its model, its technology characteristics, and the airborne object
properties. The sum of these parameters suggests either a high or low priority level. Thus,
the value of P is further expressed in Equation (5):
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Pt = (Pobject + Dpath)
Dtime , (5)

where Pobject is physical threat level induced by drone physical features, Dpath is flight
path, and Dtime is response time with their maximum value set at α, β, and 1, respec-
tively. However, the value of Pobject is computed based on several factors (such as drone’s
weight/kinetic energy, size, noise, loaded object, and scanability) depending on the tech-
nology deployed. This is summarized in Equations (6)–(9). Assessing the drone’s kinetic
energy, which conveys useful information such as drone’s weight/mass and speed, is given
by Equation (6).

© Kinetic Energy (Wkinetic):

pobject,kinetic = (observed kinetic energy)÷
1400J ×Wkinetic,

(6)

∆dobject,kinetic is a clear indication that the drone in sight is carrying an object but such an
alert is insufficient for a proper airborne response scenario.

The sound generated by the drone’s rotor can be determined as:
© Noise Level (Wnoise):

pobject,noise = (1− (observed noise level)÷
80dB)×Wsize,

(7)

An increase in dobject,noise value suggests that an object in air is disrupting the airspace.
However, in a noisy environment, the dobject,noise value alone can be of little help for a
proactive counter response.

The object attached to drone is expressed as:
© Loaded Objects (Wloaded):

pobject,loaded = (level)÷ 4×Wloaded, (8)

If the identified loaded object is harmful (such as gun, missile, explosives, radio-actives,
etc.), then swift reaction and extra caution are taken to re-route the drone to an area with
less crowds and facilities to minimize casualty.

Where radar technology is available,
© RF Scannable (Wscannable):

pobject,scannable =

{
0, i f scannable

1.0 Wscannable, i f unscannable,
(9)

Hence, the overall or total value of pobject is expressed as:

∴ ptotal =max[α(p(object,kinetic) + p(object,noise)+

p(object,loaded) + pobject,scannable)× Ndrone];
(10)

with Ndrones is the number of swarming drones. Although these factors are worthwhile, only
visual representation of a loaded object, pobject, loaded, can provide the precise information
needed for adaptive response based on an airborne object. Hence, the proposed scheme
factored into consideration of the value of Pobject to be synonymous with the value of
pobject, loaded. Since this study focused on a vision-based technique, dpath and dtime are not
covered, yet the combination of these with accurate determination of pobject provides a
precise value for Pt. Hence, the drone’s physical feature threat, Pt, is considered to be the
value of the loaded/attached object, pobject, loaded.
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3.3.2. Drone Area Mapping

To decide the priority level of the industrial facility perimeter (Pa) otherwise known
as Area o f Interest (ai), the legality of a detected drone in the airspace is determined by
calculating the estimated distance between the approaching drone and the Threat zone as
seen in Figure 6 and expressed in Equation (11):

⇒ Ld(AB) =
1

1 + exp(d− Dm
2 )

, (11)

where Ld is the legality boundary/detection range which has a high value for a priority
area such as facility environment, d is the distance between area of interest and detected
drone, and Dm is a maximum detection range of the system. From Figure 6, the maximum
detection range, Dm is the sum of Threat zone (AB) and the Allowable zone, (BC, BD, orBE)
as shown in Equation (12):

Dm(AC = AD = AE) = ad + td, (12)

Figure 6. Area Mapping for adaptive drone neutralization depicting detection measurement logic
with point A as a position of a mounted electro-optical camera, point B is airspace boundary, while
point C, D, and E represent the detected drones in the airspace.

Hence, the value of d is expressed as:

d = ad − td (13)

However, for accurate estimation of d, the height (h) and the angle (θ) of detected
drone are factored into consideration:

∴ d = (ad − td)× sin(
h

Dm
) (14)

As the value of d shrinks and tends towards 0 at point B (Lb), referred to as the legal
boundary, an automatic control mission event is triggered to take appropriate neutralization
action. However, when the drone is within the allowable/legal zone (ad), the proposed
anti-drone scheme stays on standby mode.

Therefore, the proposed adaptive neutralization scheme utilizes the value of the
detection output (from Section 3.2), perceived threat analysis state, pobject, loaded (from
Section 3.3.1), and the value of legality status, (Ld) to determine the best appropriate
response as captured by Algorithm 1.
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Algorithm 1: Proposed DRONET Algorithm.
Data: Captureimage
Result: Danger Level, Drone-det, Obj-det
initialization;
Perform Drone Detection and Classification and Payload Recognition;
if Captureimage equals Dronedet then

Perform Perceived Threat Analysis;
Check Drone Harmful Status (Pt = pobject, loaded);
if Objstatus is Harm f ul then

Check Drone Legality Status (Pa);
if If Legalstatus is Valid then

Trigger Stand− byMode;
Continue legalityboundarycheck;

else
Trigger Automatic De f enseMode;

end
else

if Objstatus not Harm f ul and Legalstatus is Valid then
Trigger Drone Disarm and Rerouting Mode;

else
Trigger Harmless Mode f or Hobby Drones;

end
end

else
Ignore Captureimage in the airspace;

end

This is to ensure that unnecessary alarm is prevented when a legal or harmless drone
is in the airspace unlike previous anti-drone design models that trigger an alarm once a
drone is in sight.

3.4. Dataset Capturing, Description, and Pre-Processing

Two separate datasets for drone detection and payload identification were manually
generated. For detection and classification, 5460 drone samples were manually captured at
different altitudes (30 m–100 m) and scenarios (cloudy, sunny/normal, and evening) and
under different environments to form our test bed. Seven (7) drone models, namely; Anafi
extended, DJIFPV, DJIPhantom, Mavic2-Air, Mavic2-Air enterprise, Mavic2-Enterprise
Zoom, and EFT-E410S, were used for this study.

Each of these drone models were flown into the air at different locations, at different
heights and distance from the controllers, at different times of the day and days of the
week, and under different climatic conditions to reflect the intended scenarios. The video
sequences of each of these flight operations were captured and recorded in different time
frames. This exercise was carried out in months to ensure that all scenarios were adequately
covered to improve data quality, thereby avoiding errors, insufficiency of training data,
and non-representative of data that can cause model overfitting. Next, each of the captured
video’s sequences were converted into a sequence of data frames using an appropriate
software, Free Video to JPG Converter. These data frames contain the raw drone scenario
images/samples that make up each sample size as shown in Table 1 and Figure 7 and
stored accordingly.



Drones 2022, 6, 46 13 of 26

Figure 7. Drone detection dataset distribution for the models’ training showing various drones
models and climatic scenarios.

Furthermore, the data frames were sorted and cleaned by removing all images that
neither had drones but only background nor met the expected requirements. Thereafter,
each scenario-based data frame was labelled to generate normalized ground truth values
(xcenter, ycenter, width, height) in pixels by creating bounding boxes around the objects using
a MakeSense application. These transformed datasets are stored as text that represents the
labelled dataset used for model training, validation, and testing.

For a payload identification dataset, 1709 samples of drones with different attached
objects were manually captured, cleaned, and labelled using the same procedure as afore-
mentioned. The attached payloads include guns, missile, bomb, hidden cameras, explosives,
etc. as captured in Table 1 and Figure 8.

Table 1. Datasets’ characterization.

Datasets Description and Distribution

Attached Objects Sample Size Drone Models/Scenario Sample Size

Bomb 90 Anafi-Extended/Evening 660
Explosives 100 Anafi-Extended/Sunny 600

Gun 340 DJIFPV/Sunny 600
Missile 35 ETF-E4410S/Cloudy 600

Secret camera 180 ETF-E4410S/Sunny 600
Sealed packages 180 DJIFPV/Evening 600

UAV 15 Mavic2-Enterprise/sunny 600
drones 950 Mavic2-Enterprise evening 600
Total 1790 Mavic2-Enterprise zoom/cloudy 600

Total 5460

Figure 8. Payload recognition dataset distribution showing the different drone models and attached
objects under different climatic conditions and altitudes.
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Finally, data augmentation was carried out on both datasets by transforming the
training data so as to expose the models to a wider range of semantic variation rather
than isolated training. The dataset distribution for both drone detection and payload
identification is shown in Figures 7 and 8, respectively.

Robust on-site capturing of an attached payload dataset was, however, hampered by
government policy issues as regards flying of drones with harmful objects on-board—hence
the 1709 sample size for attached objects as against 5460 drone samples.

3.5. Simulation and Experimental Setup

The Pareto principle (also known as the 80/20 rule which stipulates those 80% of ef-
fects usually comes from 20% cause) is applied for training and testing sets to ensure
optimal performance and avoid model over-fitting. Simulation was carried out in a
Python environment using a PyTorch 1.10 library on a system with specification; Intel(R)
Core(TM) i5-8500 CPU @ 3.00 GHz, NVIDIA GeForce GT 1030, GPU CUDA:0 (Tesla K80,
11,441.1875 MB), 24 GB RAM, and Windows 10 operating system software. The hyper-
parameters used for the proposed models’ simulation are as summarized in Table 2.

Table 2. Models’ hyper-parameters.

NO. PARAMETERS VALUES

1 Number of Epoch 100
2 Batch size 16
3 Image input size 416 × 416×3
4 Learning rate 0.01
5 Weight-decay 0.0005
6 Warmup-epochs 3.0
7 Warm-momentum 0.8
8 Box loss threshold 0.05
9 Optimization Function Stochastic Gradient Descent

The same hyper-parameter was used across the selected models for training of the
deep neural network. Hyper-parameter tuning was performed on the model. In addition,
transfer learning was carried out by training the last layers of convolution blocks in the
models to improve the model’s learning ability on a new task through existing knowledge.
Moreover, to reduce misrepresentation of detected objects and enhance the robustness
of the model in detecting new outcomes with variety of characteristics, different data
augmentations, such as horizontal and vertical flips (hsvh = 0.015, hsvs = 0.7, hsvv = 0.4,
degrees = 0.0), translation (translate = 0.1), scaling (scale = 0.5), shearing (shear = 0.0), etc.,
were carried out on the image prior to training. Lastly, to test the model’s inference, best
trained weights’ values were used on the test sets.

4. Results and Discussion

This section presents a detailed discussion of the simulation results for the drone de-
tection (see Section 4.1), weapons, and payload identification (see Section 4.2), performance
evaluation with other models (see Section 4.3), and the neutralization response approach
(see Section 4.4). The performance metrics used to evaluate the model’s performance are
mean average precision (mAP), accuracy, sensitivity (recall), F1-score, throughput (mea-
sured by floating point operations per second, FLOPS), latency/response time (measured
in frame per second), and reliability. Thereafter, the model’s performance efficiency was
compared with other state-of-the-art models.

4.1. Multi-Drone Detection and Classification

The results from Table 3 represent the drone detection by DRONET in different cli-
matic conditions.
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Table 3. Multi-drone Detection and Classification.

Drone Detection and Classification Result

Drones Scenarios Recall (%) mAP @0.5 (%)

Anafi-Extended

Cloudy

100 99.1
DJIFPV 100 99.7

ETF-E410S 99.8 99.9
Mavic Air 99.8 93.5

Mavic Zoom 100 99.9

Anafi-Extended

Evening/Gloomy

99.2 99.1
DJIFPV 99.6 99.7

ETF-E410S 100 99.9
Mavic Air 93.4 93.5

Mavic Zoom 100 99.9

In a cloudy or hazy environment, the proposed model achieved the highest precise
detection of 99.9% and sensitivity of 100% for Mavic Zoom drone and least detection
accuracy of 93.5% and sensitivity of 99.8% for Mavic Air drone. In a gloomy environment
or evening scenario, DRONET achieved an optimal detection accuracy value of 99.9% and
sensitivity of 100% for ETF-E410S and Mavic Zoom drones and least detection accuracy of
93.5% and sensitivity of 93.4% for Mavic Air drone. In addition, with a 99.1% detection
accuracy and 100% sensitivity value for Ana f i Extended drone recorded by DRONET, it
attests to the ability of the proposed model for precise detection of tiny and distant drones
since most of the drone models in this study are miniature and flown to a high altitude.
Furthermore, the model also achieved similar prediction results for tiny drones in a gloomy
condition and night scenarios for Ana f i Extended.

To find a balance between the robustness of stochastic gradient descent and the
efficiency of batch gradient descent of the proposed model, parameter tuning is carried out
by splitting the training set into different batch sizes (as shown in Table 4), which are used
to calculate the proposed model’s error and update the model co-coefficients.

Table 4. Parameter tuning of DRONET.

Parameter Tuning of Proposed Model

Batch Size Epoch mAP @ 0.5 (%) Precision (%) Recall (%) Box_Loss

8 100 99.5 97.5 100 0.046
16 100 99.5 91.7 100 0.040
32 100 99.6 99.8 100 0.055
64 100 99.5 95.3 100 0.061
128 100 99.5 82.2 100 0.063

At a smaller batch size of 8, the learning process of DRONET converged quickly at the
cost of noise (BoxLoss) of 0.046 in the training process. With an increase in the batch size,
for instance 128, the proposed model converged slowly with an accurate estimation of the
error gradient of 0.063 as highlighted in Figures 9 and 10.

This attests to the stability of the model in learning from the training data. In addition,
the values from the confusion matrices in Figures 11–13 assert that the model exhibited
a high degree of exact classification of various drones types under different climatic con-
ditions and altitudes, which is crucial in an anti-drone system design in guaranteeing
adequate surveillance and safety of an industrial facility.
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Figure 9. Precision graph of the proposed model across different batch sizes.

Figure 10. Recall graph of the proposed model across different batch sizes.

Figure 11. Confusion Matrix Graphs of showing drone classification by DRONET under different cli-
matic conditions with different hyper-parameters; (a) drone classification at batch size of 8, (b) drone
classification at a batch size of 16.
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Figure 12. Confusion Matrix Graphs of showing drone classification by DRONET under different
climatic conditions with different hyper-parameters; (a) drone classification at a batch size of 32,
(b) drone classification at a batch size of 64.

Figure 13. Confusion Matrix Graphs showing drone classification by DRONET under different
climatic conditions with different hyper-parameters; drone classification at batch size of 128.

These results further confirm that there is a minimal false prediction rate by the model
across the selected scenarios.

4.2. Weapons and Payload Identification

The danger potential posed by a drone in the airspace is relative to the object definition
status airborne by the drone, the legalization, and the intention of its source. Since intention
cannot be quantified and legalization is still a global issue, the results in Table 5 highlight



Drones 2022, 6, 46 18 of 26

the weapons/payload identification at different distances, heights, and environments by
the proposed model based on the object’s physical features.

Table 5. Payload identification results of models.

Weapons/Payload Identification

Attached Objects Recall (%) mAP @0.5 (%)

Bomb 50 56.5
Explosives 50 71.5

Gun 22.9 35.7
Missile 71.5 100

Secret camera 59.1 46.6
Sealed packages 52.6 52.3

UAV 75.8 76.3

From Table 5, the proposed model exhibited the capability of recognizing various sizes
of objects attached to or conveyed by the drones under different scenarios with certain
levels of disparity. DRONET achieved optimal precision value of 100% in identifying
relatively small objects like missile, 75% for explosives and UAV, and average value for
recognizing smaller objects like secret camera, bomb and sealed packages. Similarly, the
model achieved a sensitivity value of 75.8% and 71.5%, which is necessary for proper
physical threat level analysis, and effective aerial communication required in adaptive
safe-channel response to counter a drone in sight. However, the low recognition values
of 35.7% for tiniest distant objects like Gun is attributed to the insufficient number of
samples for robust model training and not from the model’s inadequacy. With this visual
information, the proposed anti-drone model then proceeds to determine the recognized
object’s harmfulness or otherwise and utilize the information for appropriate neutralization
response in countering an approaching drone in the airspace.

4.3. Performance Evaluation

Rationality in decision-making, timeliness in response, and seamless feedback commu-
nication are imperative in an anti-drone design as a hard real-time critical mission system.
Therefore, F1-score, latency, and throughout performance metrics are used to validate the
proposed model’s efficiency in comparison with other state-of-the-art models with similar
characteristics as shown in the result in Table 6.

Table 6. Comparing DRONET with variants of YOLO models.

DRONET vs. Variants of YOLO

Model Precision (%) Recall (%) F1 Score (%) Time (fps) GFLOPS

DRONET 99.8 100 99.9 0.021 s 16.1
YOLOv5s 96.4 100 98.1 0.021 s 16.4

YOLOv5fpn 97.6 100 98.7 0.022 s 16.4
YOLOv5p2 99.5 99.5 99.5 0.023 s 19.2

4.3.1. F1-Score Measurement

F1-score measures the rational behavior of a model with changes in its precision and
sensitivity expressed as

⇒ F1− score = 2× (Pr ∗ Rc)

(Pr + Rc)
, (15)

while detecting objects. Pr is the precision representing the positive predictive values, and
Rc is the sensitivity representing the true positive detection rate by the models.
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In this study, Pr is the proportion of positive predictions and recognition of drones
and attached objects made by the models. This is given as expressed in Equation (16):

⇒ Pr =
(Tp)

(Tp + Fp)
, (16)

with Tp representing Tp true positive predictions, and Fp is the number of false positive
predictions (otherwise known as type I error). As a rule in ML, the model with lesser false
positive and consequently higher precision value is considered a good model. However,
sensitivity (Rc) is the proportion of actual positive recognition that the models identified
correctly. From Equation (17), sensitivity is given as:

⇒ Rc =
(Tp)

(Tp + Fn)
, (17)

where Fn is the number of false negative predictions (otherwise known as type II error)
by the models. A model with lesser false negatives and consequently a higher sensitivity
value is a better model than others because its predictions are more reliable.

From Table 6, DRONET had a superior F1-score value of 99.9% in comparison to
other variants of YOLO models with same network configuration, showing an improved
detection with a minimal false detection rate needed in an anti-drone system as captured in
Figure 14.

Figure 14. DRONET vs. variants of the YOLO model.

4.3.2. Throughput and Latency Determination

Throughput analyses the rate at which requests are serviced by a model. The actual
throughput of a model is derived by computing the maximum number of instances/requests
the model can process in a unit time frame expressed by Equation (18):

⇒ Throughput (Tp) =
(Nb × bs)

(ts)
, (18)

where

Nb is number of batches;
bs is batch size;
and ts is total time in seconds. The results in Table 6 indicate that DRONET outperformed
other YOLO variants with a throughput value of 16.1 measured in floating points operations
per seconds, GFLOPS.
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Finally, latency measures the timeliness (inference time) of a neural network in de-
tecting a drone frame per second. It is a measure of the delay experienced by the model
in performing inference on the server during training. Using the asynchronous execution
mechanism, DRONET achieved a timeliness of 0.021 s, which is considerably better than
other YOLO models based on the overall model performance rather than viewing only
from the negligible difference in response time across the models.

Furthermore, the results in Table 7 provide a detailed performance comparison be-
tween DRONET and other state-of the-art object detection models for both drone detection
and payload identification on a batch size of 16, 100 epochs, and learning rate of 0.0001.
With a precision value of 99.60%, the proposed model displayed a superior ability to iden-
tify only the relevant data points (attached objects) on the drones and attached objects
better than its counterparts. In addition, DRONET achieved a sensitivity and F1-score value
of 99.80% and 99.69%, respectively, which is about 10% higher in performance than the
closest model, GoogleNet, which has a value of 89.10%, 88.52%, and 88.71% for precision,
sensitivity, and F1-score as seen in Figure 15. Overall, the results in Figure 15 attest to the
superior performance of the proposed model in precision, sensitivity, and F1-score.

Table 7. Comparing DRONET with other object detection models.

DRONET vs. State-of-the-Art Models

Models Precision (%) Recall (%) F1-Score (%) Loss

DRONET 99.60 99.80 99.69 0.0407
VGG-16 88.52 81.50 84.86 0.0753

SqueezeNet 82.59 84.21 83.38 0.0891
GoogleNet 89.10 88.52 88.71 0.0654
MobileNet 25.56 26.35 25.94 0.0983

Figure 15. Performance Evaluation of DRONET vs. other models showing Precision, Recall, and
F1-score values.

4.3.3. Reliability Measurement

In addition, a good model’s performance is judged based on empirical risk minimiza-
tion, otherwise called loss. The loss value indicates how bad or well a model behaves in
making its prediction after each optimization iteration. A perfect prediction is synonymous
to a zero-loss value while a higher loss is an indication of bad prediction as presented in
Figure 16.
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Figure 16. Loss Graph Result of DRONET vs. other models.

The results from the bar chart in Figure 16 indicate that DRONET achieved a very
low loss value of 0.040, which is below the box loss threshold of 0.050 (see Table 2 in
Section 3.4) when compared with other models. This further proves that the proposed
model’s prediction is reliable with negligible errors or false predictions. Therefore, the
reliability of the proposed model is undoubtedly assertive based on the foregoing empirical
analysis and available results as summarized by the reliability graph in Figure 17.

Figure 17. Reliability Graph of DRONET across different batch size showing minimal errors
in prediction.

4.3.4. Efficiency Measurement

Finally, the efficiency of a neural network is determined by the intersection between
its ability to identify only the relevant predictions (precision) and its ability to find all the
relevant cases in the given dataset (sensitivity). Hence, the graph in Figure 18 shows the
performance efficiency of DRONET in comparison with other object detection models.
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Figure 18. Efficiency Graph of DRONET and other object detection models.

These results validate the superiority of DRONET’s performance as a reliable and
efficient model for adaptive multi-scale anti-drone system design suitable for real time
visual multi-drone detection and classification, and timely payload identification with
low computational complexity and latency. With these claims, effective aerial surveillance
against illegal and legal drones around an industrial facility premise is guaranteed vis-à-vis
a secured network protocol for seamless communication. Hence, the predicted outputs
from the CNN model becomes the input/feedback which the neutralization component
of the anti-drone system utilizes to carry out the required adaptive response for safe-
channel neutralization.

4.4. Safe-Channel Neutralization Result

The results from the drone detection and payload identification form the basis for the
neutralization stage; that is, countering the observed drone within the field of view in the
airspace. However, as discussed in Section 3.3, adaptive neutralization response requires
timely perceived threat analysis and drone area mapping, which runs simultaneously with
the detection process to enhance response time in split seconds.

With a 99.8% drone detection and attached object identification prediction by the un-
derlying proposed CNN model, the anti-drone system picks the outputs from the detection
process, determines the harmful status of the identified attached object, Pobject, loaded through
perceived threat analysis (as highlighted in Algorithm 1), and finds the proximity of the
drone in the airspace to the mapped area, Pt (as described in Section 3.3.2).

The outcome of Pa and Pt informs the decision to either disarm, destroy, or ignore
the drone in the airspace. If the detected object in the airspace is a drone, the identified
conveyed object is a bomb (which is classified as harmful), and the proximity of the drone
to the mapped area is determined as far, and the anti-drone system triggers a Stand-by
mode in readiness to engage the drone in close contact since the identified conveyed object
is harmful though the drone is outside the restricted area. However, if the identified object
is harmless and legality is confirmed as no intrusion, the anti-drone system simply ignores
the process signaling Harmless mode except when there is an attempt to intrude into the
mapped area.

This adaptive approach to detecting, localizing, and neutralizing illegal and harmful
drones guarantees minimal resource usage on the part of the system since actions are only
triggered as the need arises. In addition, it ensures that only harmful and illegal drones
are detected and neutralized, thereby reducing unnecessary interference to the emerging
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DTS, which allows UAVs to be used for logistics and other non-military purposes such
as such as search and rescue, emergency response, aerial photography, etc. Finally, this
approach guarantees automatic simultaneous detection and neutralization without the aid
of a human expert since the system learns and acts based on acquired knowledge.

These claims not withstanding are constrained by the increased difficulty in identifying
concealed attached objects to the drones accurately as witnessed in the payload identifica-
tion simulation results. In addition, the detection of objects in a dark environment or where
the drone’s color blends with its surrounding environment is still an on-going research
issue in object detection. Lastly, intruders leverage on loopholes in an anti-drone’s system
communication and network protocol to engage and defeat an anti-drone system response
time of detecting and neutralizing them effectively. Therefore, a careful consideration of
these issues will further improve the anti-drone system development industry.

5. Conclusions

In this study, a multi-tasking multi-drone detection, attached object identification,
and safe-channel neutralization model is proposed to bridge the gap in the existing anti-
drone system designs that focus only on drone detection with little effort to examine its
harmful status based on the airborne object. To ensure superior detection and wide-range
identification coverage, different drone models of varying sizes were captured under cloudy,
sunny, and evening scenarios. In addition, harmful and harmless objects were attached
to drones and flown at different altitudes and environments to capture real-life scenarios
howbeit government restrictions.

The proposed deep learning model for drone detection and payload identification
exhibited high detection performance of tiny drones in all scenarios in comparison with
other state-of-the models. In addition, the perceived threat analysis scheme was formulated
to determine the harmful status of an identified airborne object. Then, the proposed legality
status model determines the rule of engagement strategy for neutralizing the drone based
on the proximity of the drone in the airspace to the area of interest.

These results are invaluable milestones to the design and development of anti-drone
systems as a defense mechanism to guarantee safety and sanity in the airspace in curtailing
the use of drones for heinous activities without undermining the emerging DTS. However,
issues such as inaccurate identification of concealed airborne objects attached to drones,
recognizing drones and other aerial objects that are camouflaged in their surrounding
environment, and identifying drones in dark scenarios, still need to be addressed for robust
performance of vision-based anti-drone systems. Leveraging on the possibilities of a hybrid
model by combining more than one detection technique as well as increasing the payload
dataset to include more objects will help in addressing some, if not all, of these observed
issues in this study. Future research efforts will be channeled in this direction.

Author Contributions: Conceptualization, S.O.A.; Data curation, S.O.A. and V.U.I.; Formal analysis,
S.O.A.; Funding acquisition, D.-S.K. and J.M.L.; Investigation, S.O.A.; Methodology, S.O.A. and
J.M.L.; Project administration, D.-S.K. and J.M.L.; Resources, D.-S.K.; Supervision, D.-S.K. and J.M.L.;
Validation, S.O.A.; Visualization, S.O.A.; Writing—original draft, S.O.A.; Writing—review and editing,
S.O.A. and V.U.I. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Priority Research Centers Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology
(2018R1A6A1A03024003) and by the National Research Foundation of Korea (NRF) grant funded by
Korea Government (MSIT) (2019R1F1A1064055) and the Grand Information Technology Research
Center support program (IITP-2022-2020-0-01612) supervised by the IITP (Institute for Information
communications Technology Planning Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Drones 2022, 6, 46 24 of 26

Acknowledgments: This work was supported by the Priority Research Centers Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and
Technology (2018R1A6A1A03024003) and by the National Research Foundation of Korea (NRF) grant
funded by the Korea Government (MSIT) (2019R1F1A1064055) and Grand Information Technology
Research Center support program (IITP-2022-2020-0-01612) supervised by the IITP (Institute for
Information communications Technology Planning Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolution Neural Network
COCO Common Object in Context
CSP Cross Stage Partial Network
DTS Drone Transportation system
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PANet Path Aggregation Network
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