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Abstract: Delivery drones have been attracting attention as one of the promising technologies
to deliver packages. Several research studies on routing problems specifically for drone delivery
scenarios have extended Vehicle Routing Problems (VRPs). Most existing VRPs are based on Traveling
Salesman Problems (TSPs) for minimizing the overall distance. On the other hand, VRPs for drone
delivery have been aware of energy consumption due to the consideration of battery capacity. Despite
hovering motions with loading packages accounting for a large portion of energy consumption since
delivery drones need to hover with several packages, little research has been conducted on drone
routing problems that aim at the minimization of overall flight times. In addition, flight time is
strongly influenced by windy conditions such as headwinds and tailwinds. In this paper, we propose
a VRP for drone delivery in which flight time is dependent on the weight of packages in a windy
environment, called Flight Speed-aware Vehicle Routing Problem with Load and Wind (FSVRPLW).
In this paper, flight speed changes depending on the load and wind. Specifically, a heavier package
slows down flight speeds and a lighter package speeds up flight speeds. In addition, a headwind
slows down flight speeds and a tailwind speed up flight speeds. We mathematically derived the
problem and developed a dynamic programming algorithm to solve the problem. In the experiments,
we investigate how much impact both the weight of packages and the wind have on the flight time.
The experimental results indicate that taking loads and wind into account is very effective in reducing
flight times. Moreover, the results of comparing the effects of load and wind indicate that flight time
largely depends on the weight of packages.

Keywords: drone routing problem; flight speed-aware vehicle routing problem; dynamic programming
algorithm; drone

1. Introduction

In recent years, drones have been expected to play an active role in a variety of fields.
Drones have been employed for hobby and multimedia applications due to their high
availability. In particular, package delivery services constitute a promising use of drones to
solve the last-mile problem. Drone package delivery offers a variety of advantages over
conventional deliveries. Since drones deliver packages in flight, they are not affected by
traffic jams or other road conditions. They also emit less CO2 since they are battery pow-
ered, and their unmanned flight reduces labor costs required for the delivery. Kirschstein
et al. [1] have researched the usefulness of delivery drones in terms of energy consumption.
This study indicated that delivery drones are superior to vehicle deliveries. Since drones
are unmanned, it is clear that labor costs can be reduced compared to vehicle package
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delivery. Many companies have been taking advantage and have started logistic busi-
nesses [2,3]. Therefore, drone delivery, especially for finding an efficient delivery route, has
been extensively investigated for a decade [4–7].

Drone package delivery is derived initially from Traveling Salesman Problems (TSP) [8].
As one of the extensions, Vehicle Routing Problems (VRPs) have been developed to take
into account the features of vehicles. VRPs have classically targeted routing problems for
trucks; therefore, the characteristics specialized for drones have not been assumed in the
problems. Dorling et al. investigated a vehicle routing problem for drones [9]. A variety of
extensions of VRPs for drone delivery has been developed. Many researchers focused on
energy consumed on drones since most of the drones are powered by a battery and can
hardly fly for a long period of time. Unfortunately, each of the energy models presented
in research studies is available only for a specific drone; therefore, the proposals do not
address the issue that energy models are required for diverse drones. In terms of energy
consumption, the flight time that includes hover time and transport time is one of the
crucial perspectives since hovering with loading packages accounts for a large portion
of energy consumption on drones [10]. Regardless of this fact, most of the extensions for
drone delivery have assumed that flight speed is fixed. For drone delivery, the drone
has to carry packages and make changes to flight speeds depending on the weight of the
packages. Funabashi et al. [11] proposed a delivery plan that takes into account the change
in flight speed due to loads. Furthermore, flight is affected by weather environments.
Significant interference represents windy conditions where tailwind speeds up the drone,
while headwind slows it down. Ito et al., Luo et al., and Guerrero et al. [12–14] presented
VRPs for drone delivery that take into account the windy effect. Unfortunately, however,
such research studies did not assume that the weight of packages affects the flight speed
of drones.

In this paper, we propose a VRP for drone delivery, which assumes that the flight speed
is affected by the weight of packages and windy environment, and we attempt to minimize
the overall flight time. In general, the drone routing problem covers a range of flight speeds
from 0 to 23 m/s and a maximum payload of 25 kg [15]. The payload depends on drone
size. This paper is an extended version of [11], and the extensions are addressed as follows.
In the paper of [11], the weight of packages is assumed to affect flight speeds. However, the
windy condition is indispensable in order to determine the routing order. Our proposed
VRP, called Flight Speed-aware Vehicle Routing Problem with Load and Wind (FSVRPLW),
considers both the weight of packages and the windy condition in order to pursue the
primary factor that largely depends on the overall flight time. In the conventional drone
routing problem, the flight speed of the drone is considered to be constant. However, the
flight speed of a drone varies depending on the load and wind. We focus on this and
propose a new problem. In this problem, we assume that flight speed changes with the
load and wind. Specifically, when the payload is heavy, the flight speed becomes slow. On
the other hand, when the payload is light, the flight speed becomes fast. In addition, when
the drone flies in a headwind, the flight speed becomes slow. On the other hand, when
the drone flies with a tailwind, the flight speed becomes fast. We mathematically derived
FSVRPLW for drone delivery and also proposed an algorithm to solve the problem based
on dynamic programming. Furthermore, we evaluate the scalability of our algorithms
for the number of customers available for drone delivery throughout runtime evaluation.
Given a set of packages to deliver and wind, FSVRPLW tries to find an optimal route that
starts from a depot, delivers all of the packages to customers, and comes back to the depot
with the effect of wind in mind. Our dynamic programming algorithm efficiently finds an
optimal route such that the overall flight time is minimized.

The rest of this paper is organized as follows. Section 2 surveys related work. Section 3
describes the FSVRPLW for a delivery drone. Section 4 proposes a dynamic programming
algorithm for FSVRPLW. Section 5 presents an evaluation; finally, Section 6 concludes
this paper.
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2. Related Works

In recent years, many approaches for drone delivery have been extensively surveyed [4–7].
Drone delivery planning has been specially investigated as the extension of TSPs [16–20].
Agatz et al. [16] have proposed a flight side-kick routing problem that determines the
delivery order using both drones and trucks. In addition, Bouman et al. [17] have intro-
duced a dynamic programming algorithm to solve the delivery planning problem using
trucks and drones. The studies in [16,17] do not consider the wait time after the truck
or drone finish each of the deliveries. In Marinelli et al. and Ha et al. [18,19], the pro-
posed problems are aimed to minimize the wait time of trucks and drones and the battery
consumption of drones. Murray et al. [20] have proposed a problem where the drone
is assumed to depart from a truck. Tu et al., Kitjacharoenchai et al., Saleu et al., and
Ham et al. [21–24] further extended the drone delivery problem for using multiple drones
and trucks. Ham et al. [24] addressed a problem where drones not only deliver but also
collect packages. These research studies have assumed that drones and trucks perform only
one delivery, but Ham et al. [24] considered the collection. However, most of the research
studies have had simple assumptions for routing. In other words, TSP-based problems
do not take into account the unique properties of vehicles. In particular, for drones, flight
speeds and times often change largely depending on the load, battery condition, and
natural environments. Therefore, TSP-based routing problems are insufficient for obtaining
a practical route.

As one of the extensions for TSPs, VRP-based problems, which consider the character-
istics of vehicles, have been developed for pursuing a practical routing solution. Unlike
TSPs, VRPs are aimed at the minimization of energy consumption, delivery time, and travel
distance by considering the characteristics of the vehicles. Specific to drones, the significant
perspective is to reduce the total cost of the delivery flight. There are several studies
that consider delivery costs involved in delivering by truck or drone in Poikonen et al.,
Wang et al., and Minh et al. [25–27].

The minimization of energy consumption is set as the major cost in drone-based
delivery to avoid crashing. Therefore, Energy Minimizing Vehicle Routing Problems
(EMVRPs) have been developed in Ito et al., Kara et al., and Funabashi et al. [12,28,29]. In
general, the energy consumption of a drone is accounted for by the most significant hover
portion. The evidence is referred to by research in [10,30], where the authors have measured
the energy consumption of an AR Drone 2.0 with a variety of flight speeds and weight of
loads. In these studies, the flight speed of the drone is less than 6 m/s and the load is up
to 168 g. The experimental results of these studies show that flight speed depends on the
weight of loads, and flight speed largely affects energy consumption. From this perspective,
several research studies that consider variable flight speeds and flight times have been
proposed. Dorling et al. [9] proposed a delivery plan that considers the impact on energy
consumption and flight times by weights of loads and a battery. However, Poikonen et al.,
Wang et al., and Ha et al. [25–27] assumed constant flight speeds even if the drones loaded
packages. On the other hand, a drone routing problem, which is called Flight Speed-aware
Vehicle Routing Problem (FSVRP), that takes into account flight speeds depending on loads
has been proposed in [11]. In the literature [11], changes in flight speed due to loading are
taken into account. Specifically, the heavier the load on the drone, the slower the flight
speed becomes. Conversely, if the load on the drone is light, flight speed becomes faster.
Research assumed that lift power is constant and the flight speed of the drone is dependent
on the payload. The reduction in the total flight time results in a reduction in total energy
consumption. It can be observed that Funabashi et al. [11] results in reducing total energy
consumption. Unfortunately, in the real world, flight speed is not only affected by loads but
also affected in a windy environment. There has been little research that takes into account
wind, which affects the flight speed of a drone [12–14]. Ito et al., Funabashi et al., and
Bouman et al. [11,12,17] proposed a fast method for solving the problem by using dynamic
programming proposed for the drone routing problem. Moreover, a genetic algorithm
is used as a fast method to solve this problem. Several research studies used the genetic
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algorithm, a form of artificial intelligence, for delivery drone routing problem [27,31,32].
However, both load and wind-aware routing problems for drone delivery have not yet
appeared. To the best of our knowledge, this is the first research study that considers both
load and wind that affect the overall flight time.

3. A Description of FSVRPLW

Our proposal is an extension of FSVRP, which was proposed by Funabashi et al. [11].
However, unlike FSVRP, our proposed problem considers both the weight of the load and
windy conditions; therefore, we call the problem a Flight Speed-aware Vehicle Routing
Problem with Load and Wind (FSVRPLW). In the following section, we present a motivating
example to show the significance of this problem and mathematically derive the problem.

3.1. A Motivational Example

Figure 1 shows an example of the problem in this paper. This figure represents the
distance between customers and the weight of the package to be delivered to each customer
in the case that the number of customers is three. The unit of weight of the package is
g, and wind speed is assumed to be blowing at 2 m/s in a constant direction. It is also
assumed that the speed of the drone is 5 m/s.

Figure 1. An example problem.

Each node represents a customer, the edge represents the flight distance, and the square
box represents the weights of the packages to be delivered to each customer. Node 0 represents
the depot. For example, when transporting a package from the depot to customer 2, the weight
of the package is 80, and flight distance is 84. Note that the example assumes that wind blows
in the direction from the depot towards customer 2.

FSVRP changes its flight speed depending on the weight of loads. If the packages are
heavy, flight speed becomes slow. In contrast, the drone can fly fast if packages are light. In
terms of the characteristic, a heavy package is intuitively delivered first to minimize the
overall flight time. However, windy interference can slow down the flight of the drone and
cannot be negligible.

Figure 2a,c show the optimal path in FSVRP. Figure 2a shows the flight distance in
FSVRP, and Figure 2c shows flight times. Figure 2b,d show the optimal path in FSVRPLW.
Figure 2b shows the flight distance in FSVRPLW, and Figure 2d shows the flight time.
The flight time shown in these figures is the flight time when the flight speed changes
due to load and wind. The detail of how to calculate the flight time is addressed in
Sections 3.2 and 3.3. In Figure 2a–d, the delivery order drawn in red lines is found so that
the overall flight time in the FSVRP is minimized. The flight time of the drone is derived
from the overall flight distance and the weight of the loads.
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(a) (b)

(c) (d)

Figure 2. Comparison of FSVRP and FSVRPLW : (a) flight distance of FSVRP, (b) flight distance of
FSVRPLW, (c) flight time of FSVRP, and (d) flight time of FSVRPLW

Recall that the heavier the load, the slower flight speed becomes, resulting in longer
flight times. This fact intuitively implies that heavier packages are given priority for delivery.
However, the optimal solution opposes intuition since not only the weight of packages but
also flight distance is important for minimizing flight times. In the result of FSVRP, the
overall flight distance for FSVRP represents 402 (= 80 + 116 + 120 + 86), and flight time
represents 131 (= 47 + 24 + 41 + 19). FSVRPLW additionally considers the windy effect
to determine the delivery route. The optimal route in FSVRPLW is shown in Figure 2b,d.
In the example, tailwind from the depot to customer 2 helps the flight, and the first visit
represents customer 2 in the result of FSVRPLW. Therefore, the optimal flight distance for
FSVRPLW is 452 (= 84 + 116 + 166 + 86), and flight time is 115 (= 18 + 43 + 35 + 19).

This example shows that a drone flies different paths in FSVRP and FSVRPLW. FSVRP
can result in a route that reduces flight time by prioritizing customers with heavy loads
and close flight distances. Therefore, in the example, the first delivery is to customer 3,
who requires a heavy load and a short flight distance. On the other hand, FSVRPLW can
shorten the total flight time by taking advantage of windy conditions. In the example,
the package is first delivered to customer 2, to whom the drone can fast fly to even if it
carries the heaviest package. In FSVRPLW, flight time is reduced regardless of the long
flight distance.

3.2. FSVRPLW Formulation

This section describes the formulations of FSVRP and FSVRPLW.
We are given N packages to deliver. In order to avoid lost generality, we do not deliver

more than two packages to the same customer, and the number of customers is also N.
In other words, multiple packages to the same customer are combined in advance. In
this paper, we assume that packages can be delivered in a single trip; therefore, it does
not require multiple trips. In addition, in a single trip, multiple visits to a customer must
result in a loss of energy consumption and flight time. The customer to whom package i
(1 ≤ i ≤ N) is delivered is called customer i, and the depot is numbered 0, as shown in
the example in Figure 1. In this paper, we assume that all packages are delivered at one
time. This means that all packages are loaded onto the drone at the depot, and then the
delivery is started. The packages need to be divided for another tour if the total weight
of the packages exceeds the carrying capacity of the drone, but this is out of the scope of
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this paper. Let d(i1, i2) denote the distance between customers i1 and i2. Moreover, let x(j)
denote the j-th visited customer, which is the decision variable of the routing problem.
Since a route starts and ends at the depot, we define the following.

x(0) = x(N + 1) = 0 (1)

Moreover, all customers are visited once, which is formally defined as follows.

1 ≤ x(j) ≤ N (1 ≤ j ≤ N) (2)

x(j1) 6= x(j2) (1 ≤ j1, j2 ≤ N, j1 6= j2) (3)

Let w(i) denote the weight of package i, and Wd is the weight of the drone itself. Let
W(j) the total load when the drone departs the j-th customer. When the drone starts a
delivery, all packages are loaded. Therefore, the following equation is valid.

W(0) =
N

∑
i=1

w(i) (4)

When the drone makes the j-th stop (1 ≤ j ≤ N) at customer x(j), a package of
weight w(x(j)) is unloaded. Therefore, the total load when the drone leaves customer x(j)
is defined as follows:

W(j) = W(j− 1)− w(x(j)) (5)

Let t(i1, i2) denote the flight time between customer i1 and i2. Then, the drone flight
time from i1 to i2 is given by the distance between i1 and i2 divided by the drone flight
speed. Note that vl is a function of load. Therefore, the flight time between customers j-th
visited and (j + 1)-th visited is defined as follows.

t(x(j), x(j + 1)) = d(x(j), x(j + 1))/vl(W(j)) (6)

FSVRP asks for the shortest flight time in all flight routes, and its objective function is
defined as follows.

minimize T =
N

∑
j=0

d(x(j), x(j + 1))/vl(W(j)) (7)

The FSVRPLW addressed in this paper is formally defined as follows. Given w, d, and
v, find x, which minimizes the objective function (7) while meeting constraints (1)–(6).

In FSVRPLW, the effect of wind is added to the velocity used in FSVRP. Let vlw be
the flight speed of the drone that takes into account the effects of wind and load. vlw is a
function of the load, wind speed, and the position vector of the customer. If the speed of
the drone is vlw, the speed of the wind is vw, and the position vector of the customer x(j)
to x(j + 1) is c(x(j), x(j + 1)). Equation (6) is defined as follows.

t(x(j), x(j + 1)) =
|c(x(j), x(j + 1))|

vlw(W(j), vw , c(x(j), x(j + 1)))
(8)

Therefore, FSVRPLW asks the shortest flight time in all flight routes, and its objective
function is defined as follows.

minimize T =
N

∑
j=0

|c(x(j), x(j + 1))|
vlw(W(j), vw , c(x(j), x(j + 1)))

(9)

The FSVRPLW addressed in this paper is formally defined as follows. Given w, v, vw,
c, and vlw, find x, which minimizes objective function (9) while meeting constraints (1)–(5), (8).



Drones 2022, 6, 50 7 of 14

3.3. Effects on Flight Speed of a Drone

Function vlw of the drone’s flight speed in the previous section varies depending on
the drone model. In this study, vlw is assumed to be given, and an example of calculating
vlw is shown below. First, the effect of load on the flight speed of the drone is described.

Figure 3a,b show the effects of load on flight speed. These figures show the situation
when the drone is viewed from the side. Figure 3a shows the drone when it is not carrying
a load. P represents the lift force and θ represents the pitch angle of the drone. Moreover,
Wd represents the weight of the drone itself. The drone should not fall. Therefore, the
vertical component of P, i.e., Py, must be equal to gravity force Wd · g. Let θ denote the
pitch angle where Py is equal to the gravity.

Py = P cos(θ) = Wd · g (10)

The horizontal component of P, i.e., Px, is the power towards the destination, and it is
assumed to be equal to air resistance k · vl(0), where k is a drone-specific coefficient.

Px = P sin(θ) = k · vl(0) (11)

𝑃!

𝑃"

𝑃

𝑊#𝑔

𝜃

(a)

𝑃 𝑃!"

𝑃#"

(𝑊$ +𝑤)𝑔

𝜃"

(b)

Figure 3. Effect of load: (a) drone without load and (b) drone with load w.

Figure 3b shows a flying drone with load w. In order not to fall down, pitch angle θ′

must be smaller than θ. Then, we derive the following formulas.

P′y = P cos(θ′) = (Wd + w) · g (12)

P′x = P sin(θ′) = k · vl(w) (13)

Hence, we derive the following.

vl(w) =
P
k

sin(θ′) =
sin(θ′)
sin(θ)

vl(0) (14)

θ′ = arccos (
(Wd + w) · g

P
) (15)

θ = arccos (
Wd · g

P
) (16)

Therefore, the flight speed of the drone when the drone is loaded with a load is as follows.

vl(w) =
P
k

sin (arccos
(Wd + w) · g

P
) (17)
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Next, we consider the effect of the wind in the direction of travel of the drone. Specifi-
cally, if the wind is blowing in the opposite direction to the drone’s direction of travel, the
drone’s flight speed will decrease under the influence of the wind. In other words, flight
speed will decrease due to wind speed. However, the wind may not only slow down the
drone’s flight speed but may also speed it up. If the wind is blowing in the same direction
as the drone’s direction of travel, the drone’s flight speed will increase under the influence
of the wind. The flight speed of a drone varies greatly under the influence of wind. In this
study, wind speed is assumed to be slower than the drone’s maximum speed without wind.
Otherwise, the drone may not reach customers.

Velocity change due to wind is represented using vector calculations. Figure 4 shows
that the wind is blowing in a specific direction relative to the drone. In this figure, wind vw
is blowing as the drone moves from customer i1 to customer i2. Let θw denote the angle
between the customer vector c(i1, i2) and the wind vector vw. Moreover, let vd denote the
flight speed of the drone. The angle between the drone’s flight speed vd, and customer
vector c(i1, i2) needs to be calculated.

𝜃!

𝑣"

𝜃"

𝑖#

𝑖$

𝑣!

Figure 4. Drone flight under windy conditions.

Figure 5 shows the change in flight speed due to wind. Let v′ be the flight speed of
the drone considering the effect of wind. The flight speed v′ considering the effect of wind
requires that the direction of the composite vector of the drone’s flight speed vd and wind
speed vw matches the direction of the customer vector c(i1, i2). If the angle between vd
and c(i1, i2) is θd, then |vd|sin(θd) is define as follows.

|vd| sin(θd) = |vw| sin(θw) (18)

𝑣!sin	(𝜃!)

𝑣"

𝑣!c
os	(
𝜃!)

𝑣#c
os	(𝜃

#
)

𝑣#𝑠𝑖𝑛	(𝜃#)

𝜃!

𝜃#

𝑖$

𝑖%

𝑣#

𝑣!

Figure 5. Speed changed by wind.

Therefore, θd is derived as follows.

θd = arcsin(
|vw| sin(θw)

|vd|
) (19)

The norm of synthetic vector v′ of vw and vd can be expressed as follows.

|v′| = |v′| cos θw + |vd| cos θd (20)
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According to Formulae (19) and (20), the scalar of vector v′ is described in the
following formula:

|v′| = |vw| cos(θw) + |vd| cos(arcsin(
|vw| sin(θw)

|vd|
)) (21)

where speed vlw of the drone is equal to the scalar value of vector v′.

4. A Dynamic Programming Algorithm

In this section, we propose an algorithm to rapidly solve FSVRPLW, which is presented
in the previous section. FSVRPLW is one of the NP-hard problems since the problem is
based initially on TSP. If the problem is implemented with a brute-force search algorithm,
the complexity of this problem indicates O(N!), and the algorithm can hardly solve a large
size of problems in a practical time. In this paper, we present a dynamic programming
algorithm to solve FSVRPLW [33]. Dynamic programming algorithms recursively divide a
problem into subproblems and uses an optimal solution of the subproblem to globally find
the optimal solution all over the problem. Dynamic programming algorithm is efficient in
that it does not recalculate the same subproblem.

Let S denote a set of customers already visited and i denote the last customer visited in
a set of S. We also call (S, i) a state. Denote the initial state as ({0}, 0). Then, the minimum
flight time spent during the delivery from initial state ({0}, 0) to state (S, i) is denoted as
T(S, i). Here, the asymptotic equation for calculating T(S, i) can be derived as follows.

T(S, i) = min{ T(S\i, i′) + t(x(i′), x(i))| i′ ∈ S\i } (22)

Now, we address the detail of the presented equation. Let i be the last customer visited
in S, and let i′ represent the second-to-last customer visited in S. T(S\i, i′) represents the
minimum flight time to travel from the depot to i′, and t(x(i′), x(i)) represents the flight
time to fly from customer i′ to customer i. The flight time during moving from customer i′

to customer i takes into account the weight of the package and the effect of wind. The initial
state is represented as ({0}, 0). Here, T({0}, 0) represents the flight time before departing
from the depot. Note that the flight time before departure from the delivery base is zero.
Therefore, T({0}, 0) can be expressed as follows.

T({0}, 0) = 0 (23)

In addition, the routing problem asks for the route that minimizes the overall flight
time, starting at the depot, visiting all customers, and returning to the depot. Therefore,
if the number of customers is assumed to be N, the routing problem is formally defined
as follows.

T({0, 1, 2, ..., N, 0}, 0) (24)

The problem represented as Equation (24) is recursively divided into subproblems
according to Equation (22). If the divided subproblems reach Equation (23), the optimal
delivery route in which flight time is minimized is obtained.

Algorithm 1 is a pseudo-code based on dynamic programming. Wall represents the
total payload to be delivered, and C represents the set of customers. Visited represents
the set of customers who have already visited. The inputs to the drone routing problem
in this paper are the number of customers, the payload of each customer’s package, the
coordinates of each customer, and wind velocity. The output is the delivery route with the
shortest total flight time. Here, Visited is a bit vector of length N, where N is the number
of customers. Therefore, when customer i is visited, the (i− 1)-th bit is set. For example,
suppose the number of customers is 4, and customer 2 has already been visited. In this
case, Visited can be expressed as {0010} in binary. In this manner, Visited is expressed
by setting up the bit of the customers who have been visited. FT[Visited][Customer] is a
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two-dimensional array that stores the flight time, corresponding to T(S, i). For example,
FT[6][3] indicates that customer 2 and customer 3 have already been visited, and the drone
is currently at customer 3. Next, we will explain the processing performed in each line of
the pseudo-code. Line 1 stores the sum of the payloads given in the input in Wall . Lines
3–6 calculate the flight time from the depot to each customer and store the results in array
FT. In addition, the total weight of the package carried by the drone is stored in the array
Payload since flight speed varies with load and wind in this paper. Next, in lines 8–20, we
calculate the flight time when all remaining customers are moved. Finally, in lines 23–25,
the flight time from the last customer to the delivery location is calculated. In addition, the
flight time of the route that minimizes the total flight time is stored in MINT IME. Lines
8–20 are the most important part of the dynamic programming algorithm and play an
active role in reducing calculation times. In a dynamic programming algorithm, instead
of recursive procedural calls, flight time is calculated in a three-level nested loop. The
computational complexity of the dynamic programming algorithm used in this study is
O(2N × N2). It is much faster than O(N!), which is the computational complexity of the
full search algorithm.

Algorithm 1 Dynamic Programming Algorithm for FSVRPLW.
Input: N: Number of customer, W: Payload of each customer, C: Coordinates of each customer,

Vw: Wind Vector
Output: Optimal Route: The route that minimizes the total flight time
1: Wall ← ∑ W
2:
3: for Next ∈ C do
4: FT[1 << (Next− 1)][Next]← FlightTime(depot to Next)
5: Payload[1 << (Next− 1)]← (Wall −WNext)
6: end for
7:
8: for Visited ∈ [0, 1, 2, ..., (2N − 1)] do
9: for Next ∈ C do

10: if Next has not already visited then
11: for Previous ∈ C do
12: if Previous has been already visited then
13: FT[Visited|(1 << (Next− 1))][Next]← min(FT[Visited][Previous]+
14: FlightTime(Previous to Next), FT[Visited|(1 << (Next− 1))][Next])
15: Payload[Visited|(1 << (Next− 1))]← Payload[Visited]−WNext
16: end if
17: end for
18: end if
19: end for
20: end for
21:
22: MIN_TIME← INFINITE
23: for Previous ∈ C do
24: MIN_TIME← min(FT[2N − 1][Previous] + FlightTime(Previous to depot), MIN_TIME)
25: end for

5. Evaluation

The effectiveness of our proposed FSVRPLW is evaluated by conducting experiments.
We implemented several routing algorithms in Python, and they are compared in terms of
total flight distance, the total flight time, and the runtime of the algorithms.

5.1. Experimental Setup

Five routing algorithms shown below are compared in the experiments:

• DPTSP: Dynamic programming algorithm for TSP. The route that minimizes the flight
time is calculated. However, it does not take into account wind and load.

• DPFS-L: Dynamic programming algorithm for FSVRP [11]. The route that minimizes
the flight time is calculated. It takes into account only load.

• DPFS-W: Dynamic programming algorithm for FSVRPLW. The route that minimizes
flight time is calculated. It takes into account only wind.
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• BFFS-LW: A brute-force algorithm for FSVRPLW. It exhaustively explores all possible
routes (i.e., N! routes) to find the one with minimum flight times.

• DPFS-LW: Our DP algorithm proposed in Section 4 for FSVRPLW. This algorithm is
the proposed method.

In the experiments, the number of customers changed from 5 to 20. For each number of
customers, we randomly created 20 problem instances with different customers’ locations,
weights of packages, wind directions, and wind speeds. Therefore, we created a total of 320
problem instances. Then, we evaluated five routing algorithms in terms of flight time, flight
distance, and algorithm runtime. AR. Drone 2.0 was referenced for the calculated delivery
drone problem. The reason why we used AR. Drone 2.0 in this study is that our research
group has been conducting studies on the AR. Drone 2.0. Therefore, we were able to set
parameters based on our knowledge. However, the proposed method does not depend on
the type of drone; thus, other drones can be applied to the proposed method. The speed of
the drone is set to 5 m/s when it is not carrying a load. The drone weight is assumed to be
490 g. The load capacity of the drone is assumed to be 200 g; therefore, the total weight
of packages carried at once is within 200 g. Wind speed is set to be 2 m/s in a constant
direction. The wind speed was set to the speed at which the drone can fly even when it is
loaded with the maximum payload. This paper uses the AR. Drone model as an example
of a drone. However, the drones that can be adapted in this paper are not limited to the
AR. Drone. It is possible to use a larger drone to carry a larger load. In our preliminary
experiments, the AR. Drone was able to carry a load of less than 200 g. Packages weighing
less than 200 g include documents and mail. We set the runtime limit up to 3600 s.

5.2. Experimental Results

Figure 6 represents the results of the five methods in terms of flight time. The vertical
axis shows the flight time when each method is normalized by DPFS-LW. As described
above, there are 20 problem instances for each number of customers. Therefore, each bar in
the graph denotes the average flight time among 20 problem instances. The horizontal axis
shows the number of customers. BFFS-LW and DPFS-LW show the same results until the
number of customers is 11. This shows that both the brute-force search algorithm and the
dynamic programming algorithm can find the solution. The results of BFFS-LW are not
shown since calculation time exceeds one hour after the number of customers is 12. The
proposed method, DPFS-LW, has the shortest flight time in all results. Comparing DPFS-L
and DPFS-LW, the flight time of DPFS-LW decreased by 5.10% on average. Moreover, by
comparing DPTSP and DPFS-LW, the flight time of DPFS-LW decreased by 18.46% on
average. The average difference between DPTSP and DPFS-W is 1.98%. On the other hand,
the average difference between DPTSP and DPFS-L is 13.35%. The difference is larger than
that in the case of flight distance. Therefore, it can be observed that wind has some effect on
flight time. Although DPTSP does not take into account loads and winds, DPTSP does not
have the maximum flight time in all results. DPTSP does not necessarily have the longest
flight time due to the existence of multiple solutions.

Next, Figure 7 shows the result of the five methods in terms of flight distance. The
vertical axis shows the flight distance when each method is normalized by DPFS-LW. The
horizontal axis shows the number of customers. BFFS-LW and DPFS-LW show the same
results until the number of customers is 11. This shows that both the brute-force search
algorithm and the dynamic programming algorithm can find the solution. The results of
BFFS-LW are not shown since the calculation time exceeds one hour more than 12 customers.
The proposed method, DPFS-LW, has the longest flight distance in all results. Comparing
DPFS-L and DPFS-LW, the flight distance of DPFS-LW increased by 1.43% on average.
It is believed that flight distance is increased due to the use of wind in flight compared
to the prior method. DPTSP has the shortest flight distance in all results. Comparing
DPTSP and DPFS-LW, the flight distance of DPTSP is shorter by 2.42% on average. The
flight distances of DPTSP and DPFS-W are very close to each other. The average difference
between DPTSP and DPFS-W is 0.18%. On the other hand, the average difference between
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DPTSP and DPFS-L is 1.00%. This indicates that the wind does not have a significant effect
on flight distance.

Figure 6. Comparison of flight time.

Figure 7. Comparison of flight distance.

The results show that our proposed DPFS-LW increases flight distance but decreases
flight time. This is due to the use of wind and load, which can deliver the package more
efficiently. These results show that it is important to consider speed variations due to load
and wind in drone delivery.

In this paper, the wind is assumed to be constantly blowing in terms of direction and
speed, but wind dynamically changes. In this paper, we simplify the wind model to evaluate
how the flight time changes by whether the wind is considered or not. Undoubtedly, the
effect of wind on the drone may change due to various factors. Therefore, it is necessary
to verify the effect of wind on the drone in more detail, which is considered in one of our
future works.

Next, Figure 8 shows the runtime of each method by using a logarithmic scale. The
vertical axis shows runtime, and the horizontal axis shows the number of customers. The
methods mentioned except for BFFS-LW can find a solution within one hour. This result
shows that our proposed algorithm can be useful even when there are 20 customers.
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Figure 8. Algorithm runtime.

6. Conclusions

Drones are expected to be popular vehicles for delivery services. In this paper, we
formulated FSVRPLW, which is an extension of FSVRP. The problem determines an optimal
route such that the total flight time is minimized by taking into account the weight of load
and wind effects that affect the flight speed of a drone. In order to effectively solve the
problem, we also proposed a dynamic programming algorithm. Experimental results show
the effectiveness of the proposed algorithm. In future work, we will consider dynamically
changing windy conditions and package division for multiple tours.
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