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Abstract: This paper addresses an optimization of Unmanned Aerial Vehicle (UAV) flight trajectories
by bank-turn mechanism for a fixed-wing UAV at a constant altitude. The flight trajectories should
be optimal and stay in the UAV flight operational area. The maneuver planning is conducted in two
steps, which are UAV path planning and UAV flight trajectory planning. For the first step, the Bezier
curve is employed as a maneuvering path. The path planning optimization objective is to minimize
the path length while satisfying maximum curvature and collision avoidance constraints. The flight
trajectories optimization objective is to minimize maneuvering time and load factor considering,
minimum/maximum speed, minimum/maximum acceleration, maximum roll angle, maximum
turn rate, and aerodynamics constraints. The variable speed trajectory generation is developed
within allowable speed zone considering these UAV flight constraints by employing meta-heuristic
optimizations. Results show that the PSO have outperformed the GA and the GWO for both steps of
path planning and trajectory planning. The variable speed has succeeded in reducing the load factor
during the bank-turn mechanism using the Bezier curve. The variable speed is recommended to be
conducted when the result of the maneuvering path involve the lower turning radius. A simultaneous
on arrival target mission has also succeeded to be conducted using the combination of the variable
speed and constant speed strategies.

Keywords: flight trajectories optimization; maneuvering; meta-heuristic optimization; sustainability;
sustainable flight trajectory; UAV

1. Introduction

UAVs have been implemented to various applications from aerial patrolling, mapping,
aerial videography, crop spraying, package delivery, and many others. Nowadays, coopera-
tive UAVs consisting of several UAVs are more effective than a single UAV system because
with the cooperative UAVs, many challenging tasks can be accomplished efficiently. For
example, in the case of simultaneous UAVs on target mission, the necessary information
can be collected simultaneously by UAV formation from several points of different areas.
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The flight path optimization is also one of main issue for sustainable transportation
of aircraft [1]. The focus to achieve sustainable flight trajectories can be focused toward
generating a curvilinear path that can be followed by a realistic aircraft compared with
an approximated straight-line path. Generating the curvilinear motion of the aircraft is a
very challenging computational problem because the aircraft has many constraints to be
considered in finding the feasible path motion. Khardi et al. [2] has reported that flight
path optimization can be conducted to reduce the impact of aircraft noise, fuel costs, and
gas emissions. Thus, flight trajectories optimization become very important research to be
conducted to achieve the sustainability of aircrafts and the UAVs trajectories.

The UAV technologies still face a challenge to achieve a complete autonomous un-
manned flying robot [3]. The main challenges are the path planning and the obstacle
avoidance. In general, the UAV can be grouped into two categories, which are a rotor-craft
UAV and a fixed-wing UAV. The fixed-wing UAV has the capability to flight over long
distances while the rotorcraft has good maneuverability but has an issue of short flight
duration. The strategies to generate a flyable path is a challenging computational problem.
For the fixed-wing UAV, due to the kinematic constraints, a feasible flight path cannot be
generated by using simply way points [4].

Since UAV motion planning is a very important research topic to improve the level of
autonomy of small UAVs, it becomes a hot topic. Some previous papers addressed the UAV
motion planning by considering only the kinematic constraint; however, the generated
trajectory by this approach may not yield practical trajectory because it does not consider
the time-varying dynamics constraints such as the speed range, the roll angle, load factor,
etc. [5]. Shanmugavel et al. [6] developed a methodology to solve a path planning of a
UAVs swarm for simultaneous arrival on target. An iterative method was employed in the
flyable PH path generation with the length of path close to the Dubins path to fulfil the
minimum length. The arc segment of the Dubins path was replaced with with clothoid
arcs which have a ramp curvature profile to satisfy the curvature continuity in [7]. Oh
et al. [8] presented a road-network route planning to solve the Chinese postman problem.
To find the minimum flight time, a multi-choice multi-dimensional knapsack problem was
formulated and solved using solved via mixed integer linear programming. The Dubins
theory was used to generate the path. Liao et al. [9] proposed a path planning algorithm for
computing a location of circular path between a target and a UAV according to range of a
UAV target and a bearing angle when the UAV flight at a constant altitude. Transition path
planning considering the minimum turning radius was proposed for transition between
the circular path to satisfy the UAV flyability.

Koyuncu et al. [10] addressed the problem of generating agile maneuver for Unmanned
Combat Aerial Vehicles using the Rapidly Random Tree (RRT). B-spline avoiding collision
path was searched by generating the random node by executing RRT algorithm. Then, the
feasible B-spline was searched by checking first and second derivatives which correspond
to the velocities and acceleration, respectively. If they are within the flight envelope, the
generated path was dynamically feasible. Re-planning the trajectory was necessary if the
feasible path could not be revised during the maneuver planning.

Babel et al. [11] addressed the UAV cooperative path planning where the UAV should
arrive at the destination points simultaneously with specified time delays with minimum to-
tal mission time. A network-based routing model was applied to obtain shortest flight paths
at a constant altitude. The algorithms that did not decouple assignment and path planning
was developed. A linear bottleneck assignment with fitness of the tasks corresponding to
shortest flight paths length was formulated.

Chen et al. [12] addressed the problem of formation control of fixed-wing UAVs swarm
at a constant altitude. A group-based hierarchical architecture was generated among the
UAVs. The UAVs decomposed into several distinct and non-overlapping groups. A virtual
target moving along its expected path was assigned to a UAV group leader and an updating
law was developed to coordinate the virtual targets of group leaders. The control law of
the distributed leader-following formation was proposed for the follower UAVs.
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Meta-heuristic optimizations techniques have shown as very promising methods to
solve the UAV path planning. Machmudah and Parman [13] presented the collision avoid-
ance algorithm for different type of obstacles geometries. The GA and the GWO had been
implemented to find the optimal route of the Bezier curve. The proposed collision avoid-
ance algorithm can be implemented for applications of UAV, robotics, and manufacturing
system by further considering the mathematical model and constraints of the systems.
The GA was applied to collision avoidance path of single UAV considering the curvature
constraint in [14]. In their paper, they did not discuss the flight trajectory generation. Mach-
mudah et al. [15] presented path planning and trajectory planning of single UAV using
the GA. Minimum path planning with Bezier curve and trajectory generation using third-
degree polynomial with four unknown searching variables were developed. Dewangan
et al. [16] presented three-dimension UAV path planning using the GWO. The feasible path
considering collision avoidance among obstacles and other UAVs. The comparison of GWO
with well-known deterministic algorithms, which were Dijkstra, A*, and D*, and several
meta-heuristic algorithms, was investigated. Zhang et al. [17] proposed an improved adap-
tive GWO to solve the 3D path planning of UAV in the complex environment of package
delivery in earthquake-stricken area. An adaptive convergence factor adjustment and an
adaptive weight factor were proposed to update the position of individuals.

The UAV motion planning considering a flight mechanics to accommodate a UAV
flight performance had been considered in [15,18–22]. Yu et al. [18] applied Bezier Curve-
Based Shaping (BCBS) to generate 3D cooperative trajectories for the UAVs. The minimum
flight time trajectories generation satisfying dynamic and collision avoidance constraints
was addressed. Using the BCBS as initial values for the Gauss pseudospectral method
yielded a lower computational time than that of the direct solver. Ni et al. [19] proposed
trajectory optimization of a high-altitude long endurance solar-powered UAV using rein-
forcement learning. Commands of thrust, bank angle, and angle of attack when UAV flight
at a constant altitude were implemented based on maximization of the energy. Adhikari
and Ruiter [20] presented the methodology for real-time autonomous obstacle avoidance
for fixed-wing UAV where the UAV was required to keep close to a reference path. Finite
horizon model predictive control was applied. A high-fidelity model and a lower-fidelity
counterpart were studied. Zhardasti et al. [5] addressed the problem of achieving the
optimum time-dependent trajectory for UAV flying on a low-altitude terrain following
(TF)/threat avoidance (TA) mission. a grid-based discrete scheme was implemented. An
algorithm of a modified minimum cost network flow (MCNF) over a large-scale network
is proposed. the four-dimensional (4D) trajectory consisting of three spatial and one-time
dimensions from a source to a destination is obtained via minimization of a fitness func-
tional subject to the nonlinear dynamics and mission constraints of the UAV. Adhikari and
Ruiter [21] presented the method for generating rapid feasible trajectory generation for
the fixed-wing UAV where the dynamic equation of the UAV was simplified. The bounds
on the simplified controls were formulated. The states and the controls variables were
transformed as functions of x; y; z and the velocity, v. Sequential Convex Programming
(SCP) and a custom solver for the Quadratic Programming (QP) were applied to solve the
transformed problem.

With the capability of long endurance, the fixed wing UAV has been widely imple-
mented for aerial monitoring and surveying. In this aerial covering purpose, the flight
maneuver following the agile curvilinear path is necessary. The maneuver planning of the
fixed-wing UAV is a challenging optimization problem because it has many constraints to
be considered. Keeping the flight trajectories in the UAV operational area is the compulsory
task where the wrong flight trajectories which are beyond the UAV flight operational area
can bring serious damage or accident. For example, the fixed-wing UAV has the minimum
speed to avoid it from a stall condition and the maximum speed that has come from the
actuator constraint [20,22].

Motivating to improve the maneuvering capability of the conventional fixed-wing
UAV, this paper addresses the UAV motion planning using the Bezier curve as the ma-
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neuvering path and the variable speed strategy as the flight trajectories generation. The
conventional fixed-wing UAV has limitation in performing the bank-turn maneuver. The
optimization problem with constraints should be formulated considering all UAV flight
performance limitations. In contrast with gradient-based optimizations, the meta-heuristic
optimizations do not depend on the derivative of search spaces [23]. Thus, the meta-
heuristic optimizations become very promising methods to solve the real engineering
problems which has many constraints to be satisfied, as in the case of UAV motion planning
problems. The No Free Lunch (NFL) theorem applies to the meta-heuristic optimizations
implying that there is no meta-heuristic method best appropriate to solve all optimization
problems. A certain meta-heuristic algorithm may show a good performance on a set of
optimization problems but having a poor performance on a different set of optimization
problems. Thus, for a particular optimization problem, it is necessary to investigate the
performance of some meta-heuristic optimizations. In this paper, the performance of three
meta-heuristic optimizations, namely the GA, the PSO, and the GWO are investigated in
solving the fixed-wing UAV motion planning.

Bezier curve provides the agility and continuity to the flight path. The motion planning
is conducted in two steps, which are the path planning and the flight trajectory planning.
The path planning objective is to minimize the path length considering the curvature
constraint and avoiding collision. Different with typically previous studies, in generating
the curvilinear path, this paper does not employ either grid-based technique or RRT
algorithm. The Bezier curve is generated directly by searching the optimal Bezier curve
control points using meta-heuristic optimizations. The second step is to find the optimal
time and load factor considering the flight trajectories constraints. The UAVs perform the
Bezier agile path by performing the bank-turn maneuver where the speed and the bank
angle, or the roll angle, need to be managed in such a way so that the flight trajectories are
optimal and stay in the UAV safe zone. The variable speed is used to perform the bank-turn
mechanism. The variable speed plays an important role not only in avoiding the collision
with obstacles, but also in preventing an accident and road traffic, and obtaining an optimal
time [24].

The contributions of this paper are as follows. This paper considers the flight trajectory
generation using the variable speed strategy to reduce the load factor distribution during
the UAV fixed-wing maneuvering in the normal and tangential coordinate. The load factor
distribution plays an important role in the aircraft/UAV maneuvering; however, the load
factor behavior during the UAV fixed-wing maneuver is very rarely discussed in studies.
An excessive load factor should be avoided because it may indicate a flight operation that
exceeds the structural strength [25]. The new computational strategies to generate the
speed profile in the normal and tangential coordinate are presented using third-degree
polynomials. Instead of only considering the kinematic constraints of the curvature path
and collision avoidance, this paper considers the UAV flight constraints, which are the
minimum/maximum speed, the minimum/maximum acceleration, the maximum roll
angle, and the aerodynamics constraint so the generated trajectories are practically flyable.
The trajectory planning is computed based on UAV flight mechanics. Compared with the
previous research, the proposed variable speed trajectory generation has only two unknown
searching variables. Furthermore, the generated speed trajectories are stable where during
different running time, the generated trajectories of the meta-heuristic optimization are
convergence. Secondly, the proposed variable speed strategy is applied to the swarm
UAVs for simultaneous on target mission. The scenario of the swarm UAV to achieve the
simultaneous on target mission using the proposed variable speed strategy is analyzed.

The presentation of the paper is organized as follows. Section 2 presents the material
and methods. The proposed path planning and trajectory planning strategies are presented.
The variable speed maneuver is developed. Section 3 presents the results and discussions.
The single UAV maneuver planning and cooperative UAVs simultaneous on target mission
are presented in the numerical simulations. Conclusions of the present paper are presented
in Section 4.
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2. Materials and Methods

Figure 1 shows the UAV bank-turn maneuver following the curvilinear path. With
the curvilinear path using the Bezier curve, the maneuvering path will be adaptable for
difficult geometrical environment.

UAV equations of motion of bank-turn mechanism at constant altitude can be ex-
pressed as follows [26–28]:

T − D = ma (1)

Lcos φ−mg = 0 (2)

Lsin φ = m
v2

R
(3)

where T, D, m, a, L, φ, g, v, and R are thrust, drag force, mass, acceleration, lift force, roll
angle, gravitational acceleration, velocity, and radius of turn, respectively.

Equations (2) and (3) can be arranged as follows:

tan φ =
v2

R
(4)

By definition, the load factor is expressed as follows:

n =
L

mg
=

1
cos φ

(5)

where n is the load factor.
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Figure 1. Bank-turn maneuver at constant altitude.

2.1. Path Planning with Bezier Curve

Originally, the Bezier curve is one of the ab initio design methods developed by Pierre
Bezier. Ab initio design is class of shape design problem that depends on both aesthetics
and functional requirements. In recent developments, the Bezier curve has been widely
utilized in the motion planning of the robot. It has control points which are very agile to be
placed as needed in the surveying area.

The Bezier curve is expressed parametrically as follows [18]:(
x
y

)
= ∑n

u=0 Bi Jn,i(u) 0 ≤ u ≤ 1 (6)
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Jn,i(u) =
(

n
i

)
ui(1− u)n−i

(
n
i

)
=

n!
i!(n− 1)!

(7)

where Jn,i(t) is the ith nth order Bernstein basis function, and u is curve parameter. To
construct an nth degree Bezier curve, it needs n + 1 control points.

This paper uses the third-degree Bezier curve as the maneuvering path. The UAV has
the turning radius limitation. The turning radius relates with the path parameter, namely
the curvature. The curvature is very important in the curvilinear motion. The radius of the
turn, R, will be equal to K = 1/R. Detail of the curvature constraint is presented in the next
section.

The objective optimization of the path planning is the minimum path length. For the
parametric curve, the path planning objective can be expressed as follows:

St = min
∫ 1

0

√(dx(u)
du

)2
+

(
dy(u)

du

)2
du (8)

where St, x(u) and y(u) are total of the maneuver path length, the equation of Bezier curve
in the x-component and y-component at Equation (6).

2.2. Trajectory Planning

The flight maneuvering can be conducted using either constant speed or variable
speed trajectories. This section develops computational strategies to generate the speed
profile generation in normal-tangential coordinate. From the path planning, the geometry
of the maneuvering curve can be determined, and the heading angle can be computed for
the navigation purpose. After the path planning results have been obtained, the trajectory
planning analysis in the normal and tangential coordinates is conducted.

Different from the rotor UAV which can hover in the air, the fixed-wing UAV can only
move forward; therefore, at the constant altitude, the normal and tangential coordinate
can be implemented for analyzing flight maneuvering. Figure 2 illustrates the normal and
tangential coordinates for the constant speed and the variable speed. The unit vector

→
ut

with a positive direction is the same as the UAV movement and a unit vector
→
ur with a

positive direction toward the radius center.
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Velocity vector is only in tangential component as follows [29]:

→
v = vt

→
ut (9)

Acceleration vector consists of tangential and normal components as follows:

→
a = at

→
ut + ar

→
un

= dv
dt
→
ut +

v2

r
→
un

(10)
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2.2.1. Constant Speed

Using the constant speed, the problem is simplified as to choose the constant speed, v,
in such a way so that the trajectory optimization objective is achieved. The UAV traveling
time can be obtained using the Newton law.

Considering the tangential component, the UAV maneuvering time can be obtained
from the tangential component of velocity as follows:

Tt =
St

vt
=

∫ 1
0

(√(
dx(u)

du

)2
+
(

dy(u)
du

)2
)

du

vt
(11)

The UAV maneuvering speed, vt, needs to be selected within the UAV speed range:
[vmin, vmax]. The total curve length during the maneuvering, St, is obtained from the
path-planning step.

2.2.2. The Variable Speed Strategy

This paper considers the variable speed maneuvering where the speed trajectories
profile is generated with the polynomial continuous function. The speed should be man-
aged to stay in the UAV operational area while the flight trajectories are also kept to the
optimum. This is a challenging optimization problem since the UAV speed can fall into
very low value or very high value which is beyond the UAV operational area.

Figure 3 shows the illustration of this strategy. The initial speed, vinitial, and final
speed, vfinal, are known and the speed profile should be managed in the UAV allowable
speed zone.
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This paper uses third-degree polynomial function in generating the speed profile. For
third-degree polynomial, the speed equation is in the following

vt(t) =
(

a3r3 + a2r2 + a1r + a0

)
◦ r(t), (12)

where an is the nth coefficient of polynomial and r is linear time-scale, r = t
Tt

, with t is the
time variable and Tt is the total maneuvering time.

Substituting the conditions of initial speed and final speed, the following equations of
coefficient polynomial can be obtained:

a0 = vt(0) = vi (13)

a3 = v f − a2 − a1 − vi (14)

where vi is the initial speed at r = 0 and vf is the final speed at r = 1.
This paper considers known vi and vf so that there are two searching parameters,

which are a1 and a2.
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The UAV tangential acceleration is as follows:

at(t) =
.

vt(r)
1
Tt

(15)

The motion of the UAV can be analyzed using Newton’s law as follows:

St =
∫ Tt

0
vt(t)dt (16)

With the linear timescale, r = t
Tt

, so that dr
dt = 1

Tt
or dt = Tt dr, Equation (16) can be

expressed as follows:

St =
1
Tt

∫ 1

0
vt(r)dr

Tt =
St∫ 1

0 vt(r)dr
(17)

2.3. Constraints

For the planar curve, there is a parameter which is called a curvature, K. Its expression
can be written as follows:

K =

.
x

..
y− .

y
..
x

(
.
x2

+
.
y2
)

3
2

(18)

where
.
x,

.
y,

..
x, and

..
y are the first derivative of x, y, and the second derivative of x and y,

respectively. Since K = 1/R, the minimum turning radius constraint means the maximum
K, Kmax.

The curvature constraint can be expressed in the following:

− Kmax ≤ K ≤ Kmax (19)

The speed and acceleration during the flight maneuver should be kept within the
operational areas as follows:

vmin ≤ vt ≤ vmax (20)

− amax ≤ at ≤ amax (21)

where vt, vmin, vmax, amax, and amin are the speed, the minimum speed, the maximum speed,
the maximum acceleration, and the minimum acceleration, respectively.

The value of amax can be obtained using Equation (1):

amax =
Tmax − Dmin

m
(22)

where amax, Tmax, and Dmin are maximum acceleration, maximum thrust, and minimum
drag force, respectively.

The minimum drag force can be obtained as follows

Dmin =
1
2

ρv2
t SCd0 (23)

where Dmin, ρ, v, S, and Cd0 are the minimum drag force, air density, wing surface area, and
minimum drag coefficient, respectively.

The UAV has the roll angle limitation which show the flight maneuvering ability
as follows:

− φmax ≤ φ ≤ φmax (24)

The positive and negative sign in Equation (24) are associated with the curvature value.
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The maximum load factor constraint can be obtained from Equations (5) and (24)
as follows:

nmax =
1

cosφmax
(25)

This paper considers that UAV flying at positive load factor, thus the constraint of the
load factor can be expressed:

1 ≤ n ≤ nmax (26)

The UAV has the turn rate constraint as follows:

−ωmax ≤ ω =
gtan φ

vt
≤ ωmax (27)

where ω and ωmax are the turn rate and the maximum turn rate, respectively.
The value of maximum turn rate is obtained from:

ωmax =
gtan ϕmax

vmin

Keeping the flight at constant altitude involves the requirement to manage the lift force.
Thus, the coefficient of lift, CL, should be considered also as the constraints in the following:

Lcos φ = mg (28)

1
2

ρv2
t SCL cos φ = mg (29)

CLmin ≤ CL =
2mg

ρv2
t S cos φ

≤ CLmax (30)

where CL, CLmax, CLmin, ρ, and S are the lift coefficient, the maximum lift coefficient,
the minimum lift coefficient, an air density, and a wing area, respectively. The value of
maximum/minimum CL is obtained by substituting the value of maximum/minimum
velocity and roll angle in value of CL in Equation (30).

Speed Constraint for Constant Speed Maneuver

Due to the maximum load factor constraint, for the constant speed maneuver, it needs
to check the velocity correspond to the minimum radius of the maneuvering path, i.e.,
Rpath_min (see Equation (4)) as follows:

vmax_ =
√

Rpath_mingtan φmax (31)

where vmax_ and Rpath_min are maximum velocity corresponds to the maneuvering path and
minimum radius of the maneuvering path, respectively.

For the constant speed maneuvering, there is a new range of the feasible constant
speed from the minimum speed to the new maximum allowable speed, vmax_, as follows:

vmin ≤ v2
t ≤ vmax_ (32)

In the case that vmax_ > vmax, Equation (20) is applicable.

3. Generating Optimal Flight Paths and Trajectories Using Meta-Heuristic Optimizations

The GA, PSO, and GWO are applied to find the best solution of the path planning and
trajectory planning.

3.1. Fitness Function

This section presents the fitness function for the maneuvering planning and the
trajectory planning.
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3.1.1. Path Planning

The collision detection is performed by checking the UAV positions during the flight
maneuvering whether they are inside the obstacle area or intersect with other UAVs as
the dynamic obstacles. During the flight, the off-set path is applied for safety due to UAV
has the wingspan. Figure 4 illustrates the environment during the UAV maneuvering
at constant altitude. For the single UAV, the static obstacles are applied while for the
cooperative UAVs, besides the static obstacles, other UAVs become the dynamic obstacles.
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Fitness function of the path planning for meta-heuristic optimization is expressed
as follows:

Fitness{ = C ∃{K 〈−Kmaxor K〉 Kmax or (x, y) ∩ obstacle area or (x, y) ∩ (UAV)obs}
= St else

(33)

where C, (x, y), L, (UAV)obs are constant value, UAV positions, length and other UAVs as
dynamic obstacle.

3.1.2. Trajectory Planning

Since the curvilinear motion involves continuously change the turning radius so
that the bank angles or roll angles are varied, the load factors are also varied during the
maneuver. It is very important to perform the maneuver in the allowable load factor to
avoid a structural damage [25]. Thus, the objective of optimization is to minimize the time
and load factor.

Fitness function of the flight trajectory planning is expressed as follows:

Fitness

= C ∃
{

vmin ≤ v ≤ vmax or − amax ≤ a ≤ amax or − φmax ≤ φ ≤ φmax or
−ωmax ≤ ω ≤ ωmax or CLmin ≤ CL ≤ CLmax or T > Ttarget or n > ntarget

}
= F2 else

(34)

F2 = aT + (1− a) 0.5 ∑i=k
i=1 n (35)

where Ttarget, ntarget, a and 0.5 are the target of maneuvering time, target of load factor,
weighting factor and normalized factor, respectively.

Both path planning and trajectory planning apply the penalty method in the fitness
function. To achieve the advantage of the variable speed strategy over the constant speed
strategy, the target of maneuvering time, Ttarget, and the target of load factor, ntarget, are
considered in the fitness function.
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3.2. Genetic Algorithm

Mainly, there are three operators in the GA: reproduction, crossover, and mutation.
The optimization parameter is converted to the chromosomes and coded it in the evolution
process. Using the real code GA, the chromosome is represented as the number in sequence.
The selection is the process to choose two individuals in the population as parents for
mating to form the new offspring. A crossover is a process of randomly picking one
or more individuals as parents and swapping segments of the parents. This paper uses
random resetting mutation. In this scheme, a randomly chosen gene is assigned to be
changed with a random value. The detailed procedure of the GA can be referred to [30].
Figure 5 illustrates the flowchart of the GA to solve the fixed-wing UAV motion planning.
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Figure 5. UAV motion planning using GA.

3.3. Particle Swarm Optimization

PSO was firstly proposed by Kennedy and Eberhart, inspired by the social behavior
of animals, such as birds flocking or fish schooling [31]. The optimization variables are
represented as particles which move with certain velocity value. Figure 6 illustrates the
flowchart of the PSO to solve the fixed-wing UAV motion planning.
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Velocities and positions are updated based on the local and global best solutions:

vt+1 = vt + ϕ1β1(pi − xi) + ϕ2β2
(

pg − xi
)

(36)
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xt+1 = xi + vt+1 (37)

where vt, vt+1, ϕ1, and ϕ2 are the velocity, the update velocity, cognitive parameter, social
parameter, respectively.β1 and β2 are independent uniform random numbers, pi and pg
are best local solution, and best global solution, whereas xi is the current position of each
particle.

Shi and Eberhart [32] introduced an inertia weight factor, w, to the velocities as follows:

vt+1 = wvt + ϕ1β1(pi − xi) + ϕ2β2
(

pg − xi
)

(38)

Eberhart and Shi [33] improved the velocity by utilizing the constriction factor, χ, in
the following:

vt+1 = χ
{

wvt + ϕ1β1(pi − xi) + ϕ2β2
(

pg − xi
)}

(39)

χ =
2

2− ϕ−
√

ϕ2 − 4ϕ
; ϕ = ϕ1 + ϕ2, ϕ > 4

The weighting factor, w, can be in form of constant, linear, random, chaotic, and others.
This paper uses the linear weighting factor as follows:

w =
Nmax − iter

Nmax
(40)

where Nmax and iter are a maximum iteration number and a current iteration, respectively.

3.4. Grey Wolf Optimization

The GWO is the meta-heuristic optimization developed by Mirjalili et al. [23] in 2014.
It is inspired from hunting mechanism and leadership hierarchy of grey wolves. The GWO
has four types of grey wolves, namely alpha (α), beta (β), delta (δ), and omega (ω).

The fittest, second, and third best solutions correspond to alpha (α), the beta (β), and
delta (δ), respectively. The omega (ω) wolves are other candidate solutions which follow α,
β, and δ during the hunting mechanism.

Grey wolves can identify the location of prey. The alpha is guided the hunt process. In
the GWO, the first three best solutions are saved, and the other search agents are updated
their positions based on the position of the best search agents.

The following formulas are applied to simulate the hunting mechanism:

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣; →Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣; →Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣

→
X1 =

→
Xα −

→
A1 ·

(→
Dα

)
;
→
X2 =

→
Xβ −

→
A2 ·

(→
Dβ

)
;
→
X1 =

→
Xα −

→
A1 ·

(→
Dα

)
(41)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3

where t,
→
A,
→
C ,
→
Xp,

→
X are the current iteration, coefficient vector, coefficient vectors the

position vector of the prey, and the position vector of a grey wolf, respectively.

Vectors
→
A and

→
C are expressed as follows:

→
A = 2

→
a ·→r 1 −

→
a

→
C = 2·→r 2

(42)

where
→
a are linearly decreased from 2 to 0 during the iterations.

→
r 1 and

→
r 2 are random

vectors in the range [0, 1].
Figure 7 illustrates the flowchart of the GWO to solve the fixed-wing UAV motion planning.
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Figure 7. UAV motion planning using GWO.

4. Results and Discussions

All computations of the path planning and the trajectory planning are performed by writing
the computer code in MATLAB environment. The GA, PSO, and GWO use 20 individuals in
the population. The optimization parameters are searched within the search area [−100, 100].
The simulations use Ascent UAV which has flight characteristic as shown in Table 1 [11]. These
values of constraints are substituted into the equations of constraints. The UAVs fly at the
low constant altitude where at that altitude, the air density, ρ, is 1.35 kg/m3. This paper uses
500 as the penalty or C values in Equations (33) and (34) and 0.5 as the weighting factor in
Equation (35). For the speed constraint for the safety factor, the value of speed range in the
computation is arranged as vmin+δ1 ≤ v≤ vmax−δ2 with the detail value: 8.2 ≤ v ≤ 11.5. The
same arrangement is implemented for the curvature constraint where the factor δ is applied.
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Table 1. Ascent UAV flight characteristics [21,34].

Ascent UAV Flight Characteristics

• Mass: 0.553 kg
• Wing surface are: 0.2135 m2

• Wingspan: 1.37 m
• Minimum Drag coefficient (Cd0: 0.003)

• v: (8 ms, 12 ms)
• φ: (−π/4, π/4) rad
• T: (0, 3.7975) N

4.1. Single UAV

The UAV performs the maneuvering from point A(15, −30) to point B(30, 45) at
constant altitude in the obstacle environment. The path is the cubic Bezier curve which
has four control points. Point A is the first control point, and point B becomes the fourth
control point. The second and third control points are optimized using meta-heuristic
optimizations to find the minimum path length under the minimum turning radius and
collision avoidance constraints.

4.1.1. Maneuvering Path

This section investigates the performance of the GA, PSO, and GWO to solve the UAV
path planning. For the GA, this paper uses a selection rate of 0.5. For the PSO, the cognitive
parameter, social parameter, and constriction factor are 1.5, 1.5, and 1, respectively. Effect
of parameter selection is observed. For the GA, effect of mutation rate is investigated. The
high mutation rate, which has a value of 0.2, and the low mutation rate, which has a value of
0.05, are selected. For the PSO, effect of the weight factor, w in Equation (39), is investigated.
The linearly weight factor, Equation (40), and constant weight factor, which has a value of
0.8, are compared. For the GWO, the parameter a, in Equation (42), depends on the value of
the maximum iteration number, Nmax. Thus, the effect of Nmax is investigated. Two values
of the maximum iteration numbers, which are Nmax = 25 and Nmax = 30, are compared.

Table 2 presents the results of the GA, PSO, and GWO. According to the fitness value
results, it shows that the GA with the high mutation rate, i.e., 0.2, has better performance
than that of the GA with the low mutation rate, i.e., 0.05. The path planning contains
the collision avoidance problem which is a challenging computational problem. The
high mutation rate can be used to further explore the searching space and avoid local
optima [35,36]. This advantage of the high mutation rate has been observed in the collision
avoidance problem of the UAV path planning.

The PSO with linearly weighting factor shows better performance than that of the
PSO with the constant weighting factor, i.e., 0.8. The GWO with 25 iteration numbers has
better performance than that of the GWO with 30 iterations numbers. Figure 8 illustrates
the fitness value for the GA, PSO, and GWO for those different parameter value. It shows
that during 25 iterations, the PSO with linearly weighting factor has lowest fitness value
than the GA and GWO. The GA yields better fitness value than that of the GWO. Figure 9
shows the maneuvering paths obtained from the GA with 0.2 as mutation rate, PSO with
linearly weighting factor, and GWO with 25 iteration numbers. The paths obtained from
the GA, PSO, and GWO have different routes and they are collision-free. It can be observed
that the path obtained from the PSO employing the linear weighting factor has shortest
length compared with the other paths.

These results of the best parameter values of the GA, the PSO, and the GWO are
used as the guidance for the selection of the parameter values of each meta-heuristic
optimization, for next simulations. Thus, for all presentation of the next sub sections, the
GA mutation rate of 0.2 is selected and the linearly weighting factor is used for the PSO.
For the GWO, the 25-iteration number is selected in the UAV path-planning case.
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Table 2. Maneuvering path results.

GA PSO GWO

Mut = 0.2 Mut = 0.05 w= Nmax−iter
Nmax

w = 0.8 Nmax = 25 Nmax = 20

Fitness (m) 83.0259 89.7376 78.4397 80.8277 92.142 93.4574

Bezier Control
points (m)

B1x 49.3549 64.206 15.6493 3.7845 62.292 33.3489
B1y −1.9906 −9.93303 −20.0975 −14.1863 16.955 −7.6005
B2x 0.9950 −0.163847 0.9754 4.8176 50.194 70.1638
B2y −4.2271 24.8555 −24.2947 −19.1839 −0.82175 −0.7684

vmax_ (m/s) 10.903 11.803 9.2336 80.8277 9.4689 10.9416
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4.1.2. Flight Trajectories

The maneuvering path has been obtained. Since the PSO yields the lowest path
length, in this section, the flight trajectories obtained by the PSO are optimized using the
meta-heuristic optimizations for the variable speed strategy.

Table 3 shows the results of the fitness value of the variable speed strategy using the GA,
PSO, and GWO. It can be observed that the PSO has outperform other meta-heuristic methods.
In the trajectory planning, the GWO yields better fitness value than that of the GA. The GWO
fitness value has very small different with the PSO results. The speed trajectories of the variable
speed strategy should be selected within the speed range, i.e., 8 m/s≤ v≤ 12 m/s (Table 1). It
shows that the PSO has lowest fitness value than the GA and GWO. Figure 10 illustrates
the fitness value evolution of the GA, PSO, and GWO during 4000 iterations. Figure 11
shows the flight trajectories of the variable speed obtained from the PSO, which yields the
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lowest fitness value, compared with the constant speed maneuver. As can be seen from
Table 1, the PSO path has vmax_ = 9.2336 m/s, thus if the constant speed is performed, the
speed should be selected within 8 m/s ≤ v ≤ 9.2336 m/s. This paper chooses v = 9 m/s
as the constant speed strategy. The speed profile and acceleration trajectories are shown
in Figure 11a,b, respectively. The generated speeds are within UAV allowable zone, i.e.,
8 m/s ≤ v ≤ 12 m/s. The roll angle, turn rate, and roll rate trajectories of the variable speed
do not show much different with the constant speed trajectories as shown in Figure 11c–e,
respectively. The CL trajectories of the constant speed show quite different with the CL
trajectories obtained from the variable speed, as shown in Figure 11f. All of these flight
trajectories are inside their allowable zone.

Table 3. Variable speed results of PSO maneuvering path.

GA PSO GWO

Fitness 30.5219 30.5097 30.5098
(a2, a1) (38.0279, −10.0389) (39.27, −10.5721) (39.2579, −10.5707)

Time (s) 7.9158 7.9397 7.9402
nmax 1.3214 1.3189 1.3189
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Figure 11. Flight trajectories of variable speed and constant speed of the PSO maneuvering path.
(a) speed profile (b) acceleration (c) roll angle (d) turn rate (e) roll rate (f) CL.

Figure 12 shows the load factor distributions of the constant speed strategy compared
with the load factor distribution of the variable speed maneuver. It shows that the variable
speed has succeeded in reducing the load factor trajectories. The Ttarget and ntarget in
Equation (34) used are 9 s and 1.33, respectively. The maneuvering time using the speed
profile obtained from the PSO is completed in 7.9402 s, as can be seen in Table 3.
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4.1.3. Path from the GA

The maneuvering path obtained from the GA, PSO, and GWO has different route
paths. Since the monitoring flight route of the UAV can be in many possible ways, the path
obtained from the GA (see Table 1) is evaluated in this section.

Table 4 shows the results of the fitness value of the variable speed strategy using the
GA, PSO, and GWO of the GA path. It shows that the PSO has lowest fitness value than the
GA and GWO. The GWO yields better fitness value than that of the GA. The GWO yields
better fitness value than that of the GA. The GWO fitness value has very small different
with the PSO results. Figure 13 shows the fitness value evolution of the GA, PSO, and
GWO during 4000 iterations. Figure 14 shows the flight trajectories of the variable speed
obtained from the PSO compared with the constant speed maneuver.

As can be seen from Table 1, the PSO path has vmax_ = 10.903 m/s, thus the constant
speed chooses v = 10 m/s as the speed maneuver. The speed profile and acceleration
trajectories are shown in Figure 14a,b, respectively. The same as in the PSO path, the roll
angle, turn rate, and roll rate trajectories of the variable speed and the constant speed do
not show much different as shown in Figure 14c–e, respectively. The CL trajectories of the
constant speed show quite different with CL trajectories obtained from the variable speed,
as shown in Figure 14f.

Figure 15 shows the load factor distributions of the constant speed strategy compared
with the variable speed maneuver for the GA path. By reducing the load factor distribution,
the variable speed can be seen more clearly. The and in Equation (34) used are 8.5 s and
1.18, respectively. The maneuvering time using the speed profile obtained from the GA can
be finished in 8.5 s, as can be seen in Table 4.

Table 4. Variable speed results (using path from GA).

GA PSO GWO

Fitness 30.5362 30.5194 30.5197
(a2, a1) (33.9319, −9.22891) (36.967, −10.2483) (36.959, −10.24)

Time (s) 8.4977 8.4993 8.4981
nmax 1.1721 1.1654 1.1655
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4.1.4. Comparison with Previous Variable Speed Strategy

This section compares the proposed variable speed strategy with the variable speed
scenario in [15]. For convenience, the scenario developed in this paper is called scenario 1
and the scenario in [15] is referred to as scenario 2. Both variable speeds strategies use the
third-degree polynomial as the speed profile; however, they have different speed generation
procedure. Scenario 1 has two unknown variables, which are a1 and a2, whereas scenario 2
has four searching variables, which are the optimum point r*, initial speed vi, final speed vf,
and speed at the optimum point v*.

For the maneuvering path obtained from the PSO, Table 3 presents the results of the
scenario 2. This result obtains from the PSO. As compared with Table 5, the scenario 1 has
better performance than that of the scenario 2 where the scenario 1 yields lowest fitness
value. In terms of the maximum value of the load factor, nmax, the scenario 1 is lower than
that of the nmax of the scenario 2. Figure 16 shows this load factor comparison between the
scenario 1 and the scenario 2.

The behavior of the speed profile between these scenarios are investigated. Figure 17a
shows the results of the speed profile during different running time for scenario 2. It can be
observed that during 4000 iterations, the speed profile generation had different trajectories.
This is due to the fact that scenario 2 uses the initial speed and final speed as the searching
variables so that when the results of these variables are not convergent to one value, the
speed trajectories are also not convergence. On the contrary, the scenario 1 make the initial
speed and final speed as known variables so that the results of the searching variables: a1
and a2, can have convergence values. Figure 17b show this behavior. It can be observed
that the trajectories are convergent for the different running time.
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Table 5. Variable speed using scenario in [15] for PSO maneuvering path.

Fitness (r*, vf, vi, v*) Time (s) nmax

PSO 30.5876 (0.7257, 8.6913, 8.8515, 11.0088) 8.0853 1.3020
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Figure 17. Speed trajectories for different running time (a) scenario in [15] (b) the proposed scenario.

Results in this section have shown that the variable speed strategy proposed in this
paper has better performance than the previous variable speed strategy in [15]. The next
sub section applies the proposed variable speed strategy to the UAVs simultaneously on
target mission.

4.2. Cooperative UAV Simultaneous on Arrival

Results from the previous subsection has shown that the variable speed has succeeded
in reducing the load factor during the Bezier curve maneuvering. This section presents the
simultaneous on arrival target mission of cooperative UAVs. The UAVs consist of three
UAVs where each UAV has Bezier curve maneuvering path with the detail is provided
in Table 6. Figure 18 illustrates the maneuvering paths of the UAV 1, UAV 2, and UAV 3.
These paths are generated by the PSO. The UAV 1, UAV 2, and UAV 3 need to conduct
the maneuvering from points A to B, C to D, and E to F, respectively. These UAVs need to
arrive from their start points to their destination points at the same mission time.
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Table 6. Detail of cooperative UAV maneuvering path.

Maneuvering Path
Length (m) Rpath_min(m) vmax (m/s)

B0 (m) B1 (m) B2 (m) B3 (m)

UAV 1 (−10, 80) (33.4446, 7.71408) (−32.7819, 21.1276) (50, −10) 120.8392 9.4164 9.6112
UAV 2 (−10, −20) (64.1996, 36.0919) (−34.0586, 29.7851) (30, 80) 123.0946 16.916 12.882
UAV 3 (−60, −0) (−26.8260, −39.7279) (37.7122, 15.3054) (46, 38) 130.1686 20.9753 14.3446
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To achieve this mission, the combination of the variable speed and constant speed are
necessary as follows:

T =
S∫ 1

0 v(r)dr
=

S2

v2
= . . . =

Sn

vn
(43)

where T, Sn, and vn are the mission time, the path length of nth UAV, and the constant
speed of nth UAV, respectively.

Because of the nonlinearity of variable speed strategy and also based on the results of
the single UAV, to achieve the simultaneous on arrival target mission, the variable speed is
performed by the UAV with the lowest vmax_ which corresponds to lowest radius of the
maneuvering path. Thus, according to the path lengths in Table 5, the UAV 1 performs
the variable speed, whereas the UAV 2 and UAV 3 conduct the constant speed. According
to vmax_ on Table 6, the UAV 1 and UAV 2 choose 10 m/s as the constant speed during
the maneuver.

Table 7 presents the result of the variable speed of the UAV 1 using the meta-heuristic
optimization. The same as in the previous simulations, the PSO shows the best performance
where it yields the lowest fitness value. Figure 19 shows the fitness value evolution during
4000 iterations. Figure 20 shows the flight trajectories of the UAV 1, UAV 2, and UAV 3
during this cooperative target mission. The mission time is 13.9050 s. The speed profile
of the UAV 1 can be seen in Figure 11a. The velocities of the UAV 2 and UAV 3 (see
Equation (43)) are 8.9698 and 9.4853, respectively.

The results in this section have shown that that the proposed variable speed strategy
has succeeded to reduce the load factor of the constant speed strategy. In general, the
PSO outperform the GA and the GWO for both the path planning step and the trajectory
planning step. The proposed variable speed has been implemented successfully to solve
the UAVs simultaneous on target mission by combining it with the constant speed strategy.
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Furthermore, it can be observed that the generated flight trajectories are smooth and lie
within their allowable zone.

Table 7. Variable speed result of UAV 1 (Cooperative maneuver planning).

GA PSO GWO

Fitness 32.8482 32.7699 32.77
(a2, a1) (−8.3357, 0.54529) (−17.716, 4.12734) (−17.716, 4.12689)

Time (s) 13.903 13.7232 13.7233
nmax 1.2398 1.24 1.24
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Figure 19. Fitness value of UAV 1 (of swarm UAV).
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Figure 20. Flight trajectories of UAV 1, UAV 2, and UAV 3. Flight trajectories of variable speed and
constant speed of the PSO maneuvering path. (a) speed profile (b) acceleration (c) roll angle (d) turn
rate (e) roll rate (f) CL.

The problem of flying at the constant altitude is especially important for the UAVs
that frequently fly over the complex terrain, and it is not easy to achieve [9]. The 2D motion
addressed in this paper is problem of flying at the constant altitude with the bank-turn
mechanism. In our results analysis in Figures 11, 14 and 20, it can be observed that not
only the angle of attack α trajectories are varied during the bank-turn flight, but the bank
angles φ are also continuously changed during the flight. The angle of attack, α, in this
paper is in the form of lift coefficient, CL. The corresponding angle of attack, α, related to
the lift coefficient, CL, can be obtained from the aerodynamics properties of the UAV airfoil.
During maneuvering at the constant altitude, the angle of attack, which contributes to the
variation of CL trajectories, should be changed because the UAV conducts the bank-turn
maneuver. The change of CL occurs because of the change of bank-angle trajectories and the
velocities as expressed in Equation (30). Even for the constant speed scenario, CL trajectories
are varied because of the change of the bank angle during the maneuver. In comparison
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with the 3D motion, the angle of attack, α, trajectories are varied because the UAV needs to
change the altitude or the motion in the z-direction while the bank-angle φ trajectories are
constant because the UAV does not conduct the bank-turn maneuver. Thus, the problem of
flying at the constant altitude with the bank-turn mechanism for the fixed wing UAV is the
complex optimization problem. Results in this paper have shown that the meta-heuristic
optimizations have succeeded in finding the optimal flyable flight trajectories of the fixed-
wing UAV bank-turn maneuver. The PSO has outstanding performance than the GA and
the GWO in the path planning step and the trajectory planning step.

There are some possible recommendations for future studies to improve the proposed
UAV motion planning. Results of the path planning generated by the GA, the PSO, and the
GWO as shown in Figure 9 are different. In a real application, a factor of a surveying area
coverage can be implemented in the computation. This paper uses maximum iteration, i.e.,
4000 iteration numbers, as the stopping criteria. Other additional stopping criteria, which
can represent the coverage of the UAV surveying path, can be added to fulfill the UAV
route mission and achieve the stability of the path planning result. The motion planning
output will be used as motion reference in the control system [37]. Thus, study of the UAV
control system by using the proposed variable speed trajectory as the motion reference is
important research to be conducted.

The variable speed is beneficial in reducing the load factor, especially when the
maneuvering path involves the small turning radius. This small turning radius possibly
necessary when the UAV should conduct monitoring tasks in crowded and complex
obstacle environments. The Ascent UAV has relatively small speed range, i.e., 8 m/s to
12 m/s (Table 1), but the variable speed has succeeded to reduce the load factor distribution
during the bank-turn maneuvering. Thus, the variable speed strategy implemented to the
fixed-wing UAV which has wide speed range and the agile fixed-wing UAV, such as the
aerobatic UAV, is needed to be studied for the next research to observe the effect of the
speed variations during the UAV maneuvering in reducing the load factor distribution for
performing the agile maneuver with bank-turn mechanism. Generating the other variable
speed strategies which has better performance than that of the proposed method, i.e., the
third-degree polynomial, is also very promising research to be conducted.

5. Conclusions

This paper presented the maneuver planning of the fixed-wing UAV in an obstacle
environment for single UAV and swarm UAVs by the use of a bank-turn mechanism at a
constant altitude. The maneuver planning was conducted in two steps, which were path
planning and flight trajectory planning. In the path planning, the best feasible path is
searched and the optimization objective was to minimize the maneuvering path length
subject to curvature constraint and collision avoidance. There were two possible ways to
perform the flight maneuver using the cubic Bezier curve, i.e., by either constant speed
strategy or variable speed strategy. A strategy to generate the speed profile within the speed
range was developed. Results show that the variable speed strategy was very promising
to reduce the load factor distribution. The PSO has shown the outstanding performance
in finding the optimal solutions compared with the GA and the GWO for both the path
planning and the flight trajectory planning.
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