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Abstract: Due to the large amount of video data from UAV aerial photography and the small
target size from the aerial perspective, pedestrian detection in drone videos remains a challenge. To
detect objects in UAV images quickly and accurately, a small-sized pedestrian detection algorithm
based on the weighted fusion of static and dynamic bounding boxes is proposed. First, a weighted
filtration algorithm for redundant frames was applied using the inter-frame pixel difference algorithm
cascading vision and structural similarity, which solved the redundancy of the UAV video data,
thereby reducing the delay. Second, the pre-training and detector learning datasets were scale
matched to address the feature representation loss caused by the scale mismatch between datasets.
Finally, the static bounding extracted by YOLOv4 and the motion bounding boxes extracted by
LiteFlowNet were subject to the weighted fusion algorithm to enhance the semantic information and
solve the problem of missing and multiple detections in UAV object detection. The experimental
results showed that the small object recognition method proposed in this paper enabled reaching
an mAP of 70.91% and an IoU of 57.53%, which were 3.51% and 2.05% higher than the mainstream
target detection algorithm.

Keywords: aerial scene; small-sized pedestrian detection; YOLOv4; Convolutional Neural Net-
works (CNNs)

1. Introduction

In recent years, the development of smart cities has set off a wave of trends, including
unmanned and intelligent systems. Smart cities foster sustainable urban development by
harnessing networked and integrated sustainable urban technologies [1]. As an emerging
technology, drones play a key role in smart city environments such as intelligent trans-
portation [2], crowd management [3], and natural disasters [4]. Intelligent transportation
uses vehicle detection and pedestrian detection technology to detect vehicle flow and
pedestrian flow information in real time [5]. Using drones for detection can allow for a
more comprehensive and continuous understanding of traffic nodes. UAVs can be used
for crowd management by monitoring the crowd and realizing more intelligent police
work. UAVs play a key role in smart cities for pedestrian detection and use detection
technology integrated in people’s daily lives. Therefore, the combination of UAV and
pedestrian detection is being explored and studied. The detection data can be collected by
a digital camera installed on the drone [6]. However, unlike ordinary target detection, the
videos taken by drones are generally ultra-high definition. The amount of stored and trans-
mitted data is large. The aerial images of drones have the problems of small object sizes,
low signal-to-noise ratios, and complex backgrounds. Therefore, quickly and accurately
detecting small-sized pedestrian objects in UAV images is a challenging problem.
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Object detection usually obtains the position and proportion of the object according
to the probability of the bounding boxes and their categories to detect the object instances
of known classes in video frames [7]. Object detection is mainly divided into traditional
object detection algorithms and those based on deep learning object detection. Traditional
object detection algorithms are only suitable for apparent features and simple backgrounds.
However, in object detection, the UAVs’ scene usually has complex and changeable back-
grounds, and it is difficult to detect the objects through general abstract features [8]. The
deep-learning-based object detection algorithm uses a Convolutional Neural Network
(CNN) to richly extract the same object features to complete the object detection. Although
the object detection algorithm based on deep learning has made great progress, detecting
small-sized pedestrian objects from the unique perspective of the UAV still poses significant
challenges. These challenges mainly include the following aspects: (i) For human body
detection, the UAV will distort the human body when it is photographed aerially, and the
movement speed of the object is slow, coupled with the complex background, which can
easily to lead to a false detection. (ii) There is a high degree of similarity between UAV
video frames: pedestrians move slowly; the difference between frames is tiny; there is much
redundancy between frames. Performing detection directly from the video will lead to a
large amount of calculation. (iii) The scale mismatch between the dataset in the pre-training
and the small object dataset will result in the loss of object feature representation, which
will reduce the detector’s performance. (iv) The motion information of the moving object
cannot be ignored. However, the input data of the object detector are static video frames,
for which the motion information of the UAV video cannot be used fully. This will lead
to the object in the video frame of the UAV containing a minimal amount of information.
Therefore, it is difficult for the object detector to accurately identify all objects, resulting in
missing and multiple detections.

Therefore, to solve the above problems, we propose a novel small-sized pedestrian
detection algorithm based on the weighted fusion of static and dynamic bounding boxes
(the SDWBF Algorithm). First, because of the significant difference between UAV video
frames, the weighted redundant frame filtration algorithm is proposed to reduce the
algorithm’s time delay and calculation amount for the redundant frames. Secondly, when
designing the algorithm, based on the features of small-size pedestrians, we propose a
method of weighted fusion static bounding boxes and dynamic bounding boxes to identify
small-size pedestrians and improve the detection accuracy. Yu et al. [9] pointed out that due
to the tiny object sizes and low signal-to-noise ratios, tiny objects will result in very poor
feature representation. Scale matching can allow better studying and using micro-scale
information, making it more complex for Convolutional Neural Networks to represent
tiny targets. Inspired by this, we introduced scale matching before the weighted fusion
of the static and dynamic bounding boxes to increase the feature representation ability of
the detector.

The SDWBF Algorithm can improve the ability of small object detection, which is very
important for pedestrian scene detection. Our contributions are as follows:

• A weighted filtration algorithm for redundant frames is proposed to reduce redundant
frames and calculations;

• A weighted fusion algorithm for static and dynamic bounding boxes is proposed to
improve the detection accuracy;

• We introduced scale matching to reduce the loss of detector features and further
improve the accuracy of the detector.

The experimental results and analysis showed that compared with the current main-
stream methods [10–13], the SDWBF Algorithm improves the problem of missed and
multiple detections in target detection, improves the accuracy, and reduces the time delay.

2. Related Work

In terms of object detection from the perspective of UAVs, the deep-learning-based
object detection algorithm has been widely used, but at the same time, there are still



Drones 2022, 6, 76 3 of 16

some difficulties that need to be solved. First, the background of UAV images contains
much noise information, weakening the detection of or obscuring the object, making
it a challenge to continuously and wholly detect the object. Zhang R. et al. [14] used
improved multi-scale dilated convolution to extract features, enlarged the receptive field of
features, and improved the detection effect of occluded objects under complex backgrounds.
Zhang et al. [15] proposed a coarse-to-fine object detection based on the deep motion
saliency. This method uses the information from deep motion saliency in combination with
the detector to improve the detection accuracy, and the recognition effect of small objects has
been improved. Liu et al. [16] improved the YOLOv3 network structure, the performance
of small objects detection was significantly improved by increasing the computation of
the convolutional layer in the early stage to enrich the spatial information. Yu et al. [9]
proposed a scale match method to keep the feature distribution of the network pre-training
dataset and the detector dataset consistent and improve the quality of the small object
detection model by improving the similarity of the data distribution.

Besides, there are plenty of redundant frames in drone videos. For the processing of
redundant video frames, Chen et al. [17] proposed to convert all frames into a pixel-by-
pixel comparison of the grayscale images to arrive at the difference between two adjacent
frames and extract keyframes based on the degree of difference. However, due to the
slow movement of UAV objects, the foreboding objects of the front and rear frames will
have a large amount of reclosing, which will cause the extracted image to be hollow.
Zhang et al. [15] proposed a scheme of selecting frames at equal intervals and then using
similarity to select keyframes. The fixed interval may lead to excessive object loss and a low
detection rate. Canel et al. [18] proposed a keyframe detection algorithm that automatically
extracts keyframes based on the semantic differences between frames. However, such
methods may produce too many redundant frames and increase computation.

Therefore, this paper proposes a small-size pedestrian detection algorithm—the SD-
WBF Algorithm. In terms of redundant frame filtering, redundant frames can be filtered
by combining inter-frame pixel differences algorithm cascading vision and structural simi-
larity to filter out many redundant frames. In terms of target detection, first, extract the
static bounding box and the moving bounding box, and then weight fusion the static and
dynamic bounding boxes to enhance the semantic information and improve the detection
accuracy. In addition, this paper uses the scale matching method to improve the target
feature representation ability to improve the performance of the detector. This paper evalu-
ates the proposed method on the Stanford drone data (SDD) set of the public dataset. Its
dataset is mainly based on pedestrian scenes. The proposed method can further improve
the performance of the object detector to detect small-sized objects. Furthermore, it should
point out that the main detection target of the paper is humans, primarily pedestrians
and cyclists.

3. Proposed Method

The flow chart of the SDWBF Algorithm proposed in this paper is shown in Figure 1.
(i) Redundant frame filtering: First, the UAV video is filtered through the pixel differences
between frames; then, based on the initial filtering, weighted fusion with visual and
structural similarity, it is filtered again to obtain the final dataset. (ii) Target detection:
First, adjust the scale of the pre-training dataset to improve the performance of the detector.
Then, use the target detector to extract static semantic features to obtain the target’s initial
category and visual position. Finally, perform the final dataset deep optical flow estimation,
transform the deep optical flow result into a dynamic bounding box, and perform weighted
fusion with the static bounding box to improve the preliminary detection results.
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Figure 1. The proposed object detection method for UAV images.

3.1. Weighted Filtering Algorithm for Redundant Frames of Drone Video

Due to high frame rate photography, many video frames have high similarity and high
redundancy in UAV videos. If the drone video is detected frame by frame, the calculation
is enormous and time-consuming. Therefore, this paper first proposes a weighted filtration
algorithm for redundant frames. The method primarily uses the inter-frame pixel difference
algorithm to perform preliminary frame filtration. On this basis, filtration with the weighted
fusion of the visual and structural similarity of the frames reduces the computational
complexity of detection. The picture is essentially a two-dimensional signal, which is
composed of multiple different frequency components [19]. The inter-frame pixel difference
algorithm mainly takes advantage of the low-frequency components of the picture. It
removes the high-frequency part of the picture to reduce the amount of image information
by narrowing the picture and using the gray image method, which is suitable for pictures
of extremely high similarity to be primarily selected. Image similarity measurement is
to fuse visual similarity and structural similarity. Visual similarity is measured by image
features (color, shape, texture, etc.) that conform to human vision. Structural similarity is
a global way to compare image quality by statistical indicators (entropy, grayscale, etc.).
However, the image background in the experimental dataset has high similarity, and the
object’s moving speed is slow, resulting in a large amount of calculation to extract the image
features. The method proposed in this paper does not require a large amount of calculation
of image features but compares frames from a global perspective.

A weighted filtration algorithm for redundant frames proposed in this paper first
extracts the frame of the UAV video through the inter-frame pixel difference algorithm.
The method for judging the pixel difference value between frames is as follows:

Di,j(k) = Hi(k)⊕ Hj(k) (1)

4i,j = ∑
k

Di,j(k) (2)

Formula (1), Hi(k) and Hj(k), respectively, represent the binary value of the kth hash
value conversion of the ith frame and jth frame image, ⊕ represents the exclusive OR
operation, Di,j represents the calculation result of the difference value of the ith and jth
frame. In Formula (2),4i,j represents the similarity measurement parameter between two
frames. When the similarity measurement parameter is 5, when the similarity measurement
parameter4i,j is less than 5, we consider the two frames to be similar and filter this frame.
When4i,j is greater than 5, we consider it dissimilar.

Then, the frame is filtered again, combining with visual image similarity and struc-
tural similarity on the former basis. EMD [20] has better robustness than other methods
of measuring visual similarity [15]. The main idea of EMD is to measure the distance
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between two distributions. The distance of the histogram calculated by EMD is used as
the visual similarity of the image. Compared with other methods of measuring structural
similarity, SSIM [21] is a complete evaluation index of reference image quality [15]. It
combines brightness, contrast, and structure to measure image similarity. To accelerate the
processing speed, the RGB image is converted into gray space, and SSIM is calculated in
gray space [22]. This algorithm fuses visual and structural similarity using weight ratio
and defines parameter w as the weight coefficient. The PDCSF (Pixel difference cascade
similarity fusion) algorithm is as follows.

AEMD(P, Q) = 1− EMD(P, Q)− µ

σ
(3)

PDCSF(P, Q) = w(AEMD(P, Q)) + (1− w)(SSIM(P, Q)) (4)

D(P, Q) =

{
0 PDCSF ≥ avg(PDCSF)
1 PDCSF < avg(PDCSF)

(5)

AEMD(P, Q) means normalizing the mean value of EMD distance, µ means the mean
value of EMD distance between all original frames, and σ means the standard deviation
of EMD distance between all original frames. When the EMD distance value is larger, the
image is less similar. To facilitate the later calculation, the smaller the AEMD(P, Q) value
is, the more dissimilar it will be, which is the same as the SSIM value. The Formula (5)
indicates whether to filter this frame. When the value is 1, the frame is filtered, and similar
frames are filtered.

3.2. Small-Sized Pedestrians Detection Method Based on the Weighted Fusion of Static and
Dynamic Bounding Boxes

The ideal detector must achieve high accuracy in positioning and recognition and
high efficiency in terms of time. In recent years, many effective object detection methods
have been proposed, such as SSD [11] and Fast R-CNN [23]. This paper selects the recently
proposed CNN architecture YOLOv4 [13] as the object detector for extracting static features.
Compared with other networks, this network achieves an optimal balance between speed
and accuracy. Because the distance between the target and the camera from the UAV’s
perspective is too far, resulting in smaller target size, tiny objects pose a big challenge for
feature representation. In addition, the datasets used for network pre-training and the
dataset learned by the detector may degrade the feature representation and the detector [9],
increasing the risk of false detection in large-scale and complex backgrounds. Therefore,
YOLOv4 will cause missed detections or multiple detections of small objects.

To further improve the accuracy of moving object detection, this paper proposes a
small-size pedestrian detection method based on the weighted fusion of static and dynamic
bounding boxes. First, the pre-training and detector learning datasets are scale-matched
to improve the detector’s feature representation and performance. Secondly, on this basis,
the difference in consecutive frames is used to correspond to the motion information of the
moving object, and the static and motion boxes are weighted fusion to improve detection
capabilities. Currently, the most usual method of extracting the motion information is
optical flow [24], and deep learning methods have achieved great success in solving the
problem of optical flow estimation, such as Flownet [25], PWC-net [26], etc. The recently
proposed LiteFlowNet3 [24] is more accurate than other optical flow estimation networks.
Therefore, this paper uses LiteFlowNet3 to generate optical flow images, extract motion
boxes through threshold segmentation, and finally, the weighted fusion of the moving
boxes with the static boxes extracted by the previous object detector. This paper uses the
concept of Intersection-over-Union (IoU) [27] to achieve static and motion boxes weight
fusion by calculating the static boxes generated by YOLOv4 and the IoU based on the
motion boxes generated by LiteFlowNet3. IoU is the ratio of the intersection area of two
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bounding boxes to their union. A and B are the areas of two different bounding boxes. The
calculation formula is as follows:

IoU(A, B) =
A ∩ B
A ∪ B

(6)

3.2.1. Scale Matching to Reduce the Loss of Detector Features

In this paper, the scale matching between the pre-training and detector learning
datasets is put forward to improve the feature representation. The static boxes of the
object detector and the dynamic boxes are based on optical flow estimation is weighted
fusion, which makes full use of the motion information of objects to reduce the miss rate
and achieve more accurate small-size pedestrian detection. In this paper, the static boxes
collection generated by YOLOv4 is defined as Yi, and the motion boxes collection generated
based on LiteFlowNet3 is defined as Li. The method of object detection based on static and
motion boxes weighted fusion mainly includes the following steps.

The pre-training dataset and the detector learning dataset are scale-matched to im-
prove the feature representation and improve the performance of the detector. The scale
matching essentially makes the target scale histogram distribution of the pre-training
dataset and the detector learning dataset similar. First, we calculate the average size s1 of
the label box in any picture in the pre-training dataset, select a bin in the scale histogram
of the detector learning dataset. Secondly, we determine the used bin on the size s2 of the
scale-matched label, the scale migration ratio s2/s1 is obtained. Finally, scale matching
is performed on the pictures in the pre-training dataset according to the scale migration
ratio. The calculation formula for scale matching is shown in Equation (7). Among them,
s0 ∈ [min(s1), max(s1)], min(s1) and max(s1) represent the minimum and maximum size
of the object, respectively. psize represents the general density function, the probability
density function of the scale s of any dataset X is expressed as Psize(s; X). Then E repre-
sents the pre-training dataset, and Dtrain represents the target training set. The abscissa
of the probability density function is the size of the dataset label frame, and the ordinate
is the probability density. The scale matching function f maps the label box size s1 in the
pre-training set E to s2.∫ s0

min(s1)
Psize(s1; E)ds1 =

∫ f (s0)

f (min(s1))
psize(s2; Dtrain)ds2 (7)

After the pre-training dataset and the detector learning dataset are scale-matched, and
the performance of the object detector is improved, the extracted keyframes are input into
it to extract the deep semantic features, then the static bounding boxes set Yi is obtained.

3.2.2. A Weighted Fusion Algorithm for Static and Dynamic Bounding Boxes

The optical flow image is obtained by LiteFlowNet3. The binary motion map is ob-
tained by threshold segmentation of the optical image, analyzing the connected components
of the binary motion image, and finally obtaining the motion feature set Li. The overall
flow chart is shown in Figure 2.

Figure 2. The flow chart of obtaining moving boxes.
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(1) To obtain an RGB optical flow image, we convert the optical flow vector generated
by LiteFlowNet3. Different colors in the RGB image represent different directions of
motion, and the color depth indicates the speed of motion.

(2) We perform threshold segmentation on the optical flow image to obtain a binary
motion image. Threshold segmentation is divided into global and local threshold
methods [28]. The global threshold method uses global information to find the optimal
segmentation threshold for the entire image. However, for small-size pedestrian
images, it is difficult to separate the object and background using the threshold of
the whole image because of the small area that the objects occupied in the image.
Therefore, this paper uses the local threshold method to obtain the binary motion
image by segmenting the RGB optical flow image. Its idea is to self-adaptively calculate
different thresholds according to the brightness distribution of different areas of the
image. For image P, calculate the value G(x, y) of each pixel (x, y) in the image
through Gaussian filtering, the Gaussian filter function can denoize the optical flow
image to a certain extent, and set σ as a constant, the Gaussian filter function [29] is
Equation (8).

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (8)

Forward binarization point by B(x, y) value.

Dst(x, y) =
{

0 i f P(x, y) < G(x, y)
1 i f P(x, y) ≥ G(x, y)

(9)

where P(x, y) is the pixel value of (x, y) in the RGB optical flow image, and Dst(x, y)
is the binary image of the image P.

(3) Analyzing the connected components of Dst(x, y) [30], the motion feature bounding
box collectionset Li. Connected component analysis is to find a continuous subset
of pixels in Dst(x, y) and mark them. These marked subsets constitute the motion
feature box collection set Li of the object.

The static bounding boxes collection set Yi generated by YOLOv4 is merged with
the motion boxes collection set Li generated based on LiteFlowNet3 to compare the size
of the IoU of the static and motion boxes at a certain distance. Among them, the static
and dynamic bounding boxes are mainly weighted and fused by Formula (10), where box
corresponds to the bounding box coordinates, and σ2

Li ,Yj
represents the variance.

Weight
(

Li, Yj
)
=

box
[
Li, Yj

]
/σ2

Li ,Yj

∑ 1/σ2
Li ,Yj

(10)

In addition, we carry out statistical analysis on the speed of the object movement
between video frames. The size of pedestrians is 50px × 50px (px is pixel), and the size of
cyclists is 70px × 70px. Because there are far more pedestrians than cyclists in the data, this
paper takes the size of pedestrians as the standard. Then, the moving speed between the
video frames, namely pixel offset between frames of pedestrians and cyclists, is 1px and
3px, respectively. Moreover, the moving bounding box usually exceeds the static bounding
box. This paper retains an error range of about five frames. Therefore, this paper sets the
distance r to 55px ± 10px according to the object pixel size and its inter-frame pixel offset,
(γ1, γ2) is the value range of IOU, when γ1 = 0.2,γ2 = 0.5, the recognition effect is best
and the pseudocode of the fusion algorithm is shown in Algorithm 1.
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Algorithm 1: A weighted fusion algorithm for static and dynamic bounding boxes.
Input: Static feature box collection Y{i}, Motion feature box collection L{i}

1: for i = 0 To length(Li) do
2: for j = 0 To length

(
Yj
)

do
3: //distance() is the calculation distance function
4: if distance

(
Li, Yj

)
< r then

5: if IoU
(

Li, Yj
)
∈ (γ1, γ2) then

6: //Weight() is weighted fusion area function.
7: ResultBox{i} ←Weight

(
Li, Yj

)
8: end if
9: if IoU

(
Li, Yj

)
< γ1 then

10: ResultBox{i} ← Li, Result{i} ← i
11: end if
12: if IoU

(
Li, Yj

)
> γ2 then

13: ResultBox{i} ← Yj
14: else
15: Result{i} ← i
16: ResultBox{i} ← Li
17: end if
18: end if
19: end for
20: end for
Output: The final set of test results: Result{i}, the final test result boxes: ResultBox{i}

4. Experimental Section

In this section, a series of experiments will be performed to verify the performance
of the proposed method and compare it with the current mainstream methods. The
experiment platform is a PC with a @2.0 GHz CPU and 16 G memory. The experiment is
mainly implemented on MATLAB2016a and Python 3.7 based on PyTorch and is accelerated
by NVIDIA GeForce TITAN XP with 12 GB memory.

4.1. Performance Evaluation Standard

The publicly available Stanford Drone Dataset (SDD) contains experimental data
collected on a university campus with examples of pedestrians and cyclists. So the main
detection object in this paper is humans. SDD is very challenging. The size of all object
instances is no larger than 0.2% of the image size, and most instances account for 0.1%
to 0.15%. The video is randomly selected, and its frames are extracted as the dataset of
this project. The training and verification sets contain 120,201 frames, and the test set
contains 51,514 frames. To evaluate the performance of the proposed method, the following
evaluation indicators will be used for evaluation.

Harmonic mean (F) is the harmonic mean [31] of recall (R) and precision (P), which is
used to comprehensively measure the effectiveness of the redundant frame filter result set.
The recall rate is used to measure the missed detection of as shown in Formula (11), and
the precision rate reflects the accuracy of the extraction results as shown in Formula (12).
Among them, Nc, Nm, and Nt represent the number of result frames, the number of missing
frames, and the number of redundant frames correctly extracted in the result set.

R =
Nc

Nc + Nm
× 100% (11)

P =
Nc

Nc + Nt
× 100% (12)

F =
2× R× P

R + P
(13)
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Compression Rate (CR) is used to measure the compactness of video clips and is
related to frame extraction. N(Fi) represents the number of result frames, and N

(
KFj

)
is

the number of original video frames.

CR =
N(Fi)

N
(
KFj

) × 100% (14)

Frame Per Second (FPS) measures the speed of object detection, representing the
number of video frames that the detector can process per second. The experiment tests the
FPS of different object detectors on a single GPU.

Intersection over Union (IoU) represents the overlap between the generated candidate
bound and the ground truth bound [32]. The ideal situation is complete overlap. That is,
the ratio is 1. between the generated candidate bound and the ground truth bound [32].
The ideal situation is complete overlap. That is, the ratio is 1.

The mAP is the standard for the detection accuracy of the object detector. It is related to
the value of IoU. In the experiment, the value of IoU is set to 0.5, and mAP is the area under
the curve of precision and recall. Among them, TP represents the number of detection
boxes with IoU > 0.5, FP represents the number of detection boxes with IoU ≤ 0.5, and
FN represents the number of undetected. The definition of precision and recall are:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

4.2. Experimental Results and Analysis
4.2.1. Select the Best Weight Coefficient

To select the best weight coefficient in the proposed redundant frame filter method,
different weight coefficients are set in this experiment. The harmonic mean F and com-
pression ratio CR of different weight coefficients are compared to select the best weight
coefficient. In theory, the higher the harmonic mean F, the lower the CR value, and the
better the redundant frame filter. This paper selects two videos for a redundant frame
filter. From Table 1 and combining Figure 3, it can be seen that when w is 0.6, the number
of redundant frames is lower than when the weight coefficient w is 0.5. The number of
missing frames is less than when the weight coefficient w is 0.7. It should be low, which
means that when w is 0.6, the effect reaches balance. The value of harmonic mean and
compression ratio is the best, and the extracted result frames contain the least redundant
frames and no missing frames.

Table 1. Weight coefficient setting in redundant frame filter method.

W Frames Initial Result Undetected Redundant F CR

0.3 11,966 729 291 0 16 0.973 2.43%
0.5 11,966 729 285 0 10 0.983 2.38%
0.6 11,966 729 277 0 3 0.994 2.31%
0.7 11,966 729 274 2 1 0.994 2.32%
0.3 12,721 619 284 0 15 0.974 2.23%
0.5 12,721 619 260 0 9 0.983 2.04%
0.6 12,721 619 249 0 2 0.996 1.96%
0.7 12,721 619 244 3 2 0.990 1.92%
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Figure 3. Different weight coefficients are set and the harmonic mean F and compression ratio CR of
different weight coefficients are compared. (a) Trend chart of harmonic mean F. (b) Trend chart of
compression ratio.

4.2.2. Reduce Redundant Frames

To verify the effect of the proposed redundant frame filter method, this paper conducts
a comparative experiment with the resulting frame extraction method in [15,17]. It can be
seen from Table 2 that the algorithm in [17] takes the least time. The reason for this is that
this method is only filtered by the frame difference method once, which can greatly reduce
the running time. However, although this method is simple and fast, the result frame
selection often exists deviation. Compared with the algorithm in [15], the algorithm in this
paper is used to extract the video frame of the drone video through the pixel difference
between frames. In contrast, ref. [15] performs the preliminary extraction at equal intervals,
which can greatly reduce the data required to be processed. Therefore, the execution time of
the algorithm in this paper is slightly higher than that in [15]. However, it can be seen from
Figure 4 that in the same video, the algorithm in this paper has the highest harmonic mean.
The lowest compression rate, compared with the results obtained in [15,17], indicates that
the result frames extracted retain both the visual and structural content of the original
data and reduce useless frames. Therefore, the algorithm proposed in this paper has better
all-around performance, and the result frames are more accurate in the expression of the
original video.

Table 2. Compare with existing methods to reduce redundant frames.

Methods Frames Result Undetected Redundant F CR Average Time/s

Coarse-to-fine [15] 11,966 336 0 62 0.915 2.81 0.027
Glimpse [17] 11,966 432 0 158 0.845 3.61 0.007

Ours 11966 277 0 3 0.994 2.31 0.055
Coarse-to-fine [15] 12,721 327 0 60 0.919 2.67 0.027

Glimpse [17] 12,721 459 0 167 0.847 3.60 0.007
Ours 12,721 249 0 0 0.990 1.92 0.055
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Figure 4. Harmonic mean and compression ratio comparison with other paper in the same video.
(a) Contrast of harmonic mean. (b) Contrast of compression ratio.

4.2.3. Ablation Experiment

To verify the effectiveness of the proposed method, we set up an ablation experiment
to verify the accuracy and time-consuming of each module. First, we conducted the
redundant frame filter experiment based on Baseline. It can be seen from Table 3 that
when redundant frame filtering is not performed, it takes 268 s, and when redundant
frame filtering is performed, it takes 29.12 s. The accuracy is maintained without change,
and the time-consuming rate is reduced by 89.13%. The result shows the effectiveness
of the weighted filtration algorithm for redundant frames. Secondly, weighted fusion
for static and dynamic bounding boxes is performed based on redundant frame filtering.
The accuracy is increased by 1.89% and 0.73%, respectively, showing the effectiveness of
weighted fusion and scale matching of static and motion features. Finally, we performed
scale matching. The accuracy is increased by 3.51%, which shows that the combined effect
of the two methods is better than the independent effect of the two. Therefore, the overall
results show the effectiveness and rationality of our method.

Table 3. Results of ablation experiments.

Methods Pedestrian AP Biker AP mAP Time/s

Baseline [13] 74.34 60.45 67.40 268
+Frame filtering 74.34 60.45 67.40 29.12

+Frame filtering and Feature fusion 75.93 62.65 69.29 31.46
+Frame filtering and Scale match 75.14 61.11 68.13 31.25

Ours 77.53 64.28 70.91 32.05

4.2.4. Test Result Comparison Experiment

To intuitively prove the effectiveness of the proposed method, introduce a new dataset
UAV123 to verify the generalization ability of the algorithm. This experiment compares the
detection results after scale matching and the final static and motion boxes weighted fusion.
As shown in Figure 5, the proposed object detection method of static and motion boxes
weighted fusion can eliminate false-positive object instances and increase false negative
object instances, which improves the performance of the object detector. For example,
before the scale-match, there are many instances of missing detection in the first example.
After the scale-match, the missing detection rate decreases, but no false-positive instances
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of cyclists are detected in the red bounding box on the right side of the video frame. After
the static and motion boxes are fused, the missing detection rate is reduced based on
scale matching, and false-positive instances are eliminated. Because this instance does
not exist in the frame, there is no motion bounding box in the corresponding position in
the motion feature, so after the static and motion boxes fusion, this bounding box will be
deleted. In the third example, the detection ability of YOLOv4 is significantly reduced
when there are obstructions. After the scale-match, the detection ability improves, but two
false-positive instances appear. The false-positive instances are eliminated after the static
and motion boxes are fused. The latter two examples are the UAV123 data set. It can be
seen from the figure that the algorithm works well under different data sets and has strong
generalization ability. The results show that the fusion of static and motion features will
improve detection accuracy.

4.2.5. Compare Experiments with Advanced Detectors

To verify the performance of the proposed object detection method, this paper com-
pares the detection accuracy and speed with mainstream detectors. All object detectors use
the COCO dataset as the pre-training dataset and are trained based on the SDD. As shown
in Figure 6, compared with the original YOLOv4, when only scale-match is used, mAP is
increased by 0.63%, IoU is increased by 0.60%. Furthermore, after static and motion boxes
weighted fusion, the proposed method mAP is increased by 3.51%, IoU increased by 2.05%
overall, achieving the highest mAP and IoU, reaching 70.91% and 57.53% respectively. Due
to the weighted fusion of motion and static boxes during the detection process, the detection
speed drops slightly, and the FPS is 30.3. As shown in Table 4, the detailed detection results
of different object detectors in the SDD are shown. The SSD detector uses a deeper network
model, so the accuracy is high, but the calculation complexity increases, resulting in poor
real-time performance. Although YOLOv3 achieves the best real-time performance, it has
a poor detection effect on small objects, low performance, and cannot achieve a balance
between accuracy and delay. In general, the method proposed in this paper improves the
detection accuracy while ensuring real-time performance in small object detection.

Table 4. Comparison between the proposed method and the mainstream target detection algorithms.

Methods Input Pedestrian AP/% Biker AP/% mAP/% IoU FPS

R-FCN (ResNet-101) [10] 1000×600 67.21 55.71 61.46 53.26 10.24
RetinaNet [33] 800×800 71.77 57.29 64.53 54.43 17.5

SSD300 [11] 300×300 65.03 50.94 57.99 52.67 30.36
SSD512 [11] 512×512 68.90 54.81 61.86 53.80 19.32

YOLOv2 [34] 416×416 53.46 39.18 46.32 42.93 69.27
YOLOv3 [12] 416×416 59.54 44.15 51.85 50.45 61.3
YOLOv4 [13] 416×416 74.34 60.45 67.40 55.48 44.5

After SM 416×416 75.14 61.11 68.13 56.08 33.2
Ours 416×416 77.53 64.28 70.91 57.73 30.3
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(a) YOLOv4 (b) After Scale-match (c) Ours

Figure 5. Comparing detection results using two datasets. (It should point out that the first three
rows of detection results are SDD datasets, and the last two rows are UAV123 datasets).
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Figure 6. Speed and accuracy comparison with mainstream target detection algorithms.

5. Conclusions

This paper proposes a target detection algorithm in the aviation scene, a small-size
pedestrian detection algorithm based on the weighted fusion of static and dynamic bound-
ing boxes—the SDWBF Algorithm. It is composed of redundant frame weighted filtration
algorithm, scale matching algorithm, static and dynamic bounding box weighted fusion
algorithm. The SDWBF Algorithm mainly solves the problem of missed inspection and
multiple inspections of the UAV pedestrian detection model structure in the high-altitude
scene. Secondly, it solves the redundancy problem of UAV pedestrian video data. The
SDWBF Algorithm improves the pedestrian detection accuracy of the model through static
and dynamic bounding box weighted fusion algorithm and scale matching algorithm and
uses redundant frame weighted filtration algorithm to filter out redundant frames to reduce
computing amount. We tested the SDWBF Algorithm in a real hardware environment.
Compared with other detection algorithms, the performance of the SDWBF Algorithm is
outstanding, and the accuracy results were good. In future work, we will conduct more
in-depth research to optimize the network structure and implement it in embedded devices.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
CNN Convolutional Neural Network
SDD Stanford Drone Dataset
EMD Earth Movers Distance
SSIM Structural Similarity
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