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Abstract: This article presents a survey of simultaneous localization and mapping (SLAM) and
data fusion techniques for object detection and environmental scene perception in unmanned aerial
vehicles (UAVs). We critically evaluate some current SLAM implementations in robotics and au-
tonomous vehicles and their applicability and scalability to UAVs. SLAM is envisioned as a potential
technique for object detection and scene perception to enable UAV navigation through continuous
state estimation. In this article, we bridge the gap between SLAM and data fusion in UAVs while
also comprehensively surveying related object detection techniques such as visual odometry and
aerial photogrammetry. We begin with an introduction to applications where UAV localization is
necessary, followed by an analysis of multimodal sensor data fusion to fuse the information gath-
ered from different sensors mounted on UAVs. We then discuss SLAM techniques such as Kalman
filters and extended Kalman filters to address scene perception, mapping, and localization in UAVs.
The findings are summarized to correlate prevalent and futuristic SLAM and data fusion for UAV
navigation, and some avenues for further research are discussed.

Keywords: multimodal sensor fusion; sensor data fusion; simultaneous localization and mapping;
unmanned aerial vehicles

1. Introduction

With the emergence of 5G wireless systems, mobile edge computing, and cloud net-
works, unmanned aerial vehicles (UAVs) have gained attention in diverse applications [1,2].
Also known as drones, or remotely piloted aircraft systems (RPAS), UAVs contribute to
mobility transformation, and impact service delivery in many applications [3], such as
e-commerce delivery, remote surveying, providing cellular and wireless coverage, etc.
Dense urban environments, campuses, amusement parks, etc., can be easily accessed with
a UAV to geo-reference miles of data [4,5]. Effective communication between UAVs and
supporting infrastructure is critical to deliver these services, and this is partly accomplished
using perception, planning and control. However, unlike a vehicle trajectory or a robot path,
which are determined through pre-existing geospatial maps based on specified co-ordinate
systems, a UAV path (trajectory) lacks a deterministic map [6,7]. As the co-ordinates of a
UAV trajectory change rapidly and abruptly, a pre-determined 3D map of spatial coordi-
nates through which a UAV traverses is not feasible, especially in the realms of mountainous
terrains, hills, valleys, etc. [8]. Moreover, in applications such as smart cities, UAVs need to
interact with multiple ground-based entities for tasks such as energy-harvesting, reliable
ground-entity localization, in addition to communication [9,10]. The spatial co-ordinate
system used to locate a UAV needs to be compatible with the co-ordinate system that
locates the on-ground entity. However, having these co-ordinates in the same format may
be computationally expensive [11,12].
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UAV localization has been proposed using a multitude of technologies, including visi-
ble light communication (VLC). However, the deployment of light emitting diodes (LED)
based transmitters in UAVs is still an active area of research [13,14]. Global navigation satel-
lite systems (GNSS) are also used to measure the time of arrival (ToA) and received signal
strength (RSSI) of satellite signals to estimate the location of the autonomous UAV [15].
Based on multiple satellites, GNSS receivers can estimate a target-position through mul-
tilateration [15]. However, in the context of UAVs, this approach has issues caused by
variations in atmospheric conditions, signal interference, and inexpensive commercial
global positioning system (GPS) receivers causing poor accuracy. Moreover, GNSS re-
ceivers are affected by non-line-of-sight (NLoS) signal reception and are generally more
accurate for longer distances compared to estimation over short-distances [16,17]. By
adding specialized hardware infrastructure, such as differential GPS (DGPS) and real-time
kinematics-GPS (RTK-GPS), these errors can be reduced to some extent. Utilizing mmWave
for localization also yields better accuracy [18,19]. As GPS precision is in the order of a few
centimeters, it is an active area of research to capture objects larger than an inch in UAV
based mobile mapping systems [20], as well as to correlate mapping with UAV localization
using GPS [21].

Rather than relying on GPS or VLC for localization, a promising technique is simul-
taneous localization and mapping (SLAM) that uses environment mapping for real-time
UAV localization [22,23]. Unlike conventional mapping and localization, known as dead
reckoning, UAV mapping uses raw sensor data that is categorized based on the landmarks
it represents in order to provide visual reference and state estimation [24]. Therefore,
SLAM is envisioned as a potential technique to keep track of UAV positions in real-time
in GNSS-denied or GNSS-degraded environments [17]. Humans may interact with ex-
ternal surroundings and simultaneously acquire information from sound, visuals, and
other sensory inputs as well. Perception gives meaning to these sensory inputs, allowing
the information to be deciphered, and appropriate actions to be taken. For example, if a
perceived sound is that of a fire alarm, the action is to evacuate the building [25]. Similarly,
safe and optimal trajectory planning depends on environment perception and precise UAV
localization [26]. Perception relies on the types of sensors in the UAV and a constant stream
of data from sensors that is translated into meaningful information. Note that selecting
appropriate sensors for different weather conditions, traffic, applications, etc., will also
impact overall accuracy [25]. Many low-cost, off-the-shelf, consumer-grade sensors may
also be deployed in UAVs with sensor data fusion [27].

This paper explores data fusion for simultaneous localization and mapping in UAVs
using classical approaches, and analyzes some open problems in scene perception for UAVs
using SLAM and sensor data fusion. We answer the following questions pertaining to the
contribution of SLAM and data fusion in UAVs.

1. What are the fundamental operational requirements for fully functional UAVs?
2. What developments have been achieved in UAV localization in the last 10 years and

what are some promising research directions for the next decade?
3. How does SLAM achieve perception in UAVs? Is it feasible to attain human level

cognition and perception in UAVs using SLAM?
4. What are the most recent SLAM techniques applied to UAVs and promising directions

for further research?
5. Why is data fusion a promising technique for solving object detection and scene

perception in UAVs?
6. Which sensors are used for object detection and scene perception in UAVs and how is

multi-sensor data fusion and 3D point cloud analysis realized ?

The remainder of this paper is structured as follows. Section 1 introduced the context
of this work and highlights the theme of the paper. This sections outlines the central
questions pertaining to data fusion and SLAM in UAVs, that have been answered in the
subsequent sections. Section 2 discusses UAV applications and analyses why SLAM is a
critical requirement in many of these applications for safe and reliable UAV navigation.
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Section 3 explores scene perception in UAVs, commonly used sensors, and techniques to
perform multimodal sensor fusion. This section highlights the challenges of concatenating
the different nature and format of data gathered by various sensors to extract meaningful
information in the context of UAV path planning and navigation. In Section 4, the attributes
and building blocks of SLAM, namely Kalman filters (KF), extended Kalman filters (EKF),
and particle filters, are explored. The section also discusses the state-of-the-art Bayesian
and probabilistic approaches for sensor data fusion and SLAM. Section 5 describes visual
SLAM and UAV localization based on image registration, where distinction between static
and dynamic obstacles increases localization accuracy. This section also discusses visual
odometry (VO) to localize a UAV in a previously mapped region by state estimation and
drift induced in the photogrammetry based mapping process. Section 6 discusses some
open issues that impact the ongoing trends in the field and proposes some avenues for
future work. Lastly, Section 7 concludes the survey.

2. UAV Applications

A few applications and use cases of UAVs are depicted in Figure 1 and are briefly
mentioned below:

Figure 1. A few applications of UAVs.

• UAVs can be used to deliver e-commerce packages, medical equipment, medicine,
food and medication to remote or disaster affected areas [28,29], as long as the weather
is good and there is at least a small space to land [8].

• In agriculture and farming, UAVs enable field surveillance that allows farmers to
remotely monitor crops and vegetation ready for harvest and damaged by pest infes-
tation, and check frost levels in the fields [30]. UAVs can also be used for spraying pes-
ticides and are considered safer and more precise than manual spraying. Fruit farms
and orchard management with UAV image-processing yield better outcomes [31].

• UAVs are used to survey forests, wildlife, natural resources, and measure air pollution.
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• UAVs also find widespread applications in structural inspection, architectural survey-
ing and mapping, aerial photography, content-based remote-sensing, image retrieval,
and image localization [32–34]. Inspection of highway infrastructure and scheduling
of repairs have also been accomplished with UAVs [35].

• As UAVs can carry cameras to any difficult-to-reach region, UAVs find widespread
applications in search and rescue operations [36].

• Flying UAVs above a recreation or sports event allows dynamic shots to be captured
from varied angles that would otherwise not be possible [37,38].

• UAVs can play a vital role in the military for warfare purposes and border surveil-
lance [39]. Some military-grade UAVs can remain airborne for weeks and span ap-
proximately a million kilometers before recharging the batteries [39]. Such UAVs can
also assist fire fighters to locate hot spots that indicate fires and transmit a live video
via Wi-Fi or cellular networks.

• When embedded with miniaturized antennas and RF transceivers, UAVs are useful
to enhance wireless network coverage in areas of poor coverage where installing
communication towers is not feasible [40]. This feature is especially beneficial in
remote areas or areas affected by flood, earthquake or other disasters, as UAV based
radio access networks can be rapidly deployed in an ad-hoc manner [3].

Most of these applications require autonomous UAV navigation and precise localization—
an accurate map of the environment and information about where a UAV is at a given
time [41]. The current limitations, expectations and challenges in UAV data fusion and
SLAM are enlisted in Table 1. UAV environment is usually represented by using maps
that capture static and mobile landmark information such as buildings, roads, pedestrians
and vehicle traffic. UAVs also need to be aware of other UAVs in the 3D vicinity to
avoid collisions. Visual recognition systems (VRS) are embedded in most UAVs for image
classification, object detection, segmentation, and localization for basic ocular performance
and to actuate kinematic manoeuvres [42,43]. An effective navigation system enables a
UAV to know where the target landmark is and prevents it from wandering in a haphazard
manner and hitting an object [44]. Due to the dynamically varying nature of a UAV path,
the reliable perception of the environment and precise localization becomes a challenging
task. This task is accomplished by various sensors installed in a UAV to:

1. Know where a UAV is at a given time t, defined as localization [26]. The localization
problem can be resolved to some extent through short-term maps and trajectory
computed using VO [16]. For instance, a radio localization device installed on the
UAV can be paired with a GNSS receiver to provide a short-term trajectory and map.

2. Estimate the surrounding environment in terms of co-ordinates and images, defined
as map building. In SLAM, map-building is used for perception, planning, and
control [45], briefly described as follows:

• Perception is the ability of a UAV to discern meaningful information from its
sensors to understand the environment [46]. Both localization and map building
enhance a UAV’s perception. As an autonomous entity, a UAV needs to under-
stand its own state, location, the external environment, and the map. Perception
leads to safe UAV path planning [47].

• Planning involves making decisions to achieve the trajectory objectives [48].
• Control refers to the ability of a UAV to execute the planned actions. Due to accu-

mulation of errors, the accuracy of a map degrades with time. Visual odometry is
used to optimize the trajectory and map over a longer timestep for accuracy and
performance. In SLAM, the localization and mapping tasks are dependent [47].
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Table 1. Data fusion and SLAM in UAVs: Current limitations, expectations & challenges.

Relevant Aspect Currently Expected with SLAM

GNSS vs. SLAM
requirement

GNSS signal strength impacts localization. Automatic localization in dynamic
scenarios [26].

Low capabilities for path planning and
UAV trajectory estimation.

Enhanced path planning and UAV
trajectory estimation across dynamic
terrains [44,47].

Costly to provide wireless communications
and networking services.

SLAM and data fusion can facilitate UAV
network services in an ad hoc manner [2,3].

Application scenarios lack robustness. Robust UAV path planning in disaster relief
missions [28,29].

GNSS coverage interrupted in rural zones. SLAM and data fusion make use of
computer vision [40,49].

Computing resources needed for ground
target localization.

Dynamic localization and resource
provisioning in response to sensor
data [50,51].

UAV Applications

GNSS may not be available in natural
disasters and response scenarios.

With SLAM, only targeted locations are
considered for UAV trajectory [8].

GNSS is suitable for remote proximity
monitoring between fixed target locations.

Data fusion and SLAM support proximity
monitoring between fixed and mobile
targets using sensor-mounted UAVs [34].

Target landmark scaling is limited. SLAM offers incremental scaling of target
locations.

Visual tracking of target landmarks is
dependent on signal strength.

Diverse due to use of visual odometry,
photogrammetry, and sensor data
sequence [32,35].

Sensing and Analysis
Approaches

Data from all landmarks is collected. Data from only the targeted landmarks is
collected [31].

Massive bandwidth required for robust
cooperative positioning of UAVs.

Efficient use of bandwidth through robust
cooperative UAV positioning [52].

End-to-end scene perception. Feasible in cluttered GPS-denied
environment [53–55].

Depends on spatial orientation of target. Low-cost sensors useful in GPS-denied
environment [23,24].

Multi-UAV trajectory
planning Services

Complex task allocation and data fusion. Simplified collaborative SLAM [56–58].

Limited coordination in varying spatial
configuration.

Seamless and cognitive neighbour-aware
decision making [59,60].

Throughput maximization needs wireless
power.

SLAM and data fusion optimize edge
computing through synergy between vision
and communications [61,62].

Filter based UAV pose tracking. Refined and non-linear pose tracking [63].

Precise positioning is difficult. Precision under uncertainty and is error
aware [64].

Low accuracy photogrammetry. Dynamic and enhanced visual SLAM [65].

Data from UAVs hard to integrate. SLAM facilitates simplified sensor data
integration [66].

3D Characterization
Poor in low-texture environment. Better due to visual-inertial SLAM and

sensor fusion [67,68].

Camera-based target tracking. Spatio-temporal observations from
multiple sensors [20,69].
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Table 1. Cont.

Relevant Aspect Currently Expected with SLAM.

UAV Deployment &
Management

UAV swarms hard to track. Smart fusion of multi-sensor data for UAV
localization [17].

UAV placement a priori in large paths. Dynamic placement of UAVs for any
trajectory [19,21]

Integrated sensor fusion with GNSS.
SLAM and data fusion geo-reference target
landmarks, conserve computing resources
using 3D point-clouds [4,5].

Other Issues
Energy saving strategies are limited. Flexible energy saving strategies [70].

Complex and static control techniques. Flexible trajectory control techniques with
enhanced FoV [71]

3. Multimodal Sensor Fusion

Concatenating data from a multitude of sensors and estimating dynamic environments
is referred to as multimodal sensor fusion [72]. Due to inherent limitations, the sensor data
may have uncertainty which is handled using Kalman or extended Kalman filters, as well
as sequential Monte Carlo techniques to achieve the best estimate [73]. The UAV trajectory
and the environment map are referred to as the state [74]. When a set of longitude–latitude
pairs describe the altitude of a UAV corresponding to the geographical coordinates, noise
(N ) may be carried forward from one timestep to the next, degrading the accuracy of the
current estimation [75]. In order to use noisy input to estimate the state of a UAV under
uncertainty, evidential belief reasoning techniques such as the Dempster–Shafer theory are
used to assign beliefs to the data, as well as to the combination rules to fuse the sensor
data [76]. The Dempster–Shafer theory addresses conflicting and missing information by
improving the mapping of the dynamic environment that represents uncertainty in multiple
dimensions called the frame-of-discernment (FoD) [77]. For data fusion with constraints,
multi-sensor fusion inference from each sensor is subject to uncertainty. Another technique
known as fuzzy logic assigns a real number R ∈ {0, 1} to signify the degree of truth or
significance of the data [78].

In UAV mapping systems, the aerial data is translated into a coordinate system, and
the captured landmark data is georeferenced and assigned to maps [79]. The resulting
sensor data may be in the form of a point cloud, which is a dense collection of data points
taken from a LiDAR sensor to create a precise 3D representation of the landmarks in the
Cartesian coordinate system. Point cloud association by matching two independent scans,
also known as scan matching or point matching, creates a globally consistent map [80].
Iterative closest point (ICP) is used in point-to-point and feature-to-feature matching
methods to discover a linear transformation T = [∆s, ∆θ] that aligns two point clouds and
estimates the UAV localization [81]. Note that sometimes it is possible that the point clouds
from two scans are incorrectly matched to the same environment [82]. Hence, to improve
matching characteristics, a matching framework based on features such as frame-to-frame
measurements or maximum curvature points are used to sample the 3D landmark scans
for mapping [70].

UAV sensors are non-invasive and capture short and long range data with higher point-
cloud density and data fusion techniques. These are needed to maintain high precision
while projecting data into other coordinate systems [37]. Geo-referencing data and control
points use physical properties to capture variations in target features in the point cloud
data [70]. Furthermore, sensor data fusion considers a number of factors:

• The nature and format of data collected by each sensor [83]
• Sensor’s field of view [71]
• Synchronization times of various sensors [72]
• Data capture frequency [27]
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• Sensor resolution and data packet size [27]
• Data association and calibration to correlate data from different sources [25]
• Most appropriate fusion approach [72]

Multisensor data fusion is a delicate task. Sensors do not always produce rich and
dense data. Sometimes the data have redundancy that is compressed [84]. Fusion al-
gorithms store numbers and matrices in a memory [78]. A good fusion algorithm takes
advantage of the nature of the data that may also depend on the sensor characteristics. Note
that SLAM is the process of estimating a UAV’s starting location and gathering surrounding
data as the UAV trajectory is updated in real-time [85]. Diverse representations of mapped
data show consistent 3D landmark characteristics for localization and map fusion despite
differences in sensor fields-of-view [71]. Multiple sensors create intermediate maps at each
time step, and the UAV state is estimated by marginalizing past values [86].

As depicted in Figure 2, the data captured by the sensors will represent different
parts of the UAV scene. This is further processed to obtain complete global information
about the landmarks as well as the UAV trajectory [59]. Many sensors, such as RGB-D
sensors, cameras, and other vision sensors capture data in the form of images. The 3D laser
scanners and camera images are combined to predict object bounding boxes in the landmark
data [87]. Moreover, for terrain classification such as grass, trees, buildings, vehicles, traffic
lights, pedestrians, etc., the information related to the trajectory is shared among multiple
sensors. However, the inherent statistical difference between multiple images or sensor
data might lead to significant variations in reference maps and error in trajectories [88].
Temporal fusion generates a global map that represents the UAV navigation environment
through a scan that corresponds to a set of points measured during one sensor rotation [89].

Figure 2. Depiction of a multimodal sensor data fusion approach for UAV localization and mapping
to enhance environment perception with robust scene representation by capturing a global map of
visited landmarks.
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3.1. Challenges in Multimodal Sensor Fusion

Some challenges in multimodal sensor fusion for semantic scene understanding in
UAVs are,

(i) Impact of uncertainty and imprecise data: Each sensor operation is based on a partic-
ular data acquisition framework, which might differ based on the target phenomenon
of interest. Therefore, the weight of each sensor outcome should be different. Fur-
thermore, when merging data from different sensors, the fusion framework must
reduce the impact of uncertainty and imprecise data for a broader representation of
the environment [78].

(ii) Different data formats: Raw sensor data, with a multitude of formats, are input to
a fusion algorithm to obtain meaningful and relevant information. Therefore, the
datasets need to be formatted to a universal file format that can be read by the fusion
algorithm [90].

(iii) Edge/Cloud processing: While cloud computing requires relaying the data to the
cloud server for computing, the edge computing architecture enables the sensor
data to be processed at the source of information. The choice between edge or
cloud processing in UAV environments depends on latency, amount of data to be
processed, available bandwidth, overall cost, and the feasibility to deploy edge
servers in remote aerial locations. Using edge computing to locally process the
captured sensor data while using cloud for overall SLAM analytics is a preferred
approach [60].

(iv) Collaboration and coordination among multiple UAVs: Signal unavailability or
interference in an outdoor environment may corrupt the sensor data and induce
errors [60]. Therefore, it maybe required to coordinate sensor data from multiple
UAVs for optimum target coverage with low power consumption. This approach
will reduce the possibility of missing target landmarks as well as prevent redundant
coverage. Here, target coverage areas can be assigned to specific UAVs [61].

(v) Noise and Bayesian inference: Inference methods such as Bayesian probabilistic
fusion, evidential belief reasoning and fuzzy logic rely on probability distribution
patterns to counter the effect of uncertainty in the sensor data. Sensor performance is
affected by environmental factors such as changes in the magnetic field, temperature,
etc., that add uncertainty to the measured data [76,91].

(vi) Detecting overlap: Detecting overlap between individual sensor data can enhance
complementary or cooperative sensor data fusion and reduce redundancy. Data
from two or more sensors about the same target could be fused to enhance confi-
dence in the data. For example, the data pertaining to overlapping landmarks in
visual sensors are considered to be redundant while the data on the same landmark
captured by two sensors with different fields of view are considered cooperative [92].

(vii) Reliability issues: Often, the sensor data are not just uncertain, but could also
be unreliable. One sensor may offset the (dis)advantage of another sensor. As
one unreliable sensor may cause incorrect fusion results, reliability evaluation is
indispensable in UAV SLAM applications [93].

3.2. UAV Data Fusion Requirements and Different Sensors Used in Practice

The objective of SLAM is to compute the position and orientation of UAVs relative
to an initial reference position [94]. The low-cost consumer-grade sensors embedded in
commercial UAVs have low precision that makes them susceptible to external factors. These
sensors are often paired with other sensors for data fusion [67]. The sensor parameters
may also vary according to the UAV’s trajectory and velocity. As the UAV moves from
one location to another, data fusion allows a global map of the UAV trajectory, as well as
target landmarks, to be obtained without losing the previous mapped regions [95]. The
dynamic updating of landmark information is crucial for SLAM algorithms so that the
UAVs can perceive the challenging environment more vividly with enhanced environ-
mental representation. Multi-sensor data fusion enhances mapping and environmental
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representation with a large number of detection features [96]. Non-intrusive sensors such
as laser scanners, cameras, wheel encoders, and inertial measurement units (IMUs) can
detect movement in indoor environments where GPS localization does not work [97]. These
sensors measure indirect physical quantities rather than direct location. For example, a
wheel encoder measures the wheel rotation angle, while an IMU measures the angular
velocity and acceleration. A camera or a laser scanner measures the external environment
in specific ways [98]. However, mitigating the inaccuracy induced due to the distance
between the camera and the target location is a challenging task [23].

A UAV cannot be assumed to navigate safely in free space; mobile objects and obstacles
must be located in order to plan their paths safely. A UAV navigating in an unknown
region must detect free space and when new information becomes available in an unknown
area, it must be added to the fused data [53]. Different sensors, such as a 2D laser scanner
and stereo cameras, embedded in a UAV capture and merge data while also detecting
obstacles that might be hidden from the UAV [49]. The purpose of sensor fusion is to
accurately detect target landmarks in all types of terrains [25]. In the event of an obstacle
detection, some sensors cannot detect further as their field-of-view is blocked. Once two
stereo images are received, image rectification projects the images onto one common image
plane [99]. A dynamic environment is characterized by fast motion, vigorous rotation, and
low texture. A change in view angle is used to obtain a deeper understanding of the scene’s
3D structure [100]. For example, the fusion of LiDAR and RGB camera images enhances the
mapping process to represent the environment [50]. The localization methods use image
recognition to locate UAVs while simultaneously mapping the environment, perforingm
sensor fusion, and perforingm VO to estimate the UAV’s displacement [52]. In dynamic
UAV environments, the external environment is subject to certain constraints where the
accuracy of a localization algorithm is a function of whether those constraints are met in
practice or not [51]. To achieve adaptability, robustness, and scalability, extensive parameter
tuning is required for each sensor, and the number of parameters that need to be tuned in a
given scenario dynamically varies [101]. For example, a static image from one place may
be captured at a specific rate, while at another location, a continuous video stream might
be captured at a relatively higher rate.

The depth or distance between objects cannot be obtained using a single image. This
distance is critical for a UAV to perceive distances for scenes, establish a relationship among
the objects, and correlate them with their approximate size [102]. The RBG cameras capture
solid, non-reflective and non-shiny objects. Dark surfaces add noise to the RGB images
and closer objects occlude distant objects. If a camera moves to the right, the objects in
the image appear to move to the left. Moreover, closer objects move faster and distant
objects move slower, leading to pixel disparity [69]. A big far away object, and a close small
object may appear to be of the same size in an image due to the perspective projection
effect [69]. Place recognition allows the UAV to detect previously visited locations and
compute relative measurements [102]. As the camera scale factor leads to the same size
images of different target landmarks, UAVs need to distinguish object sizes to determine
the actual size of those objects to distinguish them [102]. Furthermore, in the presence of a
shadow in an image, UAVs need to distinguish the distance and size of an object from a
corresponding shadow. Recovering the 3D scene structures such as distance and size of the
objects from constantly varying the camera’s view angle and to simultaneously estimate
UAV motion is simplified by using LiDAR point cloud processing [80,103].

Some commonly used sensors in UAVs along with their key characteristics are radars,
inertial measurement units (IMU) and vision sensors. Typically, some of the commercial
short-range radars operate at 24 GHz and detect obstacles up to 100–150 m away. Long-
range radars operate at 77 GHz and detect obstacles as far away as 250 m in different
environmental conditions. In addition, they generate less data and require less comput-
ing power [104]. An IMU sensor measures linear and angular motion with the help of
gyroscopes and accelerometers [97]. Once connected to a UAV, they provide a continuous
stream of data related to acceleration along the three principal axes and angular velocity
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of the UAV. Errors along the x and y axes and how frequently data can be collected are
limitations of IMUs [98].

A vision sensor detects objects by their texture, color and contrast. It can be used in
UAVs to detect traffic lights, pedestrians, other vehicles, and lane markings. A perspective
camera covers a 30◦–45◦ horizontal field-of-view while some UAV applications demand
that the cameras cover a wider range [105]. A camera may be of a monocular (only one
camera), stereo (two cameras), RGB-D or fish-eye type. The RGB-D cameras can also
measure the distance of the camera from the target landmark for each pixel [106]. In SLAM,
multiple cameras are used, which are different from single-lens reflex (SLR) cameras that
are more common in image processing [107].

(a) Monocular Camera: The monocular camera is simple, cost-effective, and easy to
operate. The camera projects a 3D environment in a 2D form due to its 6 degrees of
freedom (DoF) movement [77,89,108]. However, accuracy of the obtained map is
based on the uncertainty associated with 6-DoF rigid body transformations [109].
The depth can be estimated from a single image but it leads to scale ambiguity as a
result of translational movement. The collection of spatial points is calibrated with
the intrinsic and extrinsic parameters. In a given set of points, point A and point B
may be connected, while point B and point C may not be [67]. Once the distances
are known, the 3D scene structure can be retrieved from a single frame to eliminate
scale ambiguity. Monocular cameras estimate camera position, illumination changes,
and scene structure using per-pixel depth estimates [110]. The depth estimate is
achieved by comparing the latest frame with the past frames or by comparing the
input image with the updated map [111].

(b) Stereo Cameras: Stereo and RGB-D cameras measure the distance between objects
and camera to overcome the shortcomings of monocular cameras. A stereo camera
comprises multiple synchronized monocular cameras [112]. Each pixel’s 3D position
is calculated from the physical distance from a baseline [68,113]. Stereo cameras
require computational power to calculate image depth, stereo matching, and pixel-
disparity to generate a real-time depth map. Depth estimation for stereo cameras
compares images from multiple left and right cameras. Stereo cameras are used
both indoors and outdoors, but are limited by baseline length, camera resolution,
and calibration accuracy [102].

(c) RGB-D cameras: These are superior since they can measure distance and build a
point cloud from a single image frame. By combining VO and LiDAR sensors, depth
information provided by RGB-D cameras can be enhanced [69,102]. RGB-D cameras
suffer from:

• Narrow measurement range [102].
• Susceptibility to noisy data [69].
• Small field of view [71].
• Susceptibility to interference [114].
• Inability to detect transparent material.
• Low accuracy in 3D reconstruction and scene understanding in dynamic, un-

structured, complex, uncertain and large-scale environments [115].

(d) Fish-eye camera: This is a wide-angle perspective camera used to create a fish-eye
view. These cameras cover up to 120◦–180◦ horizontal field-of-view. However,
radial lens distortions cause nonlinear pixel mapping, making image processing
algorithms more complex [116].

(e) Rolling shutter cameras: These are dynamic vision sensors which produce up to
one million frames per second [117]. These integrate camera videos, motion sensors
(GPS/IMU), and a 3D semantic map dependent on the environment. Edges, planes,
and surface features of the target landmark can be captured by these cameras deploy-
ing enhanced feature dependencies and tracking joint edges. In large-scale scenarios
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such as in smart cities, rolling shutter cameras that capture geometric features such
as points, lines, and planes are used to infer the environmental structures [11].

(f) LiDAR cameras: In SLAM, LiDAR or range-finding sensors generate mapping data
based on visual feature matching and multi-view geometry to find overlapping
points amidst dense data. To recognize already visited places in landmarks, compact
point cloud descriptors are compared between two matching points [118]. LiDAR
cameras are used for submap matching as LiDAR scans and point-clouds can be
clustered into submaps [119]. LiDAR has sparse, high precision depth data while
cameras have dense, but low precision depth data [105]. However, LiDAR does not
capture images, and is not well suited to sense see-through surfaces or underwater
small objects [120].

In addition to stereo cameras and LiDAR, the use of submaps enables SLAM to account
for loop closures and redundant data, as well as minimize the error accumulated by local
SLAM to produce accurate point clouds [81]. A point cloud is a vector representation of
feature extraction for the post-processing of raw data to produce usable results [121]. The
data appears as a collage of different point clouds from different sensors to measure distance,
area, and volume of an element in 3D. The disparity map between the images is computed
for each radar, LiDAR, and camera sensor to detect moving objects [120]. UAV-based
mobile mapping SLAM systems use LiDAR mounted on UAVs to scan confined spaces.

Tracking and combining multiple sensor modalities in mobile mapping systems needs
integrating flat cameras, 360◦ wide angle cameras, IMUs, visual sensors, etc. This is for
positional trajectory alignment, estimating UAV position changes and to update positions
relative to features [98]. In addition, data from external sensors such as GPS or 3D Li-
DAR can also be used to map and navigate using coordinate points [16]. However, as
IMU and VO sensors drift over time, multiple fusion instances are required until a de-
sired accuracy is achieved to map and navigate a UAV simultaneously [97,118]. Note
also that some applications combine visual and thermal cameras with IMUs in visually
degraded environments.

4. Simultaneous Localization and Mapping (SLAM)

As mentioned in the previous section, the objective of data fusion is to generate a
meaningful set of information I from the sensor data vector dn,j. This information I is
processed through a set of algorithms known as SLAM to estimate the location of the
UAV in a given environment and the environment itself. This is done based on the raw
data obtained from the UAV sensors [78]. The SLAM tracks the UAV path and maps
landmark locations using a point cloud [70]. The search area on the reference map expands
dynamically depending on failed or correct landmark matches [94] as depicted in Figure 3.
The symbols and parameters used in the paper are briefly described in Table 2.

Table 2. Definition of symbols and parameters used in the paper.

Symbol Definition

q = [q1, q2, · · · , qn] UAV trajectory at different time steps
qn = [qx, qy, qz, θ]Tn qx, qy, qz represent UAV position along the three axes and θ is the angle

qn
∆
= {qn, l1, . . . , lm} Approximate trajectory while capturing landmarks data l1, . . . , lm

q1 = [q10, q11, · · · , q1n] Data for UAV 1 from time t = 0 to t = n
L = [l1, l2, · · · , lL] Gaussian distributed landmark data (state variables) at time n
I Set that contains information about UAV trajectory, position, and landmarks
m Number of landmarks in a scene
dn,j Sensor data
ψ(n) = [ψ1, ψ2, · · · , ψn] UAV trajectory; describes how q changes from time step n− 1 to n
ψ1, . . . , ψN Position in the vector space; n dimensional vector for feature detection
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Table 2. Cont.

Symbol Definition

Nn Noise in sensor data
f (·) Function that describes the SLAM process
P(qn | q1, N1:n, d1:n) Data from 0 to n; estimates the current state distribution at time n
P(dn | qn) Estimated likelihood of sensor data given a UAV trajectory
P(qn | q1, N1:n, d1:n−1) Prior estimated probabilities of UAV localization
K classes, K1, K2, · · · , Kn Sequences of UAV trajectory and odometry dataset
T F Timeframes at which landmark data is collected/discarded
Rx ×Ry ×Rz Data captured by RGB cameras is pixel information of size Rx ×Ry ×Rz

s̃ Distance between the landmark point and the UAV
∆s Distance traversed between coordinates s1 = [s1x, s1y, s1z] to s2 = [s2x, s2y, s2z]

θ◦ The orientation difference between two consecutive sensor scans
∆θ◦ Error in the estimated movement between two frames
φ◦ Angle between the landmark point and the UAV
T = [∆s, ∆θ] Transformation that learns changes in s and θ

D1, D2 Sensor data
L1, L2, L3, L4, L5 Five landmarks in a scene

[L(d1)
1 , L(d1)

2 , L(d1)
3 , L(d1)

4 , L(d1)
5 ] Set of sensor data that captures landmark data from the observation space∥∥∥e(d1)

14

∥∥∥2
,
∥∥∥e(d2)

21

∥∥∥2 Relative error from sensor data d1 and d2

Ĉn−1 Position covariance
Sij(q) Sparsity matrix

Figure 3. From sensor fusion, the most significant and relevant data at each timestep are taken in
discrete timeframes for simultaneous localization and mapping (SLAM).

4.1. SLAM in UAV: Motivation and Requirements

SLAM begins with raw data collected from various sensors where a UAV, or a network
of UAVs, mounted with sensors supposed to move in an unknown environment [2]. A
UAV requires path planning, path following, trajectory control, and motion tracking based
on odometry readings [47]. Data collection at different times and locations, along with
mapping these instants of time, is a continuous process. Data sampling converts this to a
set of discrete timesteps 1, 2, · · · , n. As shown in Equation (1), the positions based on the
trajectory of a UAV are denoted by q. The map comprises several landmarks and at some
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timesteps, the sensors can see a part of the landmarks and record their observations [122].
Let there be L landmarks in the map denoted by l1, l2, · · · , lL [123].

1. The UAV trajectory describes how q as q1, q2, · · · , qn changes from time step n− 1
to n [124]. The position q consists of the translation on the three axes and the rotation
around the three axes, having six degrees of freedom, and a vector in R6. The vision
sensor variables are usually represented as a vector in R6 and the m landmarks as a
vector in R3m. A photograph of the landmarks in space is projected using the camera’s
projection model, utilizing state estimation and distortion estimation [74].

2. The sensor observations detect specific landmarks lj at trajectory position qn [94].
A group of point clouds can fall in the same category if the resolution of the sensor
is less than φ◦, which is the angle between a landmark point and the UAV [102].
Considering all the sensors of a 360◦ rotation range, the depth values can be stored
into a vector, where each possible category is represented by the elements in the vector.
Two 1D vectors from sequential sensor scans can be concatenated to provide input
for the fusion algorithm. For instance, an image of size Rx ×Ry ×Rz represents an
acquisition of the sensor that detects and extracts the features in the surrounding
environment [53].

3. SLAM as a state estimation problem estimates the internal, hidden state variables
from the sensor data. The UAV trajectory and the sensor observations may be linear
or nonlinear and the noise N in sensor data may be Gaussian or non-Gaussian [73].

qn = f (qn−1, [ψn], Nn), k = 1, · · · ,K (1)

where [ψn] = [ψ1, ψ2, · · · , ψn] is a vector that represents the input sensor data at time n,
Nn is noise at time n, and the function f (·) describes the SLAM process [96]. The noise
Nn at each timestep is random and is a practical assumption that makes f (·) a stochastic
process. If a UAV is instructed to move forward 10 cm, it may move by 9.8 cm or 10.2 cm. As
error is accumulated, the UAV’s estimate of the position variance increases the uncertainty
about its location. For a UAV in space, its position is described by the x, y, z coordinates
and an angle, i.e., qn = [qx, qy, qz, θ]Tn , where qx, qy, qz are positions on three axes and θ
is the angle [108]. As shown in Equation (2), the change in position and angle between
two timestamps is ∆qn = [∆qx, ∆qy, ∆qz, ∆θ]Tn . From Equation (2), for total timestamps
n, qn = [qx, qy, qz, θ]Tn is given by:

qx
qy
qz
θ


n

=


qx
qy
qz
θ


n−1

+


∆qx
∆qy
∆qz
∆θ


n

+Nn (2)

The UAV trajectory can be represented by weighted samples, and a map is computed
analytically over a smaller trajectory in the submap, where each landmark is indepen-
dent [119]. For m landmark locations, n filters compute UAV position distribution. For
each of the m landmarks, the captured sensor data ψ = (ψ1, ψ2, . . . , ψm) are an m dimen-
sional vector with feature detection and feature matching to estimate the UAV positions
over time. The labeled data in already visited places based on scene geometry and re-
projection error are used to avoid loop closures [20]. Considering the image sequences
in the sensor input in the aerial scenario, each sample is assigned an importance weight
w(i) = P(q(i)n | d1:n, N0:n). The samples with low importance weight are replaced by sam-
ples with a higher weight [25]. Each sample updates the observed landmarks to determine
the spatial relationship [125]. For example, if the UAV is mounted with a sensor that observes
a 2D landmark, it measures the distance s̃ between the landmark point and the UAV, and
the angle φ. If the landmark is at position lj = [l1, l2]n, the UAV trajectory is qn = [q1, q2]Tn ,
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where [q1] =
(
qx1 , qy1 , qz1

)
, [q2] =

(
qx2 , qy2 , qz2

)
, · · · , [qn] =

(
qxn , qyn , qzn

)
. If the ob-

served data is dk, j = [dk, j, φk, j]
T, then,

[
dk, j
φk, j

]
=

 √(
l1,j − q1, n

)2
+
(
l2,j − q2, n

)2

arctan
( l2,j − q2, n

l1, j − q1, n

)  + Nn, j (3)

The Equation (3) describes how SLAM addresses the problem of estimating the UAV
trajectory q and landmark mapping l. The mapping and localization are done in the
presence of noise N in the sensor data d [75]. When the UAV sensors capture landmark
data lj at time n and UAV trajectory position qn, the landmark pixel information is Gaussian
distributed with the distribution function dn, j, d(·):

dn, j = d
(
lj, qn, Nn,j

)
, (n, j) ∈ I (4)

where, Nn, j is noise and I is a set that contains the information of the position, UAV
trajectory and the landmark data [126,127]. Since there are various sensors, the observed
sensor data d may have different formats. The first-order Markov property assumes that
the state at time n is only related to the state at time n− 1 and is not related to the earlier
states. A sensor having a resolution of ∆θ◦ may result in K possible classes of point-cloud
data [80]. Out of these K classes, K1, K2, · · · , Kn sequences of UAV odometry dataset
assists in estimating the UAV trajectory. During this sequence, the 2D sensor may not detect
any obstacle and predict safe trajectory, with increments in the translational error for all sub-
sequences K1, K2, · · · , Kn [119]. The error score is the mean of all sub-sequence errors [47].
With the ground truth for each frame inferred from multiple sensors, the average rotation
and translation error is dependent on timeframes T F where it is harder to estimate the
UAV trajectory [26,47]. An approximate variation of ±θ◦ between two timeframes T F 1
and T F 2 in the interval ±t milli-seconds can deviate a UAV off-trajectory.

In a UAV with a set of 2D sensors, a relatively small point cloud may be sufficient for
real-time extraction of sensor data to learn the UAV localization. Adding another sensor
such as a monocular or a LiDAR camera increases the accuracy by adding images to localize
the UAV where many objects are detected [128]. The sensors learn the geometric features,
the appearance, and visual context of the landmark scenes in unknown environments.
Each observation is a 360◦ set of points measured during one sensor rotation, and the
SLAM algorithm needs to predict the transformation T = [∆s, ∆θ], where ∆s represents
the UAV distance traversed when the UAV coordinates change from s1 = [s1x, s1y, s1z]
to s2 = [s2x, s2y, s2z] and ∆θ is the orientation difference between two consecutive sensor
scans for UAV states [75]. The displacement of the UAV relies on the mapping of states to T
= [∆s, ∆θ] at time n and the position qx, qy, θn of the UAV [74,129]. With a 2D camera image,
the incremental change in UAV position along the axes is qx = qxn−1+∆s sin(θn−1), qy =
qyn−1+∆s cos(θn−1). The Equation (5) represents that the local coordinates of the UAV and
the landmark are accumulated to estimate the global position of the UAV at time n. The
correlation between the ground truth and the estimated translation and rotation errors
varies the position and landmark variables. If qn is all the unknowns at time n that contains
the current UAV position and j landmarks, then:

qn
∆
= {qn, l1, . . . , lm}. (5)

At time n, the data from 0 to n estimate the current state distribution [75]:

P(qn | q1, N1: n, d1: n). (6)

The previously collected data is the reference data for UAV localization and mapping.
The subscript 1 : n represents all the data from time 0 to time n, dn represents the sensor
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data at time n [83,84]. qn is related to the previous states qn−1, qn−2. For state estimation,
Bayes’ rule implies [72]:

P(qn | q1, N1: n, d1: n) ∝ P(dn | qn)︸ ︷︷ ︸
Estimated
likelihood

P(qn | q1, N1: n, d1: n−1)︸ ︷︷ ︸
Prior estimated
probabilities

. (7)

The current state qn is estimated based on the past states. The effect of qn−1 is
expanded according to the conditional probability of qn−1 moment [96]:

P(q1, N1: n, d1: n−1) =
∫

P(qn | qn−1, q0, N1: n, d1: n−1)P(qn−1 | q0, N1: n, d1: n−1)dqn−1. (8)

4.1.1. Single-UAV SLAM

The state variables of the landmarks L = [l1, l2, · · · , ln] of a map are acquired by the
moving UAV [130]. When a priori map and localization information are not available,
positioning systems use SLAM to explore unknown environments. SLAM maximizes the
posterior of the mapping data and the corresponding UAV state [131] by either:

• filtering: updating the current state at each time step given the new observation (Using
the past and future information to update the current state is called batch filtering) [95].

• smoothing: optimizing the whole trajectory based on the past observations (Using only
the past information to update the current state is called incremental smoothing) [95].

SLAM for a single UAV finds the solution of the maximum a posteriori (MAP) based
on prior distribution obtained by UAV odometry over the trajectory q. The posterior
distribution obtained with Bayes’ theorem as given in Equations (7) and (8) is the SLAM
likelihood given a certain prior distribution of the UAV motion state [75]. Enough memory
is required to maintain the trajectory of the UAV in a given state [59]. The updated UAV
states indicate where the UAV needs to be at that moment in order to arrive at its destination
precisely in the shortest time [60].

4.1.2. Collaborative or Multiple UAV SLAM

Many applications need multiple UAVs [33], as depicted in Figure 4. Here, the com-
plexity of the task is shared by multiple UAVs in a given space. To estimate each UAV’s
position, collaborative SLAM (C-SLAM) and multimodal sensor fusion assist in planning
navigation trajectory and mapping an environment by combining the data collected by
each individual UAV [5]. C-SLAM, also known as multi-UAV SLAM, can be used for
collaborative perception of the UAV environment to enable autonomous control and de-
cision making in unfamiliar and GPS-restricted environments. C-SLAM can be applied
to UAV systems by building a collective representation of the environment and sharing
situational awareness [56]. The network of UAVs can reduce the necessity for centralized
computation and large servers [132]. Each UAV benefits from other UAVs that leads to
accurate localization and mapping [57]. UAVs share data to detect if other UAVs have
visited the same area, and then estimate an alignment and overlap on the map [94,128].

One example of C-SLAM under communication constraints is evaluated in the DARPA
subterranean challenge where no prior information is available about the operating envi-
ronment [133]. In DARPA mapping applications, C-SLAM is envisioned as a useful tool
for two UAVs. UAV state estimation is combined with its surrounding environment in
which a moving UAV collects data simultaneously through embedded sensors. The sensor
calibration determines the accuracy of the UAV orientation and position [46]. The environ-
ment map includes landmark coordinates and orientation, and its accuracy is determined
by sensor calibration requiring embedded sensors to continuously collect data [72]. The
full mapping data sent to every UAV leads to redundancy, and a subset of UAVs can be
designated for computation. C-SLAM solves the estimation problem on each UAV [56].
Each UAV computes its own local map and uses partial information from other UAVs as
well as inter-UAV measurements to achieve a local solution. Over several iterations, the
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UAV’s local solution converges to a solution consistent with the global reference frame [74].
These techniques mitigate communication and computation bottlenecks. All UAVs could
send their sensor data directly to a single unit for feature extraction and communicate
for data association and state estimation to find links and relative measurements between
the individual maps [54,55]. If from time t = 0 to t = n, the UAV traverses from q0 to
qn and collects landmark information l1, · · · , ln as for UAV 1, q1 = [q10, q11, · · · , q1n] and
for UAV 2, q2 = [q20, q21, · · · , q2n], then the individual and shared landmark estimates
and odometry measurements are combined when a UAV transitions from one time step to
the next.

Figure 4. Comparative depiction of single-UAV SLAM and C-SLAM with one landmark.

Some advantages of C-SLAM over single-UAV SLAM are as follows:

• Multiple instances of single-UAV SLAM position lead to challenges related to spatial
configuration over time dependency on the number of UAVs [134].

• Robust to the loss of individual units [2].
• C-SLAM is more efficient as the number of UAVs increases coordination, communica-

tion range and spatial distribution [132].
• The bandwidth available in 5G networks allows information to be continuously and

seamlessly transmitted by the UAVs as they move and their trajectory changes [61].
• Distribution of tasks reduces the overall computational cost of C-SLAM [58].

One positive aspect is that the compact representations with high-level semantic
features communicate only the object labels and positions to other UAVs [115]. In full
connectivity or multiple-hop connectivity, each UAV can directly communicate with other
UAVs at any time, or only share information with one UAV at a time [62]. When all the
UAVs’ initial states can be estimated, the C-SLAM problem is an extension of the single-
UAV problem and includes UAVs’ states as well as inter-UAV measurements that link
multiple UAV maps [75]. As a result, each UAV’s neighbors need multiple neighbor-to-
neighbor transmissions to reach all UAVs [5,61]. When two UAVs meet, the two maps
are transformed according to their relative positions [94]. In non-consecutive timeframes,
the UAV trajectory compares positions of several UAVs to draw connections between
their local maps and their current relative locations [5]. The disparity map between the
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images is computed for obstacle detection. This is done by accumulating the pixels with
the same disparity to provide a representation of the geometric structure, which will
enable estimation of the ground plane pixels [94]. Classifying the landmarks through pixel
positions, by separating the pixels that are over a ground threshold height, projects the
pixel values in the image rows and columns [69]. Geometrically matching consecutive
images re-localizes and reduces estimation error caused by odometry drift [135]. Semantic
information varies between image sequences taken during day and night, or in different
seasons. SLAM needs high data rates up to 1 Tbps and a latency less than 1 msec. Massive
computation powers at the device level are required in UAVs to achieve sub-centimeter
level accuracy of positioning and to construct 3D maps without prior knowledge [107].

4.1.3. Limitations of C-SLAM

The relative position estimate of UAV trajectories depends on the starting locations
and orientations of each UAV. For alignment among multiple UAV trajectories, a prior
distribution formulates C-SLAM as a maximum likelihood estimation (MLE) problem [56].
If each UAV performs some computation, a central node is required to merge the individual
data. C-SLAM aims to achieve global perspective from the local perspectives of single-
UAV SLAM from sparse or dense maps [134]. The precise topological localization that
makes maps interpretable and actionable depends on the number of UAVs involved, the
networking limitations, etc. [94]. When the images are not in chronological order, or there
are completely unrelated images, the data at the next timestep add noise and uncertainty
to the previous timestep [46,99].

C-SLAM considers the global perspective for the position and map of each UAV to
estimate the shared global reference frame [50]. When a UAV can partially see a landmark
in one location, then qn is not known for all lj. However, each UAV may estimate a set of
landmarks using different coordinate systems. The shared positions of observed landmarks
need to be in a consistent data format within neighboring UAVs to gradually improve
the estimates from the neighbors’ latest data [52]. If the local reference frames are in
different coordinate systems, then estimating the global reference frame using C-SLAM to
collectively perceive the environment needs further pre-processing [62].

UAV localization through sensor image registration maps the information, and conflict
arises when two images are alike. To differentiate the states, it is important to identify
missing information or conflicting information [74]. Environment mapping using sensors
is a map representation that periodically updates the state. Computing the posterior
probability of the map based on sensor measurements and deciding how and where to
store sensor data is critical for C-SLAM [84]. Prediction calculates the prior probability
distribution based on the posterior probability computed one timestep before the state
transition [75]. When the UAV returns to a previously explored location known as the
loop-closure [136], data association recovers the relative spatial transformation between
two timeframes T F 1 and T F 2 [74]. Frame-to-frame motion provides a local estimate of
the UAV trajectory, but gradual accumulation of error over time causes inconsistencies.
Emphasizing the depiction in Figure 4, Table 3 compares the features and requirements of
single-UAV SLAM and C-SLAM. The expectations and challenges in single-UAV SLAM
and C-SLAM for UAV applications explore how single-UAV SLAM or C-SLAM can be used
to capture the stationary or moving objects in 2D or 3D.
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Table 3. Expectations and challenges in single-UAV SLAM and C-SLAM for UAV applications [56–58,131].

Single-UAV SLAM Multiple-UAV SLAM or C-SLAM

Usually one UAV is in action in a given sce-
nario, making it suitable for customized appli-
cations.

The number of active UAVs in an application
may change dynamically based on resource
demands as ad-hoc topology can be created
and deployed.

The data captured by all the sensors mounted
on a single UAV may be critical for fusion.

Targeted data from selected sensors form spe-
cific UAVs may be sufficient for fusion.

As shown in Figure 2, only one UAV is assigned
to all the landmarks in a scene.

Varying number of UAVs can be assigned to
each landmark.

The available bandwidth is usually fixed and
limited. This becomes a critical limitation in
single UAV SLAM applications.

As shown in Figure 4, efficient allocation and
use of available bandwidth is possible.

One possible advantage in some applications is
that the uncertainty factor induced by multiple
UAVs is alleviated to some extent. However,
uncertainty in sensor data still persists.

C-SLAM can lead to precise sensor data from
multiple UAVs, but uncertainty may be in-
duced due to multiple UAVs.

As depicted in Figure 3, the amount of data
gathered by a sensor is limited by the trajectory
of one UAV.

C-SLAM allows diverse data collection through
multiple UAVs for map construction over the
target landmarks.

Single-UAV SLAM does not need load balanc-
ing for resource provisioning among UAVs.
Single-UAV SLAM also needs less computa-
tional capabilities for data-offloading across
edge/cloud platforms.

C-SLAM requires automatic load balancing
and dynamic topology reconfiguration. As
shown in Figure 4, C-SLAM also requires ad-
ditional networking functionalities for collabo-
ration among multiple UAVs and cloud infras-
tructure.

Due to limited FoV, the sensors may intermit-
tently not be able to capture data along one or
more dimensions unless the orientation of a sin-
gle UAV allows sufficient FoV. Consequently, a
target landmark may be viewed from only one
angle at a time.

The missed data by one UAV may be compen-
sated over a series of timesteps by other UAVs
for a large number of landmarks. Furthermore,
a target landmark can be viewed from multiple
angles.

Due to limited battery power, single-UAV
SLAM may not be feasible in large trajectory
scenarios.

C-SLAM may benefit from dynamic UAV place-
ment based on least-congested or shortest tra-
jectory for each UAV, thus optimally utilizing
available battery power.

The operational costs may be reduced due to
less equipment.

More operational costs due to infrastructure
requirements.

Manual control and restoration may be needed
in case of UAV failure.

Automated and flexible restoration techniques
can be feasible in case one or more UAVs fail.

4.2. Search Space Reduction in Linear Systems Using Kalman Filter

When the Markov property is assumed, the current state is only related to the previous
moment. The estimation of the posterior at time n only depends on the posterior at time
n− 1 [137]. Assuming Markov property, let the posterior state estimation at time n− 1
be denoted by q̂n−1 and its covariance Ĉn−1. To determine the posterior distribution of
qn based on the observations at time n needs to distinguish the prior and the posterior
variables [63]. In featured-based methods, an input image is abstracted to a group of
features sequentially tracked to estimate the state of the UAV. The image features represent
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landmarks in the map [73]. As represented in Equations (9) and (10), the Kalman filter
updates the full state vector with the UAV position and the feature locations, assuming
the states earlier than n− 1 are not related to the nth state [138]. The linear system can be
solved using Kalman filters (KF) and the nonlinear non-Gaussian system can be solved
using extended Kalman filters (EKF), where the discontinuities in scanning landmarks are
filtered and corrected [139].

P(qn | qn−1, q0, N1: n, d1: n−1) = P(qn | qn−1, Nn) (9)

P(qn−1 | q0, N1: n, d1: n−1) = P(qn−1 | q0, N1: n−1, d1: n−1) (10)

For Nn to be independent of qn−1, the state distribution at time n− 1 is used to derive
the state distribution from time n− 1 to time n, to estimate and update the current state
incrementally [140]. Under the assumption that the states and noise are Gaussian, for
Kalman filters, the estimated pose, mean and uncertainty in covariance can be represented
as [73]: {

qn = Anqn−1 + qn +Nn
dn = Bnqn +Nn

n = 1, . . . , N, (11)

where A and B are constants that make a matrix Hessian and sparse. The sparsity property
optimizes the computational complexity required for maximum posterior probability
estimation and unbiased state estimation [141].

4.3. Search Space Reduction in Nonlinear Systems Using Extended Kalman Filters

A filtering technique widely used to solve nonlinear tracking problems is the extended
Kalman filter (EKF). EKF are Gaussian filters that are based on local linear approximation
of Kalman filters [73]. This linearization may lead to inconsistencies under noise. An
advantage of EKF is that the covariance matrix does not require additional computations
for feature tracking or active trajectory exploration in uncertainty [95]. A covariance matrix
is required to assume filters with smooth variables. Linearization error that arises from
the marginalization of past variables requires new links among the remaining variables.
Note also that the elimination of state variables leads to reduced interdependence between
landmark variables [51,142].

Increasingly coupled variables require more computation with less marginalization
when the landmark variables are sparsely connected [60,79]. Smoothing techniques increase
SLAM accuracy when a UAV revisits the past locations that are added to the latest estimate.
Sparsity reduces the amount of data exchange during estimation to continuously update
global SLAM [143]. Gaussian elimination requires an exchange of dense marginals, and
the computational complexity varies in a quadratic manner based on the number of inter-
UAV measurements for convergence in noiseless scenarios. Sparse semi-definite relaxation
provides exactness in moderate noise. Meanwhile, the majorization-minimization technique
enhances the accuracy of SLAM estimation in the presence of outliers; known as perceptual
aliasing when two different places are inferred as the same [144]. In EKF based SLAM, the
required number of computations also increases in a quadratic manner with the number of
landmarks [66]. Outlier mitigation leads to mutually consistent expectation maximization of
inter-UAV measurements. Pairwise consistency maximization eliminates loop closures [136]
by detecting overlaps where the viewpoint and lighting conditions are similar, as they
depict the same place viewed by the UAV at the same time. The UAV motion and landmark
observations in SLAM are usually nonlinear functions [145]. A UAV capturing images is
approximated by non-linear models and the sensor measurements are also nonlinear.

The steps involved in the search space reduction in nonlinear systems using extended
Kalman filters are outlined as follows:

• The UAV position q̂n−1 and the position covariance Ĉn−1 are predicted first [140].
• The EKF method assumes Markov property, i.e., the nth state of a UAV is related to

observations and state at time n and not on time n− 1. For two adjacent frames in
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VO, if the current frame is related to data before n− 1, then the EKF requires more
computations [51,146].

• A large point-cloud depends on the non-linearity of the observations and the linear
approximation is valid in a small range [70,80]. For multiple submaps [119], the EKF
filter is linearized at every q̂n−1 that leads to nonlinear error in EKF [147]. Estimation of
spatial uncertainty in the UAV trajectory uses EKF to estimate the mean and covariance
of the states [74].

• The EKF stores the state variable’s mean and variance in the memory. If the number
of landmarks is significantly larger than the UAV trajectory positions [148], then the
storage grows in a quadratic manner with the number of states. As the covariance
matrix is also stored, EKF SLAM is not suitable for large-scale scenarios to estimate q̂n
from previous n− 1 observations. The complexity increases further when it is required
to simultaneously update the state vector of UAV maps based on the covariance Ĉn−1
of landmark m [146].

• Incorrect observations added to EKF cause it to diverge [146]. EKF lacks an outlier
detection mechanism, which causes the system to diverge when there are outliers.
Outliers in visual SLAM can match a UAV to the wrong target. Lack of an outlier
detection mechanism makes the system unstable [66].

As depicted in Figure 5, a question arises that a UAV can return to its starting position
in GPS-enabled or GPS-denied environments? If a UAV cannot use GPS, it may follow
previous paths or take a new route to return to its starting position. Will it pass through
previous locations or will it take a new path, and how will outliers be dealt with [22,23,47]?
In recursive estimations, drift occurs when errors are accumulated over time. The error in
prior estimations has a significant impact on the new estimations [92]. EKF is effective when
computing resources are limited or the state dimension is relatively small [139]. Another
variation known as the unscented Kalman filter (UKF) aims to address challenges related
to consistency, filter convergence, and data association in SLAM [66]. The UKF avoids
linearization through mean and covariance parameterization [95] and assigns observations
to landmarks using maximum likelihood. The UKF does not represent the uncertainty and
effect of an observation from data association. Batch gating reduces the effect of wrong data
association by exploiting the geometric relationship between landmarks. Two landmarks
that are far from each other are weakly correlated by dividing the map into smaller submaps
and assigning a smaller UKF to each submap [119].

As a proposed solution in robotics and autonomous vehicles, particle filters comple-
ment the SLAM-based navigation systems with absolute position estimation. The particle
filtering process updates the states during each window around each particle during a
measurement timeframe T F [138]. To address the shortcomings of EKF, such as the lin-
earization error and noise due to Gaussian distribution assumptions, particle filters have
been used while a UAV navigation is mapped using the estimates provided by the sen-
sors [149]. The inter-UAV measurements are based on Euclidean distance between the
particle descriptors and the current landmark image descriptors [150]. In particle filtering,
the mean µ and covariance C are computed from the distribution of the particles in each win-
dow [140]. A particle filter, also known as a sequential Monte-Carlo (SMC) filter, represents
the probability distribution as a set of samples where each sample approximates the true
value of a state. In an interesting example [140], Rao-Blackwellized particle filters (RBPF)
use samples to represent the posterior distribution, and to perform variable marginalization
using an EKF to reduce the size of the sampling space. The Table 4 compares the features
and requirements of Kalman filters, extended Kalman filters, unscented Kalman filters and
particle filters for UAV-SLAM. A brief comparison of key features of various filters for
state estimation in UAV-SLAM reveals that it is possible to calculate ground entity position
relative to UAV trajectory based on these filters, known UAV trajectory orientations and
distance from ground-based landmarks.
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Figure 5. Kalman and extended Kalman filter based search space reduction and localization of UAVs.

Table 4. A brief comparison of key features of various filters for state estimation in
UAV-SLAM [73,95,140].

Kalman Filters Extended Kalman
Filters

Unscented Kalman
Filters RBPF

In simple scenarios, if
the UAV trajectory is
linear, it is relatively
easier to analytically
obtain UAV
state-estimation.

As depicted in Figure 5,
EKF is applicable for
non-linear UAV
trajectory and
state-estimation.

UKF simplifies
non-linear UAV
trajectory using
statistical linearization
and may require fewer
computations compared
to EKF.

These filters address
non-linear UAV
trajectory recursively
through Monte-Carlo
statistical state
estimation.

Kalman filters are
computationally
cheaper to implement in
Matlab or python using
matrix algebra.

EKF may be
implemented as a
Kalman filter that
applies piece-wise
linearization of
non-linear sensor data.

UKF can further reduce
the required
computational power.
These can be effective for
C-SLAM.

Can be used in
UAV-SLAM for
non-Gaussian tracking of
UAV trajectory and
landmark data.

Generally provides
optimal solution when
data may be
non-Gaussian and noise
is Gaussian distributed.

Requires sensor data
and noise to be
Gaussian distributed.

UKF does not require
noise and sensor data to
be Gaussian distributed.

Suitable for multimodal
sensor fusion where data
are nonlinear and
non-Gaussian, and the
posteriors are randomly
distributed.

5. Visual SLAM and Image Fusion

In visual SLAM, the features are extracted using images. Visual SLAM localizes and
builds a map using these images that continuously outputs UAV positions and landmark
maps [4,149]. Visual UAV odometry and navigation trajectory information is used as
input for sampling steps in visual SLAM. Initialization, tracking and mapping define
a coordinate system for UAV position estimation and 3D landmark reconstruction to
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continuously estimate 2D-3D correspondence between image and map obtained from
feature matching [148]. In visual SLAM, the sensor is a RGB-D camera that captures the
pixels in the landmark images [69]. The cameras capture a small part of the landmarks at a
given time [114]. The information about a landmark location and how other locations are
connected is used to create a feature-based map that differentiates the static and dynamic
landmarks. Visual SLAM helps to detect landmarks and add them to a map with the
location information that is sequentially updated with new observations [64]. For a large
number of feature points, assuming the sensors move at a constant speed, estimating the
landmark distances through a set of images need not be accomplished in a chronological
order. Automating point cloud classification to identify objects in a scene by integrating
additional sensors, visual SLAM complements thermal imagery or full spectrum imagery
to capture diverse landmark data [84]. A visual SLAM functionality in UAV includes the
following steps [151]:

1. Sensor data fusion: Acquisition, processing, and synchronization of sensor data and
images [84].

2. Visual odometry: Estimates the sensor movement between adjacent frames to generate
a UAV trajectory map [99].

3. UAV trajectory optimization: The UAV position and landmark data at different
timesteps generate an optimized trajectory and map for real-time SLAM [4,94].

4. Place recognition and loop closing: Place recognition determines if a UAV has reached
a previously visited position and loop closure reduces the accumulated drift [135].

5. Map reconstruction: Constructs an application-specific map based on the estimated
UAV trajectory [5,136].

5.1. Visual Odometry and Photogrammetry in UAV

Visual odometry is concerned with the movement of a camera between adjacent
image frames as a sensor is rotated or translated by θ◦ or x centimeters [152]. However,
the error can increase to the order of a few kilometers in smart city scenarios, where tall
and small buildings are clustered together. Furthermore, the error is shown to increase
exponentially with time. Pixels are the projections by spatial points onto the camera’s
imaging plane [102]. Each pixel’s 3D location is determined by the camera’s position at each
time step [80,128]. This helps to estimate the UAV motion from images of adjacent frames, to
re-create the 3D scenes, and to estimate sensor movements between two successive frames.
By calculating the UAV motion from the adjacent frames and restoring the 3D scene, the
sensor movements between successive frames can increase the precision of the estimated
SLAM. The approximate 3D position of each pixel and the UAV trajectory can be used to
update the map. Visual SLAM uses data from cameras for real-time photogrammetry and
VO. To enhance visual SLAM performance, data fusion using GPS, Wi-Fi, multi-angulation,
sonar, and radar processes raw data via feature recognition, which reinforces the identified
landmarks and objects [23]. Visual odometry provides the landmark change between two
timeframes [27]. Due to error, an estimated change in θ◦ may have an error of ∆θ◦ in
real-world applications. Even if the following estimates are correct, the ∆θ◦ error in the
trajectory will be accumulated in relative motion estimation [122].

Visual SLAM can be interpreted as perceiving a UAV environment to create a pre-
cise localization by modeling the sensor–fusion characteristics based on captured scene
geometry. In urban environments, a large amount of information needs to be processed in
real-time amidst multiple dynamic obstacles [123]. Feature-based maps identify and extract
landmark features to build a map that provides a compact representation of a structured
environment [153]. Metric maps emphasize the exact locations of the landmarks in maps
classified as sparse or dense. Metric maps represent the geometric properties of the environ-
ment, such as the distance between UAVs, or the distance between a UAV and a building.
Sparse metric maps store the landmark scene in a compact form, do not express all the
objects, and select a few representative landmarks while maintaining the photo-metric
consistency and geometric consistency of feature positions [124]. Dense metric maps focus
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on modeling all the landmarks. In UAV SLAM, a sparse map can be used for localization,
while a dense map is preferred for navigation. Occupancy grids emphasize the relation-
ships among map elements composed of nodes and edges, considering the connectivity
between landmark objects [124]. SLAM requires precise UAV location while simultaneously
mapping an environment, yielding a compact map by removing extraneous details.

In C-SLAM, maps are used to find partial overlaps for places that have been visited by
multiple UAVs. A UAV trajectory can be used as a reference coordinate system in urban
mapping. Visual SLAM based mobile mapping systems in UAVs capture multiple image
datasets at the same time, integrating 360◦ imagery [15,17]. Visual SLAM finds a set of
state variables, environment landmarks and UAV trajectory from sensor measurements
to update a previous estimation [75]. To enrich the UAV’s knowledge of an environment,
various landmark features, such as the upper part of a building, statues, mechanical rooftop
apparatus, etc., are recorded with the photogrammetry [154]. UAV photogrammetry data
enhances interactivity and information sharing. Images captured from terrestrial and aerial
photogrammetry for feature extraction enable data association for the joint estimation of
the map and the UAV state [155]. Figure 5 illustrates the computation of the UAV position
at time n. The distribution shows the joint posterior density of the UAV position q at any
time n, and the landmark positions l, based on the observations and motion from time 0
to n with respect to the initial position q0 [142]. To fix misalignment issues that may come
up with the imagery data, the point clouds may be colorized to enhance the level of detail
and accuracy of image sensors [156]. In order to create a point cloud with static scanning
accuracy ±x millimeters, a UAV needs to reset the sensor scanner and post-process the
data into an exportable point cloud [125]. For example, measuring the width of a building
or the circumference of a light pole requires the resetting of the scanner every few hours of
scanning before exporting the data into a usable point cloud. Current UAV mobile mapping
systems execute one continuous capture and export the data in a universal format that can
be interpreted by a third-party software [156]. Table 5 summarizes the discussion on visual
SLAM and aerial photogrammetry in UAV.

Table 5. Comparison of generic SLAM and visual SLAM in UAV [148].

SLAM Architecture Based on All Types of
Sensor Data Visual SLAM and Aerial Photogrammetry

UAV trajectory and the landmark map are cap-
tured through various sensors.

UAV trajectory, localization and landmark map-
building rely primarily on visual sensing.

Different sensors can capture data of varying
size to capture the landscape that changes dras-
tically between two timeframes.

Visual SLAM primarily generates pixels or
point clouds to depict randomly varying land-
mark geometry.

The range up to which the sensors can sense
landmarks may be limited, and the measure-
ments may be impacted by noise.

Increased range offered by LiDAR cameras to
sense a large number of landmarks that vary in
size and distance from UAV.

The relationships between UAV trajectory and
landmark positions can be stored in 1D or 2D.

Visual SLAM and aerial photogrammetry can
capture occluded landmarks through point
cloud matching.

The resulting maps usually contain coordinate
information about landmark locations.

The resulting maps contain visual information
as well as coordinate information about land-
mark locations.

5.2. Impact of Sensor Parameters on Accuracy of Visual 3D Reconstruction

Visual 3D reconstruction needs optimizing sensor parameters as well as 3D landmark
images [44]. The light rays emitted from 3D points projected into the image planes of
several image sensors and cameras are detected as feature points [150]. UAV positioning
and map refinement need parallel motion estimation and mapping SLAM at various
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timeframes [157]. Visual SLAM is based on the sparse structure of the error term eij that
describes the residual about lj in qi, the i-th position and the j-th landmark [148]. The
derivatives of the remaining variables are 0. The corresponding error term in the sparsity
matrix containing the visual SLAM imagery data has the following form [25,64,125,141,149]:

Sij(x) =

(
13×6, . . . 03×6,

∂eij

∂qi
, 03×6, . . . 03×6, . . . 03×6,

∂eij

∂lj
, 03×6, . . . 03×6

)
, (12)

where 13×5 represents the 1 matrix with dimension 3× 6; and similarly 03×5 represents the
0 matrix with dimension 3× 6. The dimension 3 indicates three colors, and the dimension
6 indicates the 6-DoF of image sensors and cameras [46,144]. The partial derivative of
the error term in the sensor data related to landmark localization is ∂eij/∂qi and has a
dimension of 3× 6, and the partial derivative of the landmark ∂eij/∂lj dimension is also
3× 6 [143]. The error term is independent of other landmarks and UAV positions except
at qi and lj. If this observation edge is depicted only as two vertices, then the sparsity
matrix Sij has non-zero blocks in the column i, j. The corresponding non-zero blocks are at
(i, i), (i, j), (j, i), (j, j):

S =

[
S11 S12
S21 S22

]
. (13)

where S11 is only related to the UAV trajectory and S22 relates only to landmark data. S12
and S21 may be sparse or dense, depending on the specific observation data. The S matrix
computation takes advantage of the sparsity [158]. Suppose there are two sensor datasets
(D1, D2) and five landmarks (L1, L2, L3, L4, L5) in a scene. D1 is a set of sensor data
from the observation space [L(d1)

1 , L(d1)
2 , L(d1)

3 , L(d1)
4 , L(d1)

5 ] and D2 is the set of sensor data

from the observation space [L(d2)
1 , L(d2)

2 , L(d2)
3 , L(d2)

4 , L(d2)
5 ]. The variables corresponding

to these sensors and point clouds are di, i = 1, 2 and lj, j = 1, · · · , 5 [70,82]. The sensor
that captures data D1 observes the landmarks L1, L2, L3, L4, and the sensor that captures
data D2 observes L1, L3, L4, L5. If the ith sensor can observe the j-th landmark, the overall
cost function is:

1
M

(∥∥∥e(d1)
11

∥∥∥2
+
∥∥∥e(d1)

12

∥∥∥2
+
∥∥∥e(d1)

13

∥∥∥2
+
∥∥∥e(d1)

14

∥∥∥2
+
∥∥∥e(d2)

21

∥∥∥2
+
∥∥∥e(d2)

24

∥∥∥2
+
∥∥∥e(d2)

25

∥∥∥2
)

. (14)

The observation of L1 in D1 does not depend on other sensor positions and land-
marks. The partial derivatives of qi and landmarks l2, · · · , l5 are zero. For ψ =

(ψi1, ψi2, l1, · · · , l2)
T ,

∂e11

∂q
=

(
∂e11

∂qi1
, 02×6,

∂e11

∂l1
, 02×3, 02×3, 02×3, 02×3, 02×3

)
(15)

As the UAV position dimension is smaller than the landmark dimension, the matrix
block corresponding to D1 is wider than the matrix block corresponding to L1. If there
is at least one common observation between the sensor D1 and the sensor D2, then the
corresponding matrix element is set to 1. Similarly, a matrix element S34 being zero indicates
there is no common observation between D3 and D4 [61], in the connections between all
UAV trajectories for landmarks optimization and UAV trajectory [47]. The number of
landmarks is much greater than the sensor nodes, and a landmark is often associated
with hundreds of feature-points [144]. If the sparsity is used, tens of thousands of feature
points can be represented in a compact form without limiting the application scenarios of
SLAM. The ground-truth trajectory is composed of multiple layers of different sizes that
generate odometry edges from n− 1 to n [87]. The edges between layers add observation
noise to each edge and reset the initial value of the reference position according to the
noisy odometry data [159]. The accumulated error from the initial values of the noisy data
approximates the true UAV position qx, qy, qz to respond to the image data for real-time
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SLAM, UAV tracking and landmark mapping [160]. The UAV sensors capture several
scenes. The environment and landmark information may be impacted by the intrinsic
distortion parameters of sensors [72]. Each sensor has a total of 6-dimensional frame-of-
discernment (FoD) to observe landmark nodes and capture point clouds [26,44,47,80]. High
dimensionality of landmarks results in computation that cannot be processed in real-time.

The landmark l is a 3D point-cloud, and the observation data are the pixel coordinates

Rx ×Ry ×Rz ∆
= [qx, qy, qz]n [27]. If dij is the data generated by observing landmark lj at

the UAV trajectory qn, then the overall cost function may be represented as:

1
2

m

∑
i=1

n

∑
j=1
‖eij‖2 =

1
2

m

∑
i=1

n

∑
j=1
‖dij − d(qn, lj)‖2 (16)

Equation (16) is equivalent to finding landmarks and the descending direction ∆eij, to
optimize the objective function [86]. As error is accumulated,

1
2

∥∥d(eij + ∆eij)
∥∥2 ≈ 1

2

m

∑
i=1

n

∑
j=1

∥∥∥eij + ψn∆qi + ψij∆lj

∥∥∥2
(17)

where ψij is the i-th position that captures the j-th landmark. The T F timeframes are from
the current timestep and remove the earlier ones [151]. When the UAV is paused, the images
are from a single point. The features that are observed in the current timeframe correspond
to the mean and covariance [140,145,151]. If there are M landmark points l1, . . . , lM, they
form a local map together with the T F timeframes [64,142]. The conditional distribution of
the UAV positions is [q1, q2, . . . , qN | l1, l1, . . . , lM] ∼ P([µ1, µ2, . . . , µN ]

T , C) where, µk
is the mean of the T F -th timeframe and C is the covariance matrix over all the timeframes.

5.3. Adding New Timeframes T F and Landmarks L = [l1, l2, · · · , lL] in UAV Trajectory and
Removing Older Ones

Unused data that are filtered out may affect SLAM accuracy. Considering that m
landmarks obey Gaussian distribution mean and variance, a new landmark lN+1 adds a
variable to the collection of N + 1 landmarks [114,161,162]. For m landmarks and d sensor
data, since there are usually far more landmarks than sensors, M � N. The non-zero
elements in the S matrix correspond to the association between the sensor data and the
landmark [163]. If there is the same observation made by two sensors, it is referred to as
co-visibility. If the S matrix elements are zero, it indicates that the two sensors do not share
landmark observation, indicating no common observations between the corresponding
sensor variables D1, D2, D3, and D4. Furthermore, ψ1 views the landmarks from l1 to
l4 denoted by P(ψ2, ψ3, ψ4, l1, . . . , l4|q1). This notation indicates that the landmarks
have one more constraint saying where they should be if q1 is set to the current value of
conditional distribution [25]. A priori constraint localizes the search space map where the
landmark should be at a given time. Landmarks from l1 to l4 may fall into the categories
listed below:

1. The landmark is only observed in l1. In this scenario,

P(q1, . . . , q4, l1, . . . l5) = P(q2, . . . , q4, l1, . . . , l5 | q1) p(q1)︸ ︷︷ ︸
discarded

. (18)

2. Add a new timeframe T F into the window as well as its corresponding landmarks.
3. Delete an old timeframe T F in the window which may also delete the landmarks it

observes.
4. The landmark is seen in l2–l4, but may not be seen in the future if UAV avoids loop

closure. To track the missing feature points, this landmark needs a priori information
of the future pose estimation.
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5. The landmark is seen in l2–l4 and may be seen in the future. This landmark will be
estimated later [75]. The observation of this landmark by q1 can be discarded if q1 did
not see it.

From the current estimated value, the conditional probability of other state vari-
ables and the observed landmark points generate a priori information about where these
landmarks should be, which affects the estimated value of the landmark points [164].
For large-scale mapping systems, after several observations, the spatial positions of the
landmarks converge to a fixed value and remain unchanged. An occluded landmark is
considered as an outlier. The convergent landmarks are fixed to the feature points after a
few iterations as constraints of pose estimation to optimize their position [165].

6. Open Issues and Future Research Directions in UAV-SLAM
6.1. Open Issues

• The number of landmark points to be scanned while a UAV navigates a trajectory
range in the thousands. The level of detail to be captured and the required point-cloud
density imposes constraints on the resulting data for targetting landmarks distributed
over a large area. For example, to capture building facades and utility lines, the usable
range of a UAV sensor varies with distance and may not capture dense and detailed
data representation [26].

• Loop closure impacts both the localization and map building that enable a UAV to
identify the scenes it has visited before. Sensors set additional constraints on the appli-
cation environment when detecting similarities between images. The accumulated
error can be reduced by calculating similarities of images and reliable loop detection
eliminates cumulative errors for globally consistent trajectories and maps [80].

• Sensor fusion and navigation for UAVs are usually of large dimensions because all
landmark variables are considered by sensors between consecutive positions and
landmarks. In visual SLAM, a single image contains hundreds of feature points,
which greatly increases the feature-set dimensions. Such a feature matrix is of O(n3)
complexity, which is very expensive in computation. UAV-SLAM requires mechanisms
to limit the problem scale to maintain real-time calculations as a UAV navigates a
trajectory. As the UAV computing power is limited, calculating SLAM estimates at
every moment limits the calculation time for landmarks as the iterations cannot exceed
a certain upper bound. In real-time UAV-SLAM, the computational time must not
exceed a few milliseconds [134].

• The complexity increases when, instead of using images, the landmark data are
extracted from continuous video at regular timeframes. With limited computation,
the timeframes may be used only for localization and do not contribute to mapping or
vice versa. The number of timeframes increases as the scale of the map grows, limiting
SLAM accuracy in real-time computing. If there are N timeframes in a window, and
their positions ψ1, . . . , ψN , are known in the vector space, then the previous timeframe
estimates must remain unchanged during optimization, discarding the variables
outside the window [74].

6.2. Future Research Trends

In general, UAV-SLAM needs to be robust to perception failures. In UAV environments,
there needs to be a trade-off between the sensor’s fusion capabilities and the on-board
computing power. Visual SLAM can benefit from illumination invariant template match-
ing [126,127]. Some future avenues for improving UAV-SLAM are discussed as follows:

6.2.1. UAV Data Fusion for Static and Dynamic SLAM

Compared to SLAM under static conditions, dynamic SLAM divides landmark data
into static and dynamic categories for different UAV trajectories. SLAM architectures can
be improved to leverage each feature to provide robust localization for UAVs that operate
in complex dynamic environments. Additionally, to meet the demands of some high-level
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applications such as medical equipment delivery, dynamic SLAM can be integrated with
multiple object tracking [99].

6.2.2. Deep Learning Based Data Fusion and SLAM

Neural networks have been shown to complement the end-to-end learning require-
ments in sensor and environment modeling. A probable research avenue is to apply transfer
learning between domains that could lead to novel ways to interpret scenes for real-time
object detection. In UAVs, a single-UAV intelligence seems insufficient for complex SLAM
scenarios and diverse navigation trajectories. Furthermore, C-SLAM may utilize local
learning, inter-UAV communication, and data fusion for an adaptive global consensus
based on multi-UAV intelligence. In conventional Bayesian SLAM, intermittent and unreli-
able communication among UAVs may be an impediment to accuracy. However, in deep
learning based methods, techniques such as generative adversarial networks (GANs) can
be used to reduce the impact of lost communication and missing data. Deep learning based
end-to-end localization and mapping are seen as potential alternatives or complementary
solutions for absolute UAV localization, instead of SLAM [7].

6.2.3. UAV Imagery Impacted by Altitude and Illumination Conditions

In visual SLAM, the computing power is limited by drift, sensor noise N1:n and
accumulated error over time. The UAV trajectory may be represented as an area enclosed
through data visualization, localization and mapping. Mapping data can also assist in UAV
collision avoidance through state–space estimation to interpret if a given UAV trajectory
and associated landmark configurations may lead to a collision between the UAV and the
landmark, or not. Furthermore, how UAV sensors perform in the presence of clouds, fog,
mist and other climatic conditions for VO is open territory for research [126,127].

6.2.4. Opportunities for Improving the Statistical Dependence between Sensor Data
Metrics and SLAM

UAV mapping based on homogeneous point-cloud matrices obtained from LiDAR
points may only represent the UAV coordinate in a specific timeframe. The landmark data
may be classified based on simplicity and due to real-time SLAM computation requirements,
LiDAR may not classify certain landmarks that have dimensions that are too big or too
small. Furthermore, some landmarks may be approximated by point sequences of up to n
points grouped together, where each group is represented by the distance between the first
and the last point in the sequence. To ensure safe UAV path planning, the dimensions of all
objects in the landmark scene need to be retrieved in the reference map [4,5,47].

6.2.5. Accurate and Precise Geo-Referenceing of Landmark Data Using Google Maps

For UAV localization, data related to multiple UAV trajectories and variations in
reference maps is needed. The error in trajectory or terrain classification along longitude–
latitude–altitude pairs may increase with image depth. From Equation (7), the previ-
ously collected data are assumed to be accurately and precisely geo-referenced. In SLAM
and VO, UAV localization depends on previously collected data. When these data are
aerial imagery or photogrammetry, then accuracy depends on the image processing algo-
rithm. Geo-referencing UAV aerial imagery and photogrammetry data using on board
GPS/GNSS will be future work. The 2-DoF and 4-DoF sensor data are a subset of the 6-DoF
= {x, y, z, θ1, θ2, θ3, }. Lack of correlation between several landmarks in the observed
scene can arise due to different sensor viewpoints. Using Google maps for landmark
matching may add data-dimensions to enhance accuracy and reduce the impact of scale
change, blurred data, noise, drift, sensor rotation, occlusion etc. [4,5,47].

6.2.6. Reduction in Feature Space for Faster SLAM

By establishing point-by-point correspondence between a number of images, objects
in all images are considered to be geometrically aligned. Combining features from the
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original images to form a single enhanced image needs image fusion techniques divided
into spatial domain and transform domains. A map is constructed as the autonomous UAV
explores an environment. SLAM takes advantage of multiple previous observations to
jointly estimate landmark positions and the UAV trajectory. The current timeframe T Fn
observed by the UAV is compared to the previous timeframe T Fn−1 and the difference is
analyzed. Based on this timeframe data T F , the current UAV position qn is estimated by
adding the most recent estimated position qn−1 to previous qn−2 observations. Reduction
in feature space at each timeframe can speed up UAV localization and mapping [146,147].

7. Conclusions

In this article, we reviewed and studied the recent trends and developments in SLAM
and data fusion for object detection and scene perception in UAVs. The analysis of prevail-
ing SLAM architectures, frameworks and models reveals that a combination of data fusion
and SLAM can assist in autonomous UAV navigation without having a predefined map of
trajectory or ground-based landmark entities. However, a challenge in multimodal sensor
fusion is the grouping of certain sensor data together to reduce redundancy and computa-
tional complexity. Although data fusion does not eliminate the underlying sources of error,
it aims to reduce the impact of errors accumulated due to different sensor resolutions.

The paper discussed that a single-UAV reference map may contain data from a number
of sensors under different levels of illumination and environmental conditions. To tackle
uncertainty in sensor data, UAV-SLAM is formulated as a state estimation problem where
the current UAV location is used as a reference for future localization and to simultane-
ously create a reference map. This approach requires frequent data comparison to obtain
similarity measures, so that mutual information or redundant data in the search space can
be removed to reduce the computational cost of the SLAM architecture. Another challenge
in conventional SLAM is to derive one single output from different sensor measurements
considering different delays and drifts. Sensor fusion platforms offer complementary,
redundant, or cooperative data abstraction levels. The findings of the survey revealed that
as the raw sensor data is directly provided as an input to the SLAM algorithms, the latent
variables in the data may be lost while arriving at a decision. The data fusion process may
be made more end-to-end using machine learning techniques. The Bayesian SLAM can
be made more intelligent with deep learning techniques that use a feature-in decision-out
approach for end-to-end data fusion. This would enable UAV-SLAM to obtain a set of
sensor data with diverse characteristics as an input, and return a UAV trajectory, position
and target landmark map as an output.
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1D One Dimensional
2D Two Dimensional
3D Three Dimensional
5G Fifth Generation (Communication networks)
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6-DoF Six Degrees of Freedom
C-SLAM Collaborative Simultaneous Localization and Mapping
DARPA Defense Advanced Research Projects Agency
DGPS Differential GPS
EKF Extended Kalman Filter
FoD Frame of Discernment
GNSS Global Navigation Satellite System
GPS Global Positioning System
ICP Iterative Closest Point
IMU Inertial Measurement Unit
IR Infra Red
KF Kalman Filter
LED Light Emitting Diode
LiDAR Light Detection and Ranging
MAP Maximum a Posteriori
MLE Maximum Likelihood Estimation
NLoS Non-Line-of-Sight
RBPF Rao Blackwellized Particle Filter
RGB-D Red Green Blue-Depth
RPAS Remotely Piloted Aircraft System
RSSI Received Signal Strength Indicator
RTK-GPS Real-Time Kinematics based Global Positioning System
SLAM Simultaneous Localization and Mapping
SLR Single-Lens Reflex
ToA Time of Arrival
UAV Unmanned Aerial Vehicle
VLC Visible Light Communication
VO Visual Odometry
Wi-Fi Wireless Fidelity (generic term for IEEE 802.11 communication standard)
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