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Abstract: Although Unmanned Aerial Vehicles (UAVs)-aided wireless sensor networks (WSNs) have
gained many applications, it is not for long that research works have been produced to define effective
algorithms and protocols. In this article, we address the UAV-enabled WSN (U-WSN), explore the
performance and the capability of the UAV, define the UAV functionalities as a communication
node, and describe the architectures and the relevant typical technologies that emerge from this new
paradigm. Furthermore, this article also identifies the main factors which influence the U-WSN design
and analyzes the open issues and challenges in U-WSN. These insights may serve as motivations and
guidelines for future designs of UAV-enabled WSNs.

Keywords: wireless sensor networks; unmanned aerial vehicles; non-terrestrial networks; network
architecture; mobility; trajectory planning

1. Introduction

Non-Terrestrial Networks (NTN), including drones and nano-satellites, bring con-
siderable solutions for collecting data in the future internet of things. Indeed, wireless
sensor networks (WSNs) have attracted exponential research growth due to their broad
range of applications ranging from military [1], environmental [2,3] to agriculture [4,5].
The main function of a WSN is to collect as much data as possible and transmit it to the
data center, where it is observed, analyzed and processed. Multi-hop is a widely accepted
option to improve data collection in applications where sensors are statically deployed
and battery-powered. However, it brings sensors that act as intermediate nodes to die
faster than simple nodes because they consume a lot of energy to relay messages. As a
result, mobile sinks are introduced into WSN to balance network energy consumption by
moving between sensors. The mobility of the sink brings new issues including dynamic
topology, synchronization, network lifetime, etc. [6–8]. In existing research, most of the
network typologies utilize static or quasi-static (move on the ground at a low speed) nodes.
However, it is hard to be implemented in harsh terrains, such as snowberg or forests, which
are dangerous for humans. In such applications, Unmanned Aerial Vehicles (UAVs) are
more widely accepted due to their great flexibility and no need to involve humans.

UAVs can be drones, quadcopters, gliders, and balloons. Due to different application
requirements, they could be equipped with various sensors, e.g., cameras, super-sonic
sensors, etc. UAV-enabled WSN (U-WSN) comprises an air platform and a ground platform.
The air platform could be composed of several UAVs. UAVs should be well controlled
to keep a safe flight distance and a proper distance with the ground control center to
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make them under control. The ground platform could be composed of many sensor nodes,
base stations, and data center according to applications. In applications, e.g., UAVs are
dispatched for aerial photography, no ground sensors needed to be deployed. Thus, the
ground sensors are not mandatory in a U-WSN.

The design of U-WSN applications requires wireless networking techniques. Although
many protocols and algorithms have been proposed for traditional WSN applications, they
can no longer meet up with the unique features and application requirements of U-WSN.
The main differences between WSN and U-WSN are outlined below:

• The topology of a U-WSN changes more frequently.
• The sensors are prone of being out of the range of the UAV if they have high

relative velocities.
• The scale of the area of a U-WSN can be several orders of magnitude higher than the

scale of a WSN.
• The UAVs are very limited in power compared to the ground sensor nodes and the

base station.
• The UAVs need to be dispatched to maintain a safe flight and other issues.

Many researchers are currently engaged in developing schemes that fulfill these
requirements. This paper presents a review of UAV-centric architectures, applications,
and open issues. We aim better to understand the current research issues in this field.
We also attempt to investigate design constraints and outline specific tools to meet the
design objectives.

The main contributions of this paper are summarized as follows:

• analyze the performance and the capabilities of the UAV, based on which, we summa-
rize the U-WSN applications.

• refine the UAV functionalities as a communication node in a U-WSN.
• compare and draw the network architecture and the standard technologies in U-WSN.
• evaluate the main factors which influence the U-WSN design.
• review and analyze the open issues and challenges in U-WSN.

The organization of this article is as follows: In Section 2, summarize the performance
and capability of the UAV, and the relative applications of the U-WSN, and the functionali-
ties of the UAV as a communication node. Section 3 analyzes the factors that influence the
U-WSN design. Section 4 presents open issues and challenges in U-WSN. Section 5 gives a
conclusive remarks of this work. Finally, Section 6 concludes this work.

2. Applications of U-WSN

Using UAVs is much more diverse in our daily life because of its significantly deploy-
ment possibilities. Applications of U-WSN may either be traditional ones such as military
monitoring and reconnaissance, environmental disaster detecting and industrial control or
completely new application types such as smart city.

There are extensive surveys that have been done on the applications of U-WSN. For
example, the authors in [9] provide a review on the task using mobile robots. Shakhatreh
et al., provide a survey on civilian applications [10]. These research mainly focus on the
application fields when studying the application of the UAV. In this section, we will study
U-WSN applications through the performance and the capabilities of the UAV.

2.1. UAV Categorization

UAV is known as an aircraft or a drone without human on board. Humans control the
UAV in a variety of ways, such as ground control center, pre-programmed flight trajectory
and more complex and autonomous systems. Due to its different performances, capabilities
and restrictions, the UAV encompass a wide range of different platforms.

One of the detailed and widely used schemes has been proposed in [11], as shown in
Table 1. In which, the UAVs are classified based on the mass, range, altitude, and endurance.
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Moreover, another scheme based on Mean Take off Weight (MTOW) and the ground impact
risk has also been proposed [11], as illustrated in Table 2.

Table 1. UAV categorization for differentiation of existing systems.

Category Mass (kg) Range (km) Flight alt. (m) Endurance (h)

Micro <5 <10 250 1
Mini-UAV <20/25/30/150 1 <10 150/250/300 <2
Tactical
Close range (CR) 25–150 10–30 3000 2–4
Short range (SR) 50–250 30–70 3000 3–6
Medium range (MR) 150–500 70–200 5000 6–10
MR endurance (MRE) 500–1500 >500 8000 10–18
Low altitude deep penetration (LADP) 250–2500 >250 50–9000 0.5–1
Low altitude long endurance (LALE) 15–25 >500 3000 >24
Medium altitude long endurance (MALE) 1000–1500 >500 3000 24–48
Strategic
High altitude long endurance (HALE) 2500–5000 >2000 20,000 24–48
Stratospheric (Strato) >2500 >2000 >20,000 >48
Exo-stratospheric (EXO) TBD TBD >30,500 TBD
Special task
Unmanned combat AV (UCAV) >1000 1500 12,000 2
Lethal (LET) TBD 300 4000 3–4
Decoys (DEC) 150–250 0–500 50–5000 <4

1 Varies with national legal restrictions.

Table 2. Classifications of UAVs based on the MTOW and the ground impact risk.

Number TGI
a MTOW Name Note

0 102 Less than 1 kg Micro Most countries do not regulate this category since these vehicles pose
minimal threat to human life or property

1 103 Up to 1 kg Mini These two categories roughly correspond to R/C model aircraft
2 104 Up to 13.5 kg Small
3 105 Up to 242 kg Light/ultralight Airworthiness certification for this category may be based either on

ultralights (FAR b bpart 103), LSA c (Order 8130), or even normal
aircraft (FAR Part 23)

4 106 Up to 4332 kg Normal Based on MTOW these vehicles correspond to normal aircraft (FAR
Part 23)

5 107 Over 4332 kg Large These vehicles best correspond to the transport category (FAR Part 25)
a TGI is the minimum time between ground impact accidents. b Federal Aviation Regulations. c Light Sport Aircraft.

2.2. Applications of U-WSN

Hereafter, we summarize and group the applications of U-WSN as in Table 3. If we
consider the area where the sensors are deployed, the applications can be classified as in
Table 4.

In aforementioned applications, both UAV and WSN play different roles and have
different functionalities. We will detailed the functionalities of UAV in the next sub-section.

2.3. Functionalities of UAV as a Communication Node

In WSN applications, one of the objective is to obtain meaningful information through
sensors deployed in the region of interest. Traditionally, the data gathering issues were
implemented in multi-hops in which the sensors that are closer to the base station will
selected as the relay nodes for those sensors that deployed far away from the base station.
As a result, these relay nodes consume energy much faster than other nodes. As the network
connectivity depends on these relay nodes, this will result in a shorter network life-time.
To address these issues, mobile vehicles were introduced.

Generally, it has limited conditions, such as limited velocity, and obstacles due to
actual movement environment, when the mobile vehicles move on the ground. It would be
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a huge challenge if the traditional mobile vehicles are used in specific applications that are
dangerous for human participation. Thus, UAV which has high extensive and flexible and
do not need human on board, is a better choice in these similar applications. In this section,
we will analyze and study the functionalities of UAV when it works as a communication
node in WSN.

As previously described, UAV has been extensively applied in many areas. In this
section, we analyze the existing applications and propose the main functionalities of the
UAV in WSN.

Table 3. Classifications of the applications of U-WSN according to the performance and the capability
of the UAV.

Category Application Fields Applications

Industry Grade

Aerospace e.g., UAVs are used for aircraft maintenance in air-
lines. In June 2015 EasyJet began testing UAVs in
the maintenance of their Airbus A320s. In addition,
in 2016, Airbus demonstrated that using UAVs for
the visual inspection of an aircraft on Farnborough
Airshow.

Reconnaissance e.g., product quality monitoring and Smart-Grid
measurements [12].

Environmental e.g., agriculture application [4].
Urban e.g., traffic monitoring, urban surveillance and civil-

ian security [13].
Others e.g., military communication and surveillance [1].

Consumer Grade
Recreational e.g., filming and photographing recreational activity.
Hobby e.g., toys.
Others e.g., journalists using UAV for news gathering.

Table 4. Classifications of the applications of U-WSN according to the sensor deployment.

Category Subcategory Applications

Ground

On-ground e.g., sensors are deployed on ground for environmental
monitoring [7].

Under-ground e.g., the nodes are deployed underground for pipelines
safety and monitoring [14]

Water On-water e.g., filming and photographing recreational activity.
Under-water e.g., use acoustic communications [15]

Hybrid Combination of the
above

e.g., sensors are floating on the surface of the sea to moni-
toring marine disasters [16].

2.3.1. Maintaining Connectivity and Relaying

Maintain connectivity is one of the key problem in wireless networks. The failures
occurrence leads to the disconnect of the networks. The solution of such issues is to provide
a reliable multi-hop path to maintain the connectivity through other kinds of nodes, such
as mobile vehicles. However, it cannot maintain the wireless network connectivity all the
time. That is because the mobility of the mobile sink, based on which a node is within
the transmission range of the mobile sink at this moment may out of its range at next
moment. In addition, the motion trajectory of the mobile sink is also restricted by the
network deployment. Thus, UAV, which trajectory could be predefined or randomly, is
introduced to work as mobile sink.

Extensive investigations have been conducted on maintaining connectivity in the con-
text of U-WSN. Research in [3] address the city-scale video monitoring in WSNs. Multiple
UAVs ride buses in a noisy 3-D environment were considered. The UAVs could recharge
through moving bus; thus, it could maintain the connectivity of the network. However,
their study addressed on static objective nodes. In our previous works [17–19], we address
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the dynamic wireless networks in which both the mobility of collectors and nodes were
considered. The simulation results in [18] present that the moving of UAV can maintaining
the connectivity of the wireless network. The sensor nodes that are without the transmis-
sion range of the base station could have an opportunity to communicate with the UAV
through create connection path to the connected neighbours.

However, our previous works fail to consider the case that the UAV and the sensor
moving in opposite directions. In Section 4.2, we not only study the mobility of the UAV
and the sensor, but also consider the case where they move in different directions, and the
relationship between them also considered.

In Table 5, we summarize and compare the use of UAV for maintaining connectivity
in wireless networks.

Table 5. Summarising and comparison of the UAV functionalities in the existing U-WSN.

Ref.
Functionalities

Nuav
d Performance Objective

M.C. a D.C. b Loc. c

[4] Yes Yes No Multiple Optimization of the photogrammetry process.
[3] Yes Yes No Multiple Maximization of data delivery.

[12] Yes Yes Yes Multiple Smart view in smart grid.
[13] Yes Yes Yes Multiple Civil security and disaster management.
[14] Yes Yes Yes Multiple Monitoring and mapping optimization of the oil or gas pipelines.
[17] Yes Yes No 1 Maximization of packet delivery ratio and network fairness.
[18] Yes Yes No 1 Maximization of packet delivery ratio, system fairness and throughput.
[19] Yes Yes No 1 Maximization of packet delivery ratio and network fairness.
[20] Yes Yes Yes Multiple Practical deployment.
[21] Yes Yes No 1 Optimization of the UAV flying path.
[22] Yes Yes No Multiple Maximization of data delivery.
[23] Yes No Yes 1 Optimization of localization
[24] Yes Yes No 1 Minimization of system energy consumption.
[25] Yes Yes No Multiple Maximization of data delivery.
[26] Yes Yes No Multiple Optimization of the speeds of UAVs.
[27] Yes Yes No Multiple Maximization of data delivery.
[28] Yes No Yes Multiple Optimization of localization in three-dimension space.
[29] Yes No Yes 1 Optimization of real-time localization.
[7] Yes Yes Yes Multiple Maximization of data delivery.

[30] Yes Yes Yes Multiple Energy efficiency maximization.
[31] Yes Yes Yes 1 Maximization of data delivery.

a M.C. is the abbreviation of “Maintain Connectivity”. b D.C. is the abbreviation of “Data Collection”. c Loc. is the
abbreviation of “Localization”. d Nuav is the number of UAVs.

2.3.2. Data Collection

In traditional data collection protocols, sensors were usually assumed to be static and
densely deployed. Sparse and mobility were not considered because they cannot maintain
connectivity of the network. Thus, the nodes may not be connected through multi-hop
paths. After the introduction of mobile nodes, how to collect data from the mobile nodes
becomes a new challenge.

Data collection has been addressed extensively in the literature. In [32], the authors
proposed an energy conservation scheme to extend the network lifetime, and the data
collecting time is extended accordingly. In reference [24], the authors attempt to make full
use of integrating small-scale UAV in a ground wireless network for information collecting
and environmental monitoring and surveillance. The cost-reducing and energy-saving
were conducted through using small-scale UAVs.

In [25], the authors address the data gathering problem of how to efficiently utilize
the battery power for the maximizing data collection performance in rechargeable WSN.
The rechargeable sensor network can provide enough energy to maintain the system
connectivity. In [26], the authors propose the optimal speed control of the UAV which could
helps the system to collect data efficiently. Both of them are based on a single UAV. The
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authors in [27] address the data collection issue through multi-UAVs, in which both the
packet received ratio and packets tracking ratio were evaluated. However, the fairness and
collisions between UAVs are failure to considered in this work. In addition, this is one of
the main contributions that the authors in [22] have done. The authors concentrate on the
problem of data gathering from scattered sensors through integrating several UAVs in the
context of large scale sensor networks. A heuristic algorithm based on a column generation
approach was proposed and the results perform well.

The main idea of these research is to extend the data collection time through extending
the network life time. They pay little attention on the impact of the network topology on
data collection. In U-WSN, the dynamic topology has a critical influence on the connectivity
of the wireless network. It will directly affect whether a route is created between two nodes
and the endurance of the connection.

However, most of existing works address the static network topology. The authors
concentrated on the dynamic topology in [17–19], both the mobility of the UAV and sensors
are considered. The authors fail to present all the relationships between the mobility and
the data collection because of space limitations. In Section 4.2, we address the impact of
the dynamic topology on the connection. In Table 5, we provide a summarisation and
comparison of using UAV for data collection in the existing applications.

2.3.3. Localization

Location-based services in variety of applications, such as weather forecasting, traffic
monitoring, smart home [33] and rescue application. Global Positioning System (GPS) [34]
is a solution in such applications. GPS works well on localization when the applications are
implemented outdoor. It is better for the GPS to be used far enough from buildings or obsta-
cles otherwise GPS signals become unreliable. However, GPS has high power consumption,
especially in large scale networks, and poor performance when applied indoors. Thus, a
large number of works have been done to optimize the location-aware performance.

Various types of categories of existing localization methods have been introduced ac-
cording to different standards, range-based and range-free, coarse-grained and fine-grained,
cooperative and cooperative-free, networking centric positioning and self-positioning.
Among these classifications, the Range-Based and Range-free algorithms are the typical one
according to whether to use range information. Typical Range-Based algorithms such as
Time of Arrival (ToA), Time Difference of Arrival (TDoA) and Received Signal Strength (RSS).
Range-free methods calculate the location information from the connectivity information.

There is a huge scope of application offline training for localization. Thus, it is critical
for the localization mechanisms to implement the training step for taxonomic hierarchy in
the infrastructure of internet of things. The localization algorithms are classified into two
categories, self determining and training dependent methods, if we take into account the
internet of things scenario.

Localization methods with mobile nodes are the best solutions regarding these issues.
Vehicles moving in the interesting area and broadcasting ‘beacons’ messages, through
which vehicles can self-localize via combining with appropriate methods. Nodes that
have received the ’beacon’ messages are within the transmission range of the mobile
vehicles. Through combining with proposed technologies, the sensor nodes can provide
an estimation about their locations after enough ‘beacons’ messages are received. The
vehicle-aided localization algorithms are classified into two categories, static vehicle-aided
localization and mobile vehicle-aided localization. In static vehicle-aided localization
algorithms, e.g., in [35], the localization accuracy depends on many factors, the number
of vehicles, the deployment and the trajectory of the vehicles, etc. It can be predicted that
uniform deployment in high densely will bring a high localization accuracy. However, it
also leads to high hardware cost and energy consumption. The UAV, which moves at a
high speed and has high flexibility, works as a mobile vehicle which is the best choice in
such applications.
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In the context of U-WSN, the authors in [28] address the issue of how to achieve
three-dimensional localization using a UAV. In this work, sensors are deployed in the
monitoring area without equipped a GPS while UAV is equipped with a GPS. UAV flies
over the area and broadcasts ’beacon’ messages which include the geographical information
of the UAV. The nodes that received the ’beacon’ messages are able to estimate their
geographical positions through combing with appropriate technologies. However, it is
not a real-time algorithm. The authors in [29] proposed a real-time localization algorithm
using Extended Kalman Filter which is based on time difference of arrivals. The proposed
algorithm works well on the estimation of sensors positions. In Section 4.2, we focus on the
dynamic topology wireless network and provide a definition on the relationship between
the UAV and the mobile nodes, based on which the nodes positions could be well estimated.
In [36], the authors provide a summary on mobility-assisted localization algorithms in
wireless networks.

In Table 5, we summarizes the use of UAV for localization in the existing applications.
Thereafter, the functionalities of UAV as a communication node are detailed in Table 5.

3. Factors Influencing U-WSN Design

A U-WSN design is influenced by many factors, including architecture of U-WSN;
relative motion between the UAV and the Sensors; fault tolerance; scalability; production
costs; operating environment; hardware constraints; transmission media; and power con-
sumption. These factors are addressed by many researchers as surveyed in this paper.
However, none of these studies has a full integrated view of all factors that are driving
the design of sensor networks and sensor nodes. These factors are important because they
serve as a guideline to design a protocol or an algorithm for sensor networks. In addition,
these influencing factors can be used to compare different schemes.

3.1. Architectures of U-WSN

In the architecture design, the main objective is to impose few requirements to the
execution capabilities of the UAV. Basically, the UAV is able to move to a given location
and activate their payload when required. Then, according to different applications, UAV
is integrated in different architectures. The global picture of the main architectures in
U-WSNs is shown in Figure 1. The general architecture could be mapped to various specific
scenarios. In the following, we introduce the links and the relevant technologies with their
application fields in Figure 2.

Figure 1. A general architecture of U-WSN.
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Figure 2. Links, technologies and applications of UAV-assisted WSNs.

3.1.1. Sensor-Sensor Link (S-S)

The communication between sensors is the basic one included in other links. A low
energy and data rate protocol can be used. The standard IEEE 802.15.4 [37], along with the
corresponding upper layers which are compliant with the ZigBee [38] protocol stack, is
typically used at this link layer. Generally, the data-rate is less than 1 Mbps.

3.1.2. UAV-Sensor Link (U-S)

In the link between UAV and sensor, the UAV usually acts as a mobile sink. The
distance between the UAV and a sensor is ranging from several meters to hundred meters.
In the case of close range, the U-S links could apply the technologies as in S-S link. The
connection between UAV and sensors is able to use the IEEE 802.15.4 (ZigBee) and IEEE
802.11ah (WiFi) [39] protocols. These protocols have the medium range that could achieve
several hundred meters.

3.1.3. UAV-Smart Phone Link (U-SP)

In some applications, the UAV is connected to smart-phone in order to collect data
from the phone. The commutation range between them is medium. Thus, the U-SP link
basically uses the medium range protocols such as IEEE 802.11ah (WiFi) and IEEE 802.16p
(WiMAX), which are adapted for machine to machine communication. Adaptations of
LTE-Advanced (LTE-A) are also experimented [40].

3.1.4. UAV-GateWay Link (U-GW)

Similarly to U-SP, the connection between UAV and gateway used to collect informa-
tion. Thus, their communication range are at the same level. The U-GW link use medium
range protocols such as IEEE 802.16p (WiMAX) for real-time data delivery and LTE/LTE-A
for transmitting large data (e.g., video) in real-time monitoring.

3.1.5. UAV-UAV Link (U-U)

In this category, the data transfer between UAVs, and the UAV create link with UAV.
The protocols, e.g., IEEE 802.11, IEEE 802.16p (WiMAX), with medium range can be used
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to achieve the connectivity between the UAVs. In real-time applications, the U-U links can
apply LTE/LTE-A.

3.1.6. UAV-Satellite Link (U-SL)

In some applications, the UAV is connected to satellite. The communication range is
long. To achieve the long distance connectivity, the Random Access (RA), hybrid schemes
and Demand Assignment (DA) schemes are usually used. In Figure 2, we provide a
summary and comparison of their technologies and applications.

3.2. Scalability

The number of sensor nodes may be in the order of hundreds or thousands, or reach
an extreme value of millions. The network topology is dynamic The new schemes must be
able to work with this number of nodes and utilize the high density of the network. The
density gives by the number of nodes within the transmission radius of each node in region
A, and it can be calculated according to [41] as

ρ(R) =
NπR2

A
(1)

where N is the number of sensors in region A, and R is the radio transmission range. In
general, the density can be as high as 20 sensor nodes per m3 [42]. The node density
depends on the application. For the vehicle tracking application is around 10 sensor nodes
per region [42]. A home may contain around two dozens of home appliances containing
sensor nodes [43], but this number will grow if sensors are embedded into furniture and
other miscellaneous items. For human motion tracking application is around 5 nodes
per 5 × 5 m2 [7]. For habitat monitoring application, the number of sensor nodes ranges
from 25 to 100 per region [44].

3.3. Fault Tolerance

Some sensor nodes may fail or be blocked because of power exhaustion, the UAV’s
motion, or environmental interference. The failure of sensor nodes should not affect the
overall task of the U-WSN. This is the reliability or fault tolerance issue. Fault tolerance is
the ability to sustain sensor network functionalities without any interruption due to sensor
node failures [45,46]. The reliability γ(t) or fault tolerance of a sensor node is modelled
in [46] using the Poisson distribution to capture the probability of not having a failure
within the time interval (0, t):

γ(t) = exp(−λk · t) (2)

where λk and t are the failure rate of sensor Sk and the time period, respectively. Note that
protocols and algorithms may be designed to address the level of fault tolerance required
by the applications. If the studied environment has little interference, then the protocols
can be more relaxed. For example, if sensor nodes are being deployed in a house to keep
track of humidity and temperature levels, the fault tolerance requirement may be low since
this kind of sensor networks is not easily damaged or interfered by environmental noise.
On the other hand, if sensor nodes are being deployed in a battlefield for surveillance
and detection, then the fault tolerance has to be high because the sensed data are critical
and sensor nodes can be destroyed by hostile actions. As a result, the fault tolerance level
depends on the application of the U-WSN, and the schemes must be developed with this
in mind.

3.4. Power Consumption and Network Lifetime

The wireless nodes and the UAV are powered by battery which has limited power
source. Both the lifetime of the sensors and the UAV show a strong dependence on the
micro-electronic device lifetime. Therefore, power conservation and power management
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take on additional importance. It is for these reasons that researchers are currently focusing
on the design of power-aware protocols and algorithms for sensor networks.

The main task of a sensor node in a sensor field is to detect information and forward
them. In addition, the main task of the UAV is to load sensors or devices. Hence, the power
consumption of the sensors includes three phases: sensing, communication, and data
processing. The main power consumption of the UAV is the movement consumption [7].
It costs a lot when it flying at an altitude [7]. In addition, there is a big gap between the
energy consumption during different UAVs [7]. The sensing unit and the data processing
are the same as in traditional WSN [47]. For the communication unit, it was noticed
that, in a U-WSN, the communication contains two phase, the communications between
sensors on the ground and the communications between the on-ground sensors and the air
sensors that deployed in the UAV. In addition, the communications between the ground
sensors is able to adopt the model as presented in [47]. In this section, we will focus on the
air-ground communication.

3.4.1. Power Consumption during Air-Ground Communication

The Signal-to-Interference-and-Noise Ratio (SINR) is used to measure the achievable
throughput and link quality. Suppose that, the SINR is denoted by Sinr, then,

Sinr =
Pr

Ps,r + Pn,r
, (3)

where Ps,r is the interference power summing at the receiver, Pn,r is the receiver noise power,
Pr is the received power from the serving transmitter. For a particular application, in order
to achieve the required throughput, the SINR is set at a given throughput (denoted by
Sinr,0) through adjusting the transmitter power. The energy consumption involved in the
process of delivering a message (from a ground node) towards an aerial collector over a
session interval ∆t, can be given as the following [48],

ESi = Sinr,0 · (PI,a + Pn,p)LSi
k
· ∆t, (4)

where PI,a is the average aerial interference power, and Pn,p is the platforms noise power.
Generally, the main focus is in the energy consumption of the sensor nodes, and it assumes
that the network is not constrained by the possible limitation in the aerial platforms energy.
Accordingly, its energy consumption is not account. Then, the total energy consumption is
obtained by

Eall = ΣN
i=1ESi . (5)

3.4.2. Network Lifetime

Network lifetime is a key design consideration for battery-powered U-WSNs. There
exist number of research focus on the lifetime maximization issues [49,50] or on the predic-
tion of the remaining lifetime [51,52]. Other research focus on the energy-efficiency issues
so as to extend the network lifetime [53–56], and the trajectory planning of the UAV is one
of the most consideration among these schemes [30,57,58]. Although a number of studies
have been done for network lifetime, U-WSN still face some issues, e.g., the collisions and
re-transmissions during communications, which cannot fully avoided in applications that
degrade the lifetime.

3.5. Security and Regulation

Security and regulation of the data collected from a U-WSN, either while stored inside
the UAV or during their transmission from the UAV to a gateway, is a major unsolved con-
cern. Furthermore, as thousands of businesses could receive clearance to fly drones in the
near future, UAVs will face with various security issues such as loss of data, authentication,
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access control, and intrusion attacks. In U-WSNs, security solutions are required for data
confidentiality, authentication and integrity at low cost.

Moreover, there are still many regulation issues to be resolved in the coming research.
Indeed, there are many requirements from the governments to regulate where the drones
fly and what is done with the torrents of data collected from aerial surveillance [59]. In
fact, numerous civilian drone manufacturers claim that the main barrier in U.S. and Europe
is not the technology, but the regulation. For instance, the U.S. FAA (Federal Aviation
Authority) provide some basic regulations and restrictions of the airspace that will govern
who can fly drones in the United States and under what conditions. A standard that is
formulated by 2016 will permit unmanned aircraft systems (UAS) to interoperate with
manned aircraft using an “electronic means” to see and avoid potential aerial disasters.
Due to the UAV is flying in the same national airspace, it is crucial for the world to comply
with a same safety regulations and restrictions.

4. Open Issues and Challenges

This section summarizes and discusses the open research issues and challenging future
directions. L. Gupta et al. provide a survey on important issues in U-WSN [60].

4.1. Synchronization Issues

The synchronization issue was a thorny subject in U-WSN, considering the limited
communication time. In the past, many synchronization algorithms have been investigated
to keep the synchrony of networked systems. The perfect time synchrony, Time-Diffusion
Protocol (TDP) [61], was proposed by Su and Akyildiz. In the synchronization process, the
TDP applies an iterative and weighted averaging mechanism built on the collected messages
from the whole network. In reference [62], the authors through enhancing the TDP scheme
to adapt to the particular applications (e.g., tracking and surveillance) that require global
time synchronization and fault-tolerance. However, most of these research are based on
traditional wireless networks. In the context of U-WSN, especially in dynamic topology,
the beaconing mechanism is usually used for the network synchronization [17–19,63,64].
In [65], the authors provide a survey on the synchronization in U-WSNs.

4.2. Relative Motion between the UAV and the Sensors

Both UAVs and targets are moving in U-WSN applications, such as animals monitoring.
The topology of the network changes as the node and the UAV move. At this point, one node
is within the range of the UAV, while at another time, it may be outside the transmission
range. Thus, mobility directly affects the connectivity of the network. It has a significant
impact on the data transmission performance of the network.

The duration that the mobile node is within the transmission range of the UAV
has an essential impact on the performance of the network, which is defined as contact
duration [7,17–19]. However, it only considers the case of mobile nodes and the same
mobile direction as the UAV, the static case and opposite mobile direction with the UAV
are not considered. In the following, we will provide a complete definition.

4.2.1. Contact Duration between the UAV and the Sensor

In U-WSN with mobile sensors, the node has an opportunity to communicate with
the UAV when they are within range of each other. The link duration is named as contact
duration [7,17–19]. As the “one UAV and one sensor” is the min-unit in U-WSN, we take
this scenario where the UAV moves along a predefined path to maintain the network
connectivity, for example, to calculate the contact duration (which is denoted as Tcd in
this article).

According to the existing research, we refined the scenario into two categories: (a) both
the UAV and the sensors move along a straight path, and (b) they move along a curved path.
The other cases, e.g., the “trajectories” of the UAV and the sensors have some intersections,
Tcd still need further study.
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(a) Straight Path

When the trajectory of the UAV is a straight path, the scenario can be further refined
as: sensor is static (Figure 3), sensor and the UAV are move at the same direction (Figure 4),
and in the opposite direction (Figure 5).

The relative movement distance between sensor and the UAV is denoted by dr. UAV
fly at a height h with constant velocity v. The range of the sensor is denoted by r. The
original distance between UAV and node is dx. Then, we will discuss the calculation of the
contact duration time as follows:

• The node is static (Figure 3). In this case, the relative velocity between the node and
the UAV is v. The relative movement distance between them is dr = AsBs, i.e.,

dr = 2(r2 − h2 − d2)
1
2 . (6)

when the UAV is out of the range (Figure 3a). In Figure 3b, when the UAV is within
the range of the node, dr = DsBs, i.e.,

dr = (r2 − h2 − d2)
1
2 + dx . (7)

The contact duration between the UAV and the static node, Tcd can be given by,

Tcd =
dr

v
. (8)

This is based on an assumption that the flying height of UAV is smaller than the range
of the node (h < r) and the UAV is out of the range of the node in the beginning
(dx > r). The relative movement distance will be different if their topologies are
changed (as illustrated in Figures 4 and 5).

• The node and the UAV move at the same direction (Figure 4). The sensor velocity is
vs. The contact duration time depends on the original deployment of the UAV if the
sensor and the UAV have the same speeds (vs = v). The relative velocity between
the node and the UAV is 0. Let the moving time and distance of node are T and L
respectively. The relative movement distance between the UAV and the sensor is
dr = 0 when the UAV is out of the range of the UAV (dx > r in Figure 4a). dr = L
when the UAV is within the range of the node (dx ≤ r in Figure 4b).
When vs 6= v, similarly to static case, the relative distance between them can be
given by,

dr =


0 vs > v, dx ≥ r

AsBs vs < v, dx ≥ r
AsDs vs > v, dx < r
DsBs vs < v, dx < r .

(9)

Then, according to Equation (8) and Figure 4b, the Tcd between the UAV and the
mobile sensor (moving at the same direction), can be given as in,

Tcd =



T vs = v, dx ≤ r
0 vs = v, dx > r
0 vs > v, dx ≥ r

2AsCs
v−vs

vs < v, dx ≥ r
AsCs−dx

vs−v vs > v, dx < r
AsCs+dx

v−vs
vs < v, dx < r

(10)

where AsCs = (r2 − h2 − d2)
1
2 .



Drones 2022, 6, 95 13 of 24

 

v 

B 

UAV 

A 

r h 

O 

C 

Sensor 

As Bs d 

(a) UAV is out of the range of the sensor

 

v 

B 

UAV 

A 

r h 

O 

C 

Sensor 

As Bs 

Cs 
Ds 

dx 

d 

(b) UAV is within the range of the sensor

Figure 3. Simple scenario with one UAV and one Sensor (Static).
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Figure 4. Simple scenario with one UAV and one Sensor (Same direction).
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Figure 5. Simple scenario with one UAV and one Sensor (opposite direction).

• The node and the UAV move at opposite direction (as shown in Figure 5). Similarly
to the front case, the relative movement distance depends on the dynamic topology.
Hence, it can be given by,

dr =

{
AsBs dx ≥ r
AsDs dx < r .

Then, the Tcd between the UAV and the sensor (moving at the opposite direction) can
be calculated by,

Tcd =

{
2AsCs
v+vs

dx ≥ r
AsCs−dx

v+vs
dx < r .

(11)

As shown in Figures 3–5, Tcd achieves the maximum when the UAV flies on the top of
the node. This conclusion is corroborated in Equations (8), (10) and (11). The longer the Tcd,
the higher opportunity for the sensor to communicate with the UAV.
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(b) Curve Path

When the trajectory of the UAV is a curve path (Figure 6), the contact duration is
obtained through a beacon based prediction mechanism [31].

Figure 6. Simple scenario with one UAV and one Sensor (curve path).

The midline of the pre-defined path is y = f (x) (Figure 7). At tk, the UAV sends a
beacon message to its coverage, and S receives it and successfully sends the join message
to the UAV. The precise location and speed of the S which are recorded in join message are
obtained by the UAV. The location coordinates is denoted by Stk (xtk , ytk , 0). The vehicles are
supposed to mobile on a flatland and it assumes that the altitude changes are negligible. The
distance between S and the midline of the path is denoted by a0 = ytk − f (xtk ) (Figure 7).
Without loss of generality, we assume that the S moves along a line which is given by
y = f (x) + a0 before the next beacon coming. This assumption is based on an estimation
that the influence brought by the lane change of bicycles is negligible compared to the
path length.

Figure 7. An illustration of the trajectory of Si. In this figure, lk is the curve length.
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Suppose that, the m + 1th beacon is sent at tl (then, the IBD = tl − tk). Then, the
coordinates of S at tj (tk ≤ tj < tl) is given by,{

vitj
.
=
∫ xtj

0

√
(1 + (y′)2)dx

ytj = f (xtj) + a0
(12)

where
∫ xtj

0

√
(1 + (y′)2)dx is the curve length of y = f (x) + a0 when x ∈ [0, xtj ]. Accord-

ingly, the coordinates of the UAV at tj can be obtained through, vtj
.
=
∫ xu

tj
0

√
(1 + (y′)2)dx

yu
tj
= f (xtj) .

(13)

Let Tcd,tk
be the remaining contact duration of the node S and the UAV at tk. It means

that the S will out of the range of the UAV after Tcd,tk
, and it can be obtained through,

Tcd,tk

.
=

1
v

∫ xtλ

xtk

√
(1 + (y′)2)dx (14)

with a boundary conditions dtλ
(Utλ

, Stλ
) = R where tλ = tk + Tcd,tk

and R is the transmis-
sion range of the UAV.

4.2.2. Summary and Insight

Through reviewing the relative motion between the UAV and sensors, the contact
duration between the sensor and the UAV is one of the key factor in the U-WSN applications.
The longer the contact duration, the higher opportunity for the communication between
the sensor and the UAV. Conversely, the shorter the contact duration, the lower opportunity
of the communication between them. Thus, the data transmission of the network can be
better improved, if the contact duration is considered [17,31].

Furthermore, the fairness of the network can be enhanced if the contact duration is
considered when designing the routing protocols [45] or MAC protocols [19].

4.3. Trajectory Planning of the UAV

As aforementioned, mobile vehicle based technologies are effective methods address-
ing localization issue because of its mobility and flexibility. Path planning is object to
improve the localization accuracy with a best possible trajectory of the UAV. Proper path
planning can guarantee good coverage of the whole sensing field as well as keeping the
minimum path length. Study in [66] is an application to UAV path planning. An adaptive
operator quantum-behaved pigeon-inspired optimization algorithm along with logistic
mapping method were proposed in [66] for the application to UAV path planning. A
comparison result presents that the performance of their proposed algorithm is better than
parts of the existing algorithms in terms of convergence and accuracy. Indeed, accord-
ing to different applications, many investigations with different objective functions and
optimization methods have been done (we summarize them in Table 6).

Moreover, according to whether there is interaction between UAVs and nodes, path
planning of U-WSN has two categories. First is static path planning in which the path is
predefined and second is dynamic path planning in which the path can be changed. The
existing algorithms are summarized and compared in Table 7.
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Table 6. The objectives of path planning in U-WSN.

Objectives Detail Applications

max C(S) Maximization of the coverage of the
whole sensing field. In some applica-
tions, it is better to make sure that all
the nodes within the interesting area
to be covered.

In [67], the authors formulate an area cov-
erage reliability issue. Their proposed
algorithm quantifies the network likeli-
hood that the network can be in an oper-
ating state where the coverage condition
is satisfied.

min PUAV Minimization of the UAV flying path.
The whole path length should be con-
trolled to reduce the localization delay
and the system energy consumption.

The authors in [21] proposed an effective
path length reduction algorithm for UAV
path planning which has a low compu-
tational complexity. The proposed algo-
rithm not only used in control center but
also in UAV controller.

min DUAV Minimization of the UAV’s travel du-
ration. This objective helps the system
to save energy consumption.

In [22], the authors address the path plan-
ning issue with the objective of the min-
imization of UAV’s flying duration. En-
ergy, fairness, collision and tracking be-
tween UAVs were considered.

max A(S) Maximization of the localization accu-
racy. This objective helps the sensors
within the coverage be localized with
high accuracy.

In [23], the authors address the path plan-
ing accuracy problem on U-WSN. They
proposed an novel algorithm which con-
siders the accuracy of positioning and the
efficiency of flight.

min Ewsn Minimization of energy consumption.
This is the main problem in almost all
of the applications.

In [68], based on genetic algorithm, the au-
thors proposed an energy efficient mech-
anism for autonomous UAV. In this algo-
rithm, the authors considered the relief
and obstacles.

max Qdata Maximization of the quality of data
communication. The main objec-
tive in almost all of the application
due to their research based on the
collected data.

The authors in [69] proposed two data
collection protocols (IDGP and DDGP)
based on infrastructure through plan the
mobile path.

max Lnetwork Maximization of the network lifetime.
The longer the network lifetime, the
more collections of the network.

The authors in [30,57,58] proposed trajec-
tory planning algorithms to extend the
network lifetime.

S is the sensor set.

4.3.1. Static Path Planning

In static case, the trajectory for mobile vehicles is determined in advance. Vehicle
moves along the pre-determined trajectory strictly. The simplest case is that the vehicles
move in Lines [70]. The vehicle moves in a predefined line and broadcasts gradient signals
to localize the unknown node. The trajectory is a x-rays. Based on this, the algorithms can
be SCAN, DOUBLE SCAN, and HILBERT [71]. In SCAN algorithm, the vehicle moves in
one direction while it moves in both directions in DOUBLE SCAN method. In HILBERT
SCAN scheme, the vehicle moves in the Hilbert pattern. They all have the same objective
that is to maximize the network coverage, even in the corner. It can be noticed that some
areas are visited frequently because of the linearity of the trajectory. Thus, curves were
introduced. Circle and s-curve [72] are the critical methods to reduce localization col-
linearity [72] (in statistics, the co-linearity refers to the fact that the explanatory variables
in the linear regression model are distorted or difficult to estimate accurately due to the
existence of precise correlation or high correlation between the explanatory variables. Thus,
in the localization mechanism, the localization could be well estimated if the col-linearity
could be reduced.). However, this types of scan leave the corner of the region. Thus, mobile
anchor node centroid localization (MACL) algorithm [73] was introduced. In MACL, the
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mobile vehicle traverses the interesting area following a spiral trajectory and periodically
broadcasting beacon packets which contain its current position. More algorithms and their
characteristics are summarized and compared in the Table 7.

Table 7. Comparison of existing path planning algorithms based on mobility.

Algorithms Nmv
1 Ec

2 Al
3 Advantages Disadvantages

Static Path Planning

Lines [70] 1 Low High The simplest path planning. Shorter communication range.
SCAN, Double
SCAN, Hilbert [71]

1 Medium High These algorithms are object to maximize the
coverage.

They waste much of col-
linearity.

Circle, S-curve [72] 1 Medium Medium No col-linearity These algorithms leave the cor-
ner of the interest area.

MACL [73] 1 Medium Low In MACL, the vehicle moves along a spiral
path and broadcasts ’beacon’ (including the
current location information) periodically.

The accuracy of the localiza-
tion is about 50%.

PI [74] 1 Medium High Perpendicular Intersection (PI) is used to
localize nodes. Vehicle moves in zigzag line
with an angle within (0, π

3 ).

Energy consumption for turns
are not considered.

LMAT [75] 1 Medium Medium In this algorithm, the vehicle moves along
an equilateral triangle line to send ‘bea-
cons’, through which, the sensors positions
are well estimated even if the “beacon”
are col-linear.

The authors fail to consider the
energy consumption for turns.

S-type [76] 1 High High This algorithm achieves the shortest path
through making the vehicle moves in
’S’. The interesting area is divided into
small square (with each has a size of R√

2
),

based on which the col-linearity problem
is solved.

Much energy consumed for
turns and low vehicle utiliza-
tion.

WCL [77] 4 High High In WCL algorithm, four mobile vehicles
were used. They form a three-dimensional
space and move in 3D-space, thereby, a 3D
space network could be covered.

Due to 3D localization, this
algorithm consume much en-
ergy. Beacon col-linear prob-
lem are fail to sloved.

Dynamic Path Planning

MBAL [78] 1 Medium Low MBAL works better when the sensors are
irregularly deployed.

This algorithm fail to consider
the obstacle case.

BRF, BTG [79] 1 Medium High In the two algorithms, the network topology
was regard as a connected indirectly graph.
In addition, they are able to localize all the
sensors if they are densely deployed.

Both the two algorithms have
high real-time requirements.

MBL (ndc) [80] 1 High High It is a dynamic trajectory
planning algorithm.

The algorithm complexity is
high when the network size is
large.

MALS [81] 1 Medium High This algorithm is proposed based on clus-
tering mechanism. In addition, it is
designed for non-uniform and irregular
deployment scenarios.

Due to it is based on cluster-
ing; thus, high localization de-
lay is brought.

DREAMS [82] 1 Medium High In DREAMS, the sensory field information
are not required in advance.

It performs normal when the
node failure is presence.

Virtual Ruler [83] 2 High High In virtual ruler, it can be measured in differ-
ent values from different point of view. It is
applicable for obstructed networks.

In this algorithm, all unknown
nodes are required to de-
ploy an ultrasound receiver
or “beacon”.

1 Nmv is the number of mobile vehicles. 2 Ec is the energy consumption. Here, we have three levels: “Low”,
“Medium” and “High” which are from the original references that the algorithms are defined. 3 Al is the
localization accuracy. Al has three levels: Low: Al < 70% ; Medium: Al ∈ [70%, 90%); High: Al ≥ 90% .
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4.3.2. Dynamic Path Planning

The static path planning algorithm works well when the unknown nodes are assumed
to be uniformly deployed. However, it may not be a better solution when the nodes are
deployed disarray. Due to the disarray deployment, it spends a lot of localization time and
moves long path if the system use the static path planning algorithms. Some researchers
concentrate on the work of dynamic case to fully utilize the distribution information
and minimize the energy consumption and path length. In dynamic case, none of the
mobile path is defined in advance. All of the trajectories are determined based on the
real-time information.

A large number of investigations have been done on dynamic path planning. Due to
the dynamic characteristics, one of the central issues is whether to consider obstacles. Thus,
the existing dynamic path planning algorithms can be classified into two categories, with
and without obstacle.

The authors in [78] proposed a movement mechanism, mobile beacon-assisted local-
ization (MBAL). It is a low computational complexity algorithm among movement path
planning algorithms. However, the obstacle case is not considered. In [79], the authors
proposed two algorithms, Breadth-First (BRF) and Backtracking Greedy (BTG) algorithms,
based on which all nodes could be localized. However, it requires very high real-time
condition. We provide a summarizing and comparison in Table 7.

4.3.3. Summary and Insight

Through reviewing the static and dynamic path planning of mobile vehicles (as
presented in Table 7), we notice that few algorithms use extra hardware to plan the trajectory.
Most of the existing algorithms use col-linearity principle [72] of mobile vehicles. A single
mobile vehicle would be cheaper. However, it may bring more col-linearity or longer
localization time issues. Multiple mobile vehicles could help to reduce the localization time,
especially in 3-dimension scenarios.

Compared to the dynamic case, static path planning algorithms fail to fully utilize the
real-time information that obtained. In practical applications, the environment where the
sensors are deployed is full of uncertainties, and therefore, dynamic path planning performs
better than pre-defined one because it can consider more real-time information. The main
issues in dynamic path planning are adaptability and computational complexity. In the
existing dynamic path planning algorithms, which were applied in obstructed scenarios, it
is assumed that the nodes are equipped with hardware (such as cameras, radar, infra-red,
sonar, etc) for detecting obstacles. Based on these, the dynamic algorithms are recognized to
fully use the real-time information and they are more accepted for areas with uncertainties.

5. Discussions

In this section, we introduce a working example to discuss the aforementioned factors
and issues.

5.1. A Working Example

Without loss of generality, take the UAV trajectory as a curve. In the following, we
take the scenario as presented in Figure 6, which has one UAV and multiple sensors, as an
example. As shown in Figure 6, the data center is set at the original center point of the path,
sensors are deployed in the front part of the predefined path and move along the path. The
UAV takes off from the data center and flies to the given height h, and then, flies along the
path with a given speed v to collect data from sensors.

The main energy consumption of such scenario is the energy consumption of the
battery [7]. Thus, the network lifetime depends on the UAV flying time. We set this as 300 s
in the simulation.

We used periodic beacon mechanism to synchronize the network. The UAV sends
a beacon message to its surrounding coverage to announce its coming. The sensors that
received the beacon send a join message which contains the location and the speed to the
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UAV. After the reception of the join messages from the sensor nodes, the data collection
phase starts. The interval between adjacent beacons is named as synchronization intervals,
and denoted as Tsync.

Figure 8 presents the scalability and the data collection performance of the network in
different synchronization intervals and network size. It shows that the shorter the Tsync,
the larger the Nnode. This is because the shorter Tsync brings larger number of nodes that
are detected. Thus, the number of nodes that participate the communication increased. It is
also able to enhance the fairness of the network when appropriate Tsync was selected. This
is because the appropriate Tsync brings the communication opportunity of those nodes that
will never be detected in other case.

Figure 8. The number of sensors (Nnode) that participate the communications. The Tsync,i

(i = 1, 2, 3, 4, 5) are the synchronization intervals.

5.2. Extension of the U-WSN Use-Case to NTN-Aided IoT

The current state of the art shows the need for 3D modeling and simulation of NTN,
including moving in space connected objects. Problems studied in the case of UWSN could
be extended to general non-terrestrial network use cases. Opportunistic routing under
energetic constraints is challenging, particularly in autonomous crewless vehicles and
nano-satellites. Even though recent works on energy harvesting show the opportunity
to optimize the overall system either through flying ad-hoc networks deployment [84]
and drones trajectory control [85] or by using efficient data collection [86] combined with
fast wireless power transfer [87]. The system control could be via centralized, distributed,
or multi-tier architectures. Designed for WiFi devices, crowd-based schemes [88] allow
autonomous adaptive placement without exploiting the device’s location. The applicability
of those distributed schemes raises energy optimization needs when it is a matter of things
with low-power. The self-organization of the NTN is particularly challenging, to efficiently
collect and send data via the network on intermittent connection to infrastructure to the
cloud. Autonomy and placement to maintain permanent connectivity [89] dictate revisiting
communications from UAVs to the cloud, which are investigated in the context of 5G and
beyond [90].

Furthermore, in addition to the issues mentioned in this paper, there are wide open
challenges in U-WSN applications. For example, the charging challenges, collision avoid-
ance and swarming, etc.

The UAV missions necessitate effective energy management for battery-powered
UAVs. Reliable, continuous, and intelligent management can help UAVs achieve their
missions and prevent loss and damage. The UAV’s battery capacity is a crucial factor
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in enabling sustainable missions. However, as the battery capacity increases, its weight
increases, which causes the UAV to consume more energy for a given task. The main
directions in the literature to mitigate the limitations in UAV batteries are UAV battery
management [91], wireless charging for UAVs [92], and solar powered UAVs [93].

UAVs can collide with obstacles by moving or stationary objects in indoor or outdoor
environments. Therefore, during UAV flights, it is vital to avoid accidents with these
obstacles. Thus, the development of UAV collision avoidance techniques has gained
research interest.

5.3. Future Edge Flying Servers

Edge computing is an optimization method that consists of processing data at the
edge of the network, close to the data sources, i.e., near the sensors (at the border of the
IoT perception layer). Basics of Mobile Edge computing are provided in [94]. Drones
with more computing capacity than sensors can thus play the role of Mobile Edge Servers.
Therefore, it would be possible to minimize the bandwidth requirements between the
sensors and the data processing centers by undertaking the analyses as close as possible to
the On-ground data sources. There are several advantages to placing computation at the
drone level. Indeed, this makes possible the placement of functions to reduce the volumes
of data to be transmitted, perform complex tasks in particular for reconfigurable sensor
architectures, correlate data from heterogeneous sources, etc. Furthermore, UAV-enabled
Edge computing in IoT helps to avoid the transmission of irrelevant data to data centers or
the cloud, thus bringing fluidity and speed of analysis and decision-making.

UAV-enabled edge server approaches require mobilizing resources that may not be
permanently available. Consequently, the same networking challenges highlighted above
are raised: the intermittency of the links, the Air-Ground contact duration, and the energy
consumption, but also computing ones such as responsiveness and prioritization of task
execution. Several issues can be considered in UAV-enabled edge computing for IoT,
particularly those of data and task offloading.

6. Conclusions

In this article, we provided the main basics and features of UAV-enabled wireless
sensor networks. Compared to traditional WSN, UAV-enabled WSNs present different
issues and challenges. Through detailed analysis of the existing U-WSN applications, we
refined the performance and the capability of the UAV and its functionalities when used as
a communication node. In addition, the architectures, standard technologies, open issues,
and challenges that emerge from this new paradigm are also mined. These insights may
serve as motivations and guidelines for future designs of U-WSN.

The high flexibility of the UAV and the high dynamic topology of the network create
new problems that cannot be ignored, the contact duration. In the future, the remaining
contact duration between the UAV and the sensor would be a key criterion when addressing
the issues in U-WSN, especially in the context where the sensor nodes are mobile. Because
of the relative movement of the UAV and the sensors, the factors that influence the U-WSN
design show difference from WSN. The UAV trajectory planning has become a link that
cannot be crossed in the design of a U-WSN.
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