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Abstract: A system that can fly off and touches down to execute particular tasks is a flying robot. 

Nowadays, these flying robots are capable of flying without human control and make decisions 

according to the situation with the help of onboard sensors and controllers. Among flying robots, 

Unmanned Aerial Vehicles (UAVs) are highly attractive and applicable for military and civilian 

purposes. These applications require motion planning of UAVs along with collision avoidance pro-

tocols to get better robustness and a faster convergence rate to meet the target. Further, the optimi-

zation algorithm improves the performance of the system and minimizes the convergence error. In 

this survey, diverse scholarly articles were gathered to highlight the motion planning for UAVs that 

use bio-inspired algorithms. This study will assist researchers in understanding the latest work done 

in the motion planning of UAVs through various optimization techniques. Moreover, this review 

presents the contributions and limitations of every article to show the effectiveness of the proposed 

work. 
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1. Introduction 

Flourishing high-tech innovations are making aerial robots an integral part of our 

daily lives. There are extensive research and analyses on flying robots that possess the 

mobility given by flight [1,2]. Among these, Unmanned Aerial vehicles (UAVs) are vastly 

used flying robots due to these distinguishing advantages over others, i.e., budget-

friendly, small-sized, lighter in weight, and portable. Moreover, the state-of-the-art char-

acteristics of UAVs are position controlling, sensor employment, auto-level application, 

structure monitoring, etc. [3–5]. It also has a diverse array of applications, whether in the 

military or civilian sectors [6]. There are two primary models of UAVs; one is fixed-wing, 

and the other one is multi-rotor UAVs. The essentials of UAV performance are higher in 

complex tasks or uncertain environments. Usually, a single UAV has a small size, which 

limits its volume of sensing, communication, and computation [7]. Thus, cooperative 

UAVs working together have more benefits and potential results in comparison to a single 

UAV [8]. A few of them are cost and operation time reduction, low failure of missions, 

and achievement of higher flexibility, survivability, configurability, and multi-tasks capa-

bility [9]. 

Background: It is one of the utmost evolving technologies from the 18th century and 

is advancing till now. At first, in 1849, Montgolfier’s French brothers and Austrians em-

ployed unmanned balloons filled with bombs [10]. The development of UAVs with cam-
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eras occurred in 1860, which helped with vigilance [11]. In 1917, Charles F. Kettering in-

vented an Aerial Torpedo and named unmanned balloons bugs. The Royal Navy tested a 

radio-controlled pilotless aircraft during the 1930s [12]. The 1940s were marked by oper-

ation Aphrodite, in which a formation of UAVs with handheld control took place for the 

first time and radio control-based Queen Bee was developed. A few of them were Pioneer, 

Predator, Ryan fire bee, etc. In 2003, Amazon started using UAVs commercially [13]. 

Related Work: Extensive analysis of various core issues on UAVs related to motion 

planning under different circumstances and environments [14]. To design motion control 

protocols and select path planning techniques, many problems and factors require serious 

considerations [15]. Numerous researchers have proposed distributed consensus-based 

motion controls for results with efficacy and accuracy. Some developed leader-follower 

strategies for efficient outcomes [16]. Some analyses have used bio-inspired algorithms 

for better path planning with minimal run time. Many employed hybrid algorithms for 

optimal path planning and achieved a reduction in cost and convergence time [17]. 

Motivation and Contribution: The motivation for this paper is to assemble various 

strategies used in different research together in a single place. This will help researchers 

select the best strategy for their required missions while comparing the explorations and 

exploitations of all the strategies. To overcome the hurdles of different limitations, uncer-

tain disturbances, and complexities, appropriate strategies are essential. This makes the 

system more stable and efficient and reduces the convergence rate and cost. The prime 

contributions of this review paper are: 

A. The evaluation of the challenges faced by UAVs under different scenarios. 

B. Summarizing various promising motion planning techniques and algorithms for de-

termining the optimum path for UAVs. 

C. To gather the contributions and limitations presented in each article. 

This review is based on the research studies and publications from reputed authors 

in the field of motion planning techniques used for UAVs over the last three years. 

Organization: The layout of this paper has many sections, of which Section 2 dis-

cusses the challenges that a UAV faces. Section 3 reviews recent developments in motion 

control and path planning mechanisms. Section 4 evaluates the motion planning and op-

timization algorithms. Section 5 presents the discussion. Section 6 provides the conclu-

sion, and Section 7 gives directions for future work. 

2. Challenges in Unmanned Aerial Vehicles 

There are extensive investigations regarding UAVs, but still, they face various chal-

lenges. The prime challenges that all the researchers face include the selection of UAVs 

with appropriate path planning that is suitable for the mission [18]. Then, forming effi-

cient motion control and achieves optimal path planning. Moreover, employing proper 

techniques for navigation and communication so that obstacle avoidance and collision 

avoidance are possible. Along with this certification, regulation and human-machine in-

terface issues are of much importance. Below are some of the challenges that require seri-

ous consideration:  

2.1. Navigation and Guidance 

UAVs have to track their mobility by measuring their distances, making maps, and 

sensing physical surroundings. To determine the positions of aerial robots, it is essential 

to develop a navigation system, which is automatic and does not require human interven-

tions [19]. These robots are for flying at higher altitudes and under different environments 

and hazards. Therefore, the safety and reliability of the system to operate properly are 

major challenges. 
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2.2. Obstacle Detection and Avoidance  

The navigation of UAVs is much influenced by obstacles and collisions. Providing 

UAVs with an ideal environment is not a viable option. Obstacles that come in the path 

can be avoided. Moreover, the performances of multiple aerial robots are more beneficial 

and efficient than a single flying robot. Working in groups can result in collisions. UAVs 

must be furnished with algorithms or techniques that can handle these issues [20]. 

2.3. Shape and Size 

Nowadays, UAVs are widely used for different purposes. They are required to fly at 

different levels with different ranges. Some have to stay for a longer period to accomplish 

their missions. Some use runways for flying and landing. Some have to pass through nar-

row areas. To solve all these issues, it is necessary to consider the appropriate shapes and 

sizes of UAVs according to the missions [21]. Figure 1 shows some of these challenges 

faced by UAV [22]. 

 
Figure 1. Challenges in UAVs [22]. 

2.4. Formation Control and Path Planning Issues 

2.4.1. Formation Control Issues 

There are numerous studies on motion control, but it still lacks and requires consid-

eration and further handling. For example, there stands a need to tackle distributed levels 

with their effects properly. Similarly, machine learning and reinforcement learning re-

quire a longer time for the online learning period and huge data sets for offline training. 

Therefore, the integration of artificial intelligence (AI) techniques into control protocols is 

essential. One more challenge in motion control protocol is its robustness, which is highly 

influenced by environmental disturbances [23]. 

2.4.2. Path Planning Issues 

Path planning is to obtain a path for UAVs from the starting to the goal point in such 

a way that they will carry out their tasks efficiently. UAVs require optimal paths that sat-

isfy their performance constraints and ensure collision avoidance. Such optimal and dy-

namic paths consume less time and energy. Path planning is a global optimization prob-

lem that requires various technologies and algorithms to be integrated [24]. 

Among all the challenges, the most crucial is path planning and motion control for 

UAVs. These require considerations so that the UAV can perform well during tasks under 
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any environmental conditions. Several research centers, academies, and industries are an-

alyzing the aforementioned challenges and trying to overcome these issues by developing 

more improved strategies. Section 3 reviews the development of various protocols and 

techniques used for the above challenges. 

3. Recent Developments in UAVs 

UAV technology is expanding due to technological innovations. UAVs are becoming 

more affordable and easy to use, which enhances their application in diverse areas [6]. 

This paper reviews the strength and development of navigation, communication, shape 

and size, collision avoidance, motion control methods, and path planning techniques. It 

deliberates how they provide solutions to challenging problems while making a consid-

erable impact. 

3.1. Developments in Navigation and Guidance of UAVs 

Navigation technology is quite significant for UAV flight control. Various developed 

navigation technologies possess different features. Such as satellite, geometric, integrated, 

Doppler, and inertial navigations. Different purposes require different navigation tech-

nologies. The main navigation systems for UAVs are a tactical or medium range naviga-

tion system and a high-altitude long-endurance navigation system [25,26]. Development 

in navigation can be evaluated as: 

D. High-performance Navigation with Data Fusion: Navigation uses a Kalman filter; 

China introduced a data fusion mechanism using this filtering technology. This data 

fusion is improved by using AI technology. It helps to determine the flight status and 

guarantees the normal flight of UAVs. 

E. New Inertial Navigation System: Many researchers rendered services to develop 

optical fiber inertial navigation and laser inertial navigation. Improvement was re-

quired by the industry. The widely used silicon micro resonant accelerometer helps 

in UAV navigation. It simplifies the weight and volume, consumes less energy, and 

refines flight pliability. 

F. Intelligent Navigation Ability: An emergency navigation system utilizes various 

adaptive technologies along with mission characteristics and modes. Moreover, in-

formation technology is applied to boost the UAV technology and upgrade the nav-

igation system. 

3.2. Developments in Shape and Size of UAVs 

Earlier, UAVs were applicable for military purposes only, but now they are used for 

various tasks. This is all due to the rapid progress in developing UAVs with a wide range 

of shapes and sizes [27]. Different UAVs are utilized for different purposes. According to 

physical types, we have fixed-wing and multi-rotor UAVs. 

Fixed-Wing UAVs: These UAVs possess only one long wing on any body’s side and 

require a runway or a broad and flat area. These can consume less battery; therefore, they 

can stay in the air for maximum hours. They are widely used for long-distance purposes, 

especially for military surveillance. 

Multi-Rotor UAVs: These UAVs are built up with multiple propellers and rotors and 

do not require a runway for vertical flying and landing. With more rotors, the position of 

UAVs can be controlled in a better way. Mostly quad-rotors are used for small and regu-

lar-sized UAVs. Similarly, UAVs are classified based on their sizes into micro or mini-

UAVs, tactical UAVs, strategic UAVs, and special-task UAVs. 

Micro and Mini-UAVs: Many missions require small UAVs. Such as surveillance 

inside buildings, Nuclear, Biological, and Chemical (NBC) sampling, the agricultural sec-

tor, and broadcast industries. Micro and mini-UAVs were developed for these purposes. 

The take-off weight of a micro-UAV is 0.1 kg, and a mini-UAV is less than 30 kg. Both fly 

below 300 m with less than 2 h of endurance. The communication range is up to 10 km.  
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Tactical UAVs: Missions such as search and rescue operations, mine detection, com-

munication relays, and NBC sampling use tactical UAVs. They can have a take-off weight 

of up to 1500 kg. Tactical UAVs can fly up to 8000 m with an endurance of up to 48 h. The 

communication range is around 10–500 km. 

Strategic UAVs: For airport security, communication relays, intercept vehicles, and 

RSTA, strategic UAVs are highly suitable. They can have a maximum take-off weight of 

around 12,500 kg. They can fly up to 20,000 m with 48 h of endurance. The communication 

range is more than 2000 km. 

3.3. Developments in Collision Avoidance of UAVs 

A collision usually occurs between a UAV and its neighboring UAV or an obstacle 

whenever there is less distance between them. A collision avoidance system (CAS) makes 

sure that no collision takes place with any stationary or moving obstacle [28]. The CAS 

first requires the perception phase and is then followed by the action phase. 

Perception Phase: CAS detects an obstacle in this phase while utilizing various active 

or passive sensors according to their functionality principle. Active sensors possess their 

sources for wave emission or light transmission along with the receiver or detector. The 

most-used active sensors include radars, sonar, and LiDARs. All of these use minimum 

processing power, give a quick response, are less affected by weather, scan bigger portions 

in minimum time, and can return various parameters of the obstacles effectively. Whereas 

passive sensors are only capable of reading the emitted energy from another source such 

as the sun. Widely used passive sensors are visual or optical cameras and infrared (IR) or 

thermal cameras. The image formed by a visual camera requires visual light, whereas a 

thermal camera requires IR light. 

Action Phase: This phase utilizes four prime strategies for collision avoidance. These 

are geometric, force-field, optimized, and sense and avoid methods. The geometric ap-

proach utilizes the information about the location and velocity of the UAV along with its 

obstacle or neighbors. This is performed by trajectory simulation in which nodes are re-

formed for collision avoidance. In force-field, the approach manipulates the attractive or 

repulsive forces to avoid collisions. In the optimized method, the parameters of obstacles, 

which are already known, are utilized for route optimization. In the sense and avoid tech-

nique, runtime decisions are made based on obstacle avoidance. The development in CAS 

helps in simple tasks by warning the vehicle operator and in complex tasks partially or 

completely controlling the system for collision avoidance. 

3.4. Developments in Formation Control Protocols of UAVs 

Formation control aims to generate control signals, which pilot UAVs to form a spe-

cific shape. Along with the architecture of motion control, the developed strategies for 

obtaining it are of much importance [29]. 

Formation Control Design: Motion controls of UAVs require a flow of information 

within its team; therefore, it uses communication architectures. Its architecture is catego-

rized as: 

There may be a lack of availability of global information in a single UAV for a whole 

operation. Due to its restricted capabilities to compute and communicate, centralized ar-

chitecture is considered or used rarely. Decentralized architecture is preferred more for 

multi-UAV systems and uses the consensus algorithm technique for designing it. It is 

based on local interactions with the neighbors while maintaining a certain distance. 

Formation Control Strategies: Various developed control approaches are discussed 

here that aid the researchers and possess certain benefits and limitations. They are: 

i. Leader-Follower Strategy: As obvious from its title, this approach assigns one UAV 

as a leader, while the remaining UAVs as followers in a group. The mission infor-

mation remains with the leader only while the followers chase their leader with pre-

designed spaces. The major benefit of this strategy is that it can be implemented 
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simply and easily. Due to leader dependency, this strategy faces single-point failures. 

This limitation can be compensated by assigning multi-leaders and virtual leaders. 

ii. Behavior-based Strategy: This approach produces control signals, which consider 

several mission essentials, by adding various vector functions. Its greatest merit is 

that it is highly adaptable to any unknown environment. Its demerit is the require-

ment to model it mathematically, which leads to difficulty in analyzing system sta-

bilities. 

iii. Virtual Structure Strategy: This approach considers rigid structure for the desired 

shape of the group of UAVs. To achieve the desired shape, there is a need to fly each 

UAV towards its corresponding virtual node. Abilities to maintain the formation and 

fault-tolerance are its greatest advantages. This approach faces failure when the de-

tection of a UAV is faulty in the formation. The compensation for this faulty UAV 

requires reconfiguration of the formation shape. This approach calls for a strong abil-

ity to compute, which is a disadvantage of this approach. 

3.5. Developments in Path Planning Techniques of UAVs 

Path planning aims to design a flight path towards a target with fewer chances of 

being demolished while facing limitations. Extensive research proposed different meth-

ods that overcome the path planning complexity of UAVs. To design algorithms for path 

planning, certain parameters, such as obstacles, the environment, and constraints, require 

selection with considerations [30]. The approaches employed for path planning have clas-

sifications based on their features and methodology. 

4. Motion Planning and Optimization 

4.1. Motion Planning 

In robotics, motion planning refers to the act of dissolving a specified mobility goal 

into distinct motions. However, it is used to fulfill movement limitations while also po-

tentially optimizing some components of the motion. However, motion planning is the 

challenge of planning for a vehicle that operates in areas with a high number of objects, 

performing actions to move through the environment as well as modify the configuration 

of the objects [31]. Even though the motion planning situation has arisen in continuous C-

space, the calculation is discrete. As a result, we need a means to “discretize” the problem 

if we want an algorithmic solution. As a result, there are mainly two types of planning, 

combinatorial planning and sampling-based planning. 

4.1.1. Combinatorial Motion Planning 

Combinatorial Motion Planning is a type of motion planning that involves more than 

one approach to achieve the task, as shown in Figure 2. Although combinatorial motion 

planning discovers the pathways through the continuous configuration space, by using 

these strategies, researchers obtain a better result. The effective combination of algorithms 

is commonly based on bio-inspired algorithms with different approaches. 
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Figure 2. Three tasks Combinatorial Optimization example [32]. 

4.1.2. Sampling-Based Motion Planning 

Random selection is used in sampling-based motion planning to build a graph or tree 

(path) in C-space on which queries (start/goal configurations) can be solved, as shown in 

Figure 3. To increase planner performance, we look at a variety of general-purpose strat-

egies. At times over the past years, sampling-based path planning algorithms, such as 

Probabilistic Road Maps (PRM) and Rapidly Exploring Random Trees (RRT), have been 

demonstrated to perform effectively in reality and to provide theoretical assurances such 

as probabilistic completeness. 

 

Figure 3. Sampling-based motion planning in the complex environment [33]. 

4.2. Optimization Approach in Motion Planning. 

The world has a desire for optimization concerning every natural phenomenon and 

its aspects. Therefore, many researchers developed optimization methods for multi-di-

mensional problems in various areas. These algorithms provide optimum solutions to the 

motion planning problems of UAVs, such as reducing production costs, convergence rate, 

energy consumption, and enhancing strength, efficiency, and reliability. The optimization 

algorithms are classified into biological algorithms, physical algorithms, and geographical 

algorithms, as presented in Figure 4 [34,35]. Biological algorithms have further classifica-

tions, namely swarm-based and evolution-based algorithms. 
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Figure 4. Classification of Optimization algorithms [36]. 

Biological Algorithms 

Bionic researchers on a natural pattern developed nature-based algorithms and 

termed them biological algorithms. These are stemmed according to the correspondence 

between biological evolution and activities. The prime benefit of biological algorithms is 

their strength to tackle static as well as dynamic threats and ensure offline working. With-

out classifying these algorithms into further groups, we can label them as memetic algo-

rithms. On the contrary, we can classify these algorithms into two categories, evolution-

based algorithms and swarm-based algorithms [37]. 

A. Evolution-Based Algorithms 

An evolution-based algorithm provides an optimal path for UAVs with considera-

tion of three aspects. These aspects include travel distance, cost incurred, and path relia-

bility cost to track that path. These evolutionary algorithms choose practical and achieva-

ble solutions randomly as the first generation and consider the parameters later to explain 

which randomly selected feasible solutions are appropriate or not. For determining 

curved paths with essential aspects in 3D terrain; an offline path planner with an evolu-

tionary algorithm is required [38]. By taking aspects into account, for example, beeline to 

destination, min-max distance related to targets, and topographical obstacles free tracks, 

one can display the B-spline curve as a flying path. Some examples of these algorithms 

include Genetic algorithm (GA), Evolutionary Programming (EP), Evolutionary Strategy 

(ES), Differential Evolution algorithm (DE), and Harmony Search algorithm (HS). 

GA gives the best optimal results in search space using three steps selection, crosso-

ver, and mutation. Besides its benefits, sometimes it gives long and premature conver-

gence and loses optimal results. Moreover, it is not applied to real-time data. In 1990, Fogel 

introduced a technique called EP. It reaches optimal results after many iterations. Simi-

larly, another evolutionary algorithm is ES, which uses specified principles in optimiza-

tion problems. DE employs real coding instead of binary coding. It refines the final path 

while reducing the computational cost. The evolutionary algorithm that mimics a musi-

cian’s improvisation process is the HS algorithm. It shows promising results in optimiza-

tion problems. It is further improved with various versions. 

B. Swarm-Based Algorithms 

Nature-based along with population-based algorithms evolved into swarm-based al-

gorithms [39]. The swarm represents the combined behavior of all the agents. Agents in a 

swarm have limited capabilities, but working together, they achieve the given tasks while 

being at distances. As a result of which, fast, low cost, and optimal solutions are obtained 
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even in the uncertainties and complexities. Some examples of these algorithms include 

Artificial Immune System (AIS), Particle Swarm Optimization (PSO), Bacteria Foraging 

Optimization algorithm (BFO), Cuckoo Search algorithm (CS), Artificial Bee Colony algo-

rithm (ABC), Ant Colony Optimization algorithm (ACO), Coral Reef Optimization algo-

rithm (CRO), Teaching–Learning Based Optimization algorithm (TLBO), Firefly algo-

rithm (FA), Shuffled Frog Leaping algorithm (SFLA), and Pigeon-Inspired Optimization 

(PIO). 

AIS is an intelligent swarm-based algorithm that is modeled on the natural principles 

of the immune system of humans. It has the characteristics of the immune system of 

memory and learning to utilize for solving problems. It gives adequate trajectories in path 

planning with less computation. The development of PSO is based on the mobility theory 

of an insect crowd. In the layout of this fact-finding approach, every solo particle in the 

crowd recognizes the points given by the last swarm and produces a velocity vector to-

wards the target point. The key benefit of this algorithm is that it is capable of obtaining 

optimal path planning in 3D, whereas its disadvantages are premature convergence and 

high time complexity. Passino introduced an algorithm based on the foraging behavior of 

Escherichia coli bacteria that lies in human intestines. He labeled this intelligent algorithm 

as BFO.  

It provides rapid convergence and a global search. The CS algorithm replaces the 

average solutions and applies the solution that is potentially better. The ABC algorithm 

provides solutions to various optimization problems having constraints. The ACO algo-

rithm is based on depositing characteristics of ants during food search and proved to be a 

meta-heuristic technique to derive the shortest path while dealing with continuous and 

multi-objective path planning issues. The CRO algorithm works efficiently with many ad-

vantages for difficult optimization problems. The TLBO algorithm requires minimum 

computational memory and can be employed easily. FA works efficiently for multimodal 

optimization problems. It finds the best location for UAVs with less energy consumption. 

SFLA depends on frogs’ clusters that are looking for food. It gathers the best frog, which 

can give local optimum and evolves the frog with inaccurate positions. It continues mak-

ing iterations until the accomplishment of an optimal path with better convergence. PIO 

works via sharing information and striving among all to quickly achieve the optimal 

global solution. 

C. Physical Algorithms 

Heuristic algorithms that imitate physical laws and processes of nature are known as 

physical algorithms. These algorithms copy the physical conduct and characteristics of 

matter [40]. These are applicable for non-linear, high-dimensional, multimodal as well as 

complex optimization problems. There is very little research available on physical algo-

rithms. These are categorized as Simulated Annealing (SA), Gravitational Search algo-

rithm (GSA), Chaotic Optimization algorithm (COA), Intelligent Water Drops algorithm 

(IWD), and Magnetic Optimization algorithm (MOA). SA is suggested after a technique, 

annealing in metallurgy. It is employed for more complex computational optimization 

problems and gives approximate global optimum within a fixed time. GSA is a newly 

introduced algorithm that mimics laws of motion and gravitational law. It is applied to 

optimization problems with various functions. COA is an easily implemented and pow-

erful mechanism that can escape convergence to a local optimum within a short time. The 

IWD algorithm is based on how natural rivers can find the best paths among many prob-

able paths to their ultimate destination. MOA, a newly emerging algorithm, is derived 

from the basic principles of magnetism. The dual function of this algorithm can balance 

the disadvantages against the advantages in optimization problems. 

D. Geographical Algorithms 

The meta-heuristic algorithms that give random outcomes in geographical search 

space are labeled as geographical algorithms [41]. Some of the geographical algorithms 

are the Tabu Search algorithm (TS) and Imperialistic Competition algorithm (ICA). The 
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TS algorithm determines an optimal solution among various feasible solutions. Its 

memory can recall the recent optimal solution and guide the search to trace the previous 

solutions. It is employed for optimization problems in various areas. Another geograph-

ical algorithm for the global best solution in optimization is ICA. It imitates sociopolitical 

imperialist competition. It involves imperialistic competition among empires along with 

assimilation and revolution of colonies and so on. Due to its robust searching ability, it 

provides many benefits in optimization problems. 

Among all the aforementioned algorithms, most are based on the swarm. These pop-

ulation-based algorithms are robust at obtaining better global solutions via their cooper-

ative and self-adaptive abilities. These algorithms are employed for solving challenging 

issues of UAVs. This review paper gives details on a comparison of the aforesaid algo-

rithms used for motion control and path planning of UAVs. 

5. Related Review 

To succeed, most motion planning approaches necessitate the use of appropriate op-

timization algorithms. These strategies can be used on a single UAV as well as a group of 

UAVs or a swarm of UAVs. When several UAV missions are viable for civilian objectives, 

a nature-inspired algorithm is required for control and optimization. Table 1 presents a 

detailed overview of the manuscripts related to motion planning problems of UAVs. The 

review also helps scholars with the optimization techniques applied to single or multiple 

UAVs. 

Table 1. A detailed study on the Motion Planning of UAVs using the optimization approach. 

Ref Topic 

Optimiza-

tion  

Approach 

UAV 

Type 
Contributions Limitations 

[42] 

“Collision free 4D path plan-

ning for multiple UAVs 

based on spatial refined vot-

ing mechanism and PSO ap-

proach” 

PSO 
Multi-

ple 

▪ Enhances searching abil-

ity and improves veloc-

ity. 

▪ Gives collision-free 

paths. 

▪ Returns to initial points 

in extreme conditions. 

[43] 

“Dynamic Discrete Pigeon-

inspired Optimization 

for Multi-UAV Cooperative 

Search-attack Mission Plan-

ning” 

D2PIO 
Multi-

ple 

▪ Ability to switch task. 

▪ Superior performance in 

discrete environment. 

▪ Frequent switching led to 

incomplete tasks. 

▪ Computational cost is 

higher due to population 

size. 

[44] 

“MVO-Based Path Planning 

Scheme with Coordination 

of UAVs in 3-D Environ-

ment” 

MA 
Multi-

ple 

▪ Gives optimized path 

costs. 

▪ Maintains coordination. 

▪ Do not give dynamic ob-

stacles. 

▪ Does not consider hard-

ware-oriented con-

straints. 

[45] 

“UAV trajectory optimiza-

tion for Minimum Time 

Search with communication 

constraints and collision 

avoidance” 

ACO Single 

▪ Detects the target 

quickly. 

▪ Maintains connection 

with GCS and avoids 

collision. 

▪ Greater computational 

time. 

▪ A mandatory ground 

connection is needed to 

obtain desired results. 

[46] 

“Efficient path planning for 

UAV formation via compre-

hensively improved particle 

swarm optimization” 

IPSO 
Multi-

ple 

▪ Boosts the convergence 

rate. 

▪ Improves the solution 

optimality. 

▪ Does not allow path re-

planning with moving 

and unexpected obsta-

cles. 
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[47] 

“Secrecy improvement via a 

joint optimization of UAV 

relay flight path and trans-

mit power” 

PSO Single 

▪ Enhances the secrecy ca-

pacity. 

▪ Allows optimum posi-

tion flying. 

▪ Needs further improve-

ment for full-duplex re-

laying. 

[48] 

“Trajectory Planning for 

UAV Based on Improved 

ACO Algorithm” 

MACO 
Multi-

ple 

▪ Optimized initial trajec-

tory  

▪ Proposed trajectory cor-

rection schemes for colli-

sion avoidance. 

▪ No real-time trajectory 

planning used. 

[49] 

“Optimized Path-Planning 

in Continuous Spaces for 

Unmanned Aerial Vehicles 

Using Meta-Heuristics” 

DE 

PSO 

GA 

Multi-

ple 

▪ Less computation for 

first feasible path. 

▪ DE overtakes PSO and 

GA in convergence. 

▪ Work exists for static en-

vironment only. 

▪ No real-time implemen-

tation. 

[50] 

“Multi-UAVs trajectory and 

mission cooperative plan-

ning based on the Markov 

model” 

SA 
Multi-

ple 

▪ Improves drone surviva-

bility. 

▪ Solves multi-aircraft mis-

sion planning problems. 

▪ Needs NP problem ex-

ploration. 

[51] 

“PSO-based Minimum-time 

Motion Planning for Multi-

ple Vehicles Under Accelera-

tion and Velocity Limita-

tions” 

PSO 
Multi-

ple 

▪ Minimizes the travelling 

time for slowest UAV. 

▪ Reduces the parameters 

for mathematical model-

ing. 

▪ No control law for mo-

tion tracking. 

▪ Only applied to selected 

vehicles. 

[52] 

“Information fusion estima-

tion-based path following 

control of quad-rotor 

UAVs subjected to Gaussian 

random disturbance” 

GIFC Single 

▪ Reduces the design com-

plexity. 

▪ Allows trajectory track-

ing with high accuracy. 

▪ Contains a huge amount 

of matrix inversion oper-

ations. 

[53] 

“3D multi-UAV cooperative 

velocity-aware motion plan-

ning” 

A* 
Multi-

ple 

▪ Shows a higher possibil-

ity of reaching destina-

tions. 

▪ Reduces time costs and 

paths. 

▪ Does not serve complex 

missions and more 

UAVs. 

[54] 

“Unmanned aerial vehicle 

swarm distributed coopera-

tion method based on situa-

tion awareness consensus 

and its information pro-

cessing mechanism” 

SDCM 
Multi-

ple 

▪ Works efficiently in a 

complex and antagonis-

tic mission environment. 

▪ Obtains the mission es-

sentials at a bearable 

cost. 

▪ On a larger scale, com-

munication topology and 

management mode 

changes. 

[55] 

“A co-optimal coverage path 

planning method for aerial 

scanning of complex struc-

tures” 

CCPP  

PSO 

Multi-

ple 

▪ Optimizes path effi-

ciency and inspection 

quality. 

▪ Provides improved flexi-

ble options. 

▪ The exponential growth 

of complexity occurs as 

the problem size in-

creases. 

▪ Needs uniform configu-

ration spaces. 

[56] 

“A novel hybrid grey wolf 

optimizer algorithm for un-

manned aerial vehicle 

(UAV) path planning” 

Hybrid 

GWO 
Single 

▪ Generates smooth flight 

routes. 

▪ Accelerates the rate of 

convergence and retains 

the ability to explore. 

▪ The optimal value is 

lower than GWO, SA, 

and SOS. 

▪ Execution time is higher 

than GWO in all cases. 
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[57] 

“Continuous-Time Trajec-

tory Optimization for Decen-

tralized Multi-Robot Navi-

gation” 

DA 
Multi-

ple 

▪ Generates collision-free 

trajectories. 

▪ Reduces jerk and time. 

▪ Robustness and scalabil-

ity can fail sometimes. 

▪ It has dynamic speed 

limits. 

[58] 

“A Self-Heuristic Ant-Based 

Method for Path Planning of 

Unmanned Aerial Vehicle in 

Complex 3-D Space with 

Dense U-Type Obstacles” 

SHA Single 

▪ The number of retreats 

reduced significantly. 

▪ Time analysis enhanced 

compared to basic ACO. 

▪ Applied to static obsta-

cles only. 

▪ Actual taboo nodes are 

not used. 

[59] 

“A novel mission planning 

method for UAVs’ course of 

action” 

TDRS Single 

▪ Generates multiple 

schemes automatically. 

▪ Completes tasks in a 

shorter time. 

▪ Time optimization is es-

sential for war scenarios. 

▪ Variations in threat and 

utilization factors. 

[60] 

“A multi-objective pigeon-

inspired optimization ap-

proach to UAV distributed 

flocking among obstacles” 

Improved 

MPIO 
Single 

▪ Guarantees stable and 

collision-free flocking. 

▪ Prior environmental de-

tails and the number of 

UAVs are essential. 

▪ Lacks convergence analy-

sis. 

▪ Deadlocks can occur. 

▪ Emergency conditions 

and dynamic obstacles 

are not tested. 

[61] 

“Application of the ACO al-

gorithm for UAV path plan-

ning” 

ACO Single 

▪ Intermediate waypoint 

concept introduced for ACO. 

▪ Improved fitness value. 

▪ Search space is bigger 

due to ACO hunting pro-

cedure. 

▪ Higher computational 

complexity. 

[62] 

“A method of feasible trajec-

tory planning for UAV for-

mation based on bi-direc-

tional fast search tree” 

Bi-RRT Single 

▪ Solves the minimum effi-

ciency of compound 

models in complicated 

environments. 

▪ Yields safe and efficient 

formation and obstacle 

avoidance. 

▪ GA algorithm has a 

smoother path than Bi-

RRT. 

▪ Can move very close to 

an obstacle. 

[63] 

“Towards a PDE-based 

large-scale decentralized so-

lution for path planning of 

UAVs in shared airspace” 

PDE Single 

▪ Ensures collision-free 

and optimal path flight 

safety. 

▪ Proves to be computa-

tionally efficient. 

▪ Does not allow UAVs to 

share their trajectories 

during the mission. 

[64] 

“Optimized multi-UAV co-

operative path planning un-

der the complex confronta-

tion environment” 

Improved 

GWO 

Multi-

ple 

▪ Minimizes fuel costs and 

threats. 

▪ Proves to be effective in 

cooperative path plan-

ning. 

▪ The average distance of 

most UAVs is greater. 

[65] 

“A constrained differential 

evolution algorithm to solve 

UAV path planning in disas-

ter scenarios” 

CDE Single 

▪ Refines the limitations. 

▪ Continues the investiga-

tions. 

▪ Used only unconstrained 

optimization problems. 

[66] 

“A novel reinforcement 

learning-based grey wolf op-

timizer algorithm for un-

manned aerial vehicles 

(UAVs) path planning” 

GWO Single 

▪ Achieves effective and 

feasible routes smoothly. 

▪ Enables each UAV to 

perform operations inde-

pendently. 

▪ Not efficient in solving 

other sorts of an issue at 

the same time while in-

troducing another algo-

rithm. 
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[67] 

“Synergistic path planning 

of multi-UAVs for air pollu-

tion detection of ships in 

ports” 

PSO 
Multi-

ple 

▪ Detects air pollution effi-

ciently. 

▪ Guarantees reduction of 

ship emissions. 

▪ Does not cover air con-

trol and wind speed in-

fluences. 

▪ Lacks large-scale data 

testing. 

[68] 

“An intelligent cooperative 

mission planning scheme of 

UAV swarm in uncertain 

dynamic environment” 

HAPF 

ACO 

Multi-

ple 

▪ Enhances searching abili-

ties. 

▪ Executes tasks and 

avoids collisions and ob-

stacles efficiently. 

▪ Aims cooperative search-

attacks at homogeneous 

UAVs only. 

[69] 

“Path planning of multiple 

UAVs with online changing 

tasks by an ORPFOA algo-

rithm” 

ORPFOA 
Multi-

ple  

▪ Solves tasks efficiently 

with task preference and 

swapping tasks. 

▪ Determines optimal 

paths smoothly. 

▪ Needs more reduction in 

running time. 

▪ It has some complex 

computations. 

[70] 

“Path Planning for Multi-

UAV Formation Rendezvous 

Based on Distributed Coop-

erative Particle Swarm Opti-

mization” 

DCPSO 
Multi-

ple  

▪ All UAVs arrived simul-

taneously without colli-

sion.  

▪ It avoids all types of ob-

stacles. 

▪ It cannot be used in real-

time scenarios. 

▪ It takes more time to 

avoid collisions. 

[71] 

“A Performance Study of 

Bio-Inspired Algorithms in 

Autonomous Landing of 

Unmanned Aerial Vehicle” 

BOA 

MFO 

ABC 

Single 

▪ MFO obtains the best 

points with minimal run 

time and error. 

▪ Gives bearable accuracy. 

▪ Error is not optimized. 

[72] 

“UAVs path planning archi-

tecture for effective medical 

emergency response in fu-

ture networks” 

CVRP 

PSO 

ACO 

GA 

Single 

▪ CVRP outperforms with 

the least runtime and 

minimal cost and en-

hanced capacities. 

▪ Achieves the proper nav-

igation. 

▪ Lacks benchmark solu-

tions. Does not consider 

real-time or complex sce-

narios. 

[73] 

“Path planning of multiple 

UAVs using MMACO and 

DE algorithm in dynamic 

environment” 

MMACO 

DE 

Multi-

ple 

▪ Increases the robustness. 

▪ Preserves the global con-

vergence speed. 

▪ In multi-colonies, one 

colony follows same path 

as basic ACO. 

[74] 

“Multi-UAV coordination 

control by chaotic grey wolf 

optimization-based distrib-

uted MPC with event-trig-

gered strategy” 

Chaotic 

GWO 

Multi-

ple  

▪ Gives efficiency in com-

putations. 

▪ Enhances the global 

search mobility conver-

gence speed. 

▪ Stability conditions are 

not analyzed. 

▪ Has limited communica-

tion. 

[75] 

“Collective Motion and Self-

Organization of a Swarm of 

UAVs: A Cluster-Based Ar-

chitecture” 

PSO 
Multi-

ple  

▪ Gives fast connectivity 

and convergence. 

▪ Assures stability with 

fewer turns. 

▪ Not implemented on 

hardware. 

▪ Focused on a specific sce-

nario. 

[76] 

“A Cluster-Based Hierar-

chical-Approach for the Path 

Planning of Swarm” 

MMACO 
Multi-

ple  

▪ Gives superior perfor-

mance. 

▪ Gives an optimal path 

with better convergence. 

▪ Variation in the optimi-

zation costs in colonies 2 

and 3 is neglected. 

[77] 
“Cooperative Path Planning 

of Multiple UAVs by using 

MMACO 

CM 

Multi-

ple 

▪ Finds the optimal routes 

with the shortest dis-

tance. 

▪ Avoids collision. 

▪ Enhances the system 

complexity. 
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Max-Min Ant Colony Opti-

mization along with Cauchy 

Mutant Operator” 

[78] 

“A multi-strategy pigeon-in-

spired optimization ap-

proach to active disturbance 

rejection control parameters 

tuning for vertical take-off 

and landing fixed-wing 

UAV” 

MPIO Single 

▪ Proves to be superior 

among all algorithms to 

solve multi-dimensional 

searching issues. 

▪ It converges faster and 

exploits in a better way. 

▪ Altitude fluctuation is 

still present. 

▪ Immature result after 2nd 

iteration. 

[79] 

“Landing route planning 

method for micro drones 

based on hybrid optimiza-

tion algorithm” 

DO 
Multi-

ple  

▪ Shows stronger conver-

gence both locally and 

globally. 

▪ Yields better outcomes 

than both single algo-

rithms. 

▪ Speeds up convergence 

after orthogonal learning. 

[80] 

“Energy Efficient Neuro-

Fuzzy Cluster-based Topol-

ogy Construction with Me-

taheuristic Route Planning 

Algorithm for Unmanned 

Aerial Vehicles” 

QALO Single 

▪ Gives more energy-effi-

cient results, more 

rounds, higher through-

put, and lower average 

delay results. 

▪ Selects optimal routes. 

▪ Does not manage re-

sources optimally. 

[81] 

“Coordinated path following 

control of fixed-wing un-

manned aerial vehicles in 

wind” 

CPFC Single 

▪ Attains leaderless syn-

chronization. 

▪ Satisfies UAVs’ con-

straints and upper 

bound path following er-

rors. 

▪ Requires better simula-

tion of the external envi-

ronment and the wireless 

communications. 

[82] 

“A diversified group teach-

ing optimization algorithm 

with segment-based fitness 

strategy for unmanned aerial 

vehicle route planning” 

GTO Single 

▪ Gives faster conver-

gence. 

▪ Handles all the complex 

constrained problems. 

▪ Parameters need auto-

matic adjustments. 

[83] 

“Coverage path planning for 

multiple unmanned aerial 

vehicles in maritime search 

and rescue operations” 

RSH 
Multi-

ple  

▪ Gives optimal results in 

a shorter time. 

▪ Robust to strong wind. 

▪ Does not provide exact 

solutions for larger in-

stances. 

[84] 

“Hybrid FWPS cooperation 

algorithm based unmanned 

aerial vehicle constrained 

path planning” 

FWPSALC Single 

▪ Produces high and supe-

rior quality solutions. 

▪ Handles constraints in a 

better way. 

▪ Gives poor performance 

for fewer number of par-

ticles or a large number 

of fireworks. 

[85] 

“Safety-enhanced UAV path 

planning with spherical vec-

tor-based particle swarm op-

timization” 

PSO Single 

▪ Reduces the cost func-

tion. 

▪ Gives the shortest and 

smoothest paths with 

fast convergence. 

▪ Faces premature conver-

gence. 

In 2019, Yang et al. [42] proposed a spatial refined voting mechanism and PSO algo-

rithm that gave a 4D-space path planning that was collision-free and obstacle-free for 

multi-UAVs. Duan et al. [43] used a dynamic discrete pigeon-inspired optimization tech-

nique for search attack missions by using distributed path generation and central tasks 

mission. Jain et al. [44] suggested MVO and Munkres algorithms for the path planning 
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and coordination of multiples, it compared the results with the results of BBO and GSO 

and concluded that the proposed algorithm is highly efficient in reducing execution time 

and finding optimized path costs. Pérez-Carabaza et al. [45] worked on optimizing trajec-

tories for UAVs that used less time in searching for targets, avoided collisions, and main-

tained communication. Then, there is a comparison of this MMAS-based algorithm with 

GA and CEO, and it yielded better results than they yield. Shao et al. [46] used compre-

hensively modified PSO for the path planning of UAVs. This method gave a faster and 

improved convergence rate and solution optimality when compared with SPSO and 

MGA. 

Mah et al. [47] suggested a joint optimization method that gave the best secrecy per-

formance to combat eavesdropping on the flight path and transmits power and gave su-

perior results to the max SNR method. Bo Li et al. [48] designed an improved ACO algo-

rithm based on the metropolis criterion and predicted three trajectory corrections schemes 

for collision avoidance protocols and the inscribed circle method for smoothness. Geo-

vanni et al. [49] proposed an optimized path planning method using a meta-heuristic in 

the continuous 3D environment. The study also minimizes the path length in the presence 

of static obstacles by manipulating control inputs. Ning et al. [50] solved the task-planning 

issue of multi-target and multi-aircraft by proposing a two-layer mission-planning model 

depending on the annealing and TS algorithms. Lihua et al. [51] gave an online priority 

configuration algorithm for the UAV swarm flight in an environment having com-

pounded obstacles and showed superiority in cost of energy and time in simulation re-

sults. 

In 2020, Xu et al. [52] solved the LQG problem of quad-rotor UAVs by presenting a 

Gaussian information fusion control (GIFC) method that allowed accurate trajectory 

tracking and reduced the design complexity. Hu et al. [53] proposed a 3D multi-UAV co-

operative velocity-aware motion planning using VeACA2D and VeACA3D. While com-

paring with LyCL and PALyCL, this algorithm gave higher possibilities of reaching the 

destination while following shorter paths and reduced time costs. Gao and li [54] consid-

ered the distributed cooperation approach formed on situation awareness consensus and 

its details processing method for UAV swarms. Shang et al. [55] linked a co-optimal cov-

erage path planning method with a PSO algorithm for aerial scanning of compounded 

models. Qu et al. [56] evaluated a novel hybrid grey wolf optimizer algorithm with MSOS 

and gave better and improved results for UAV path planning in a complex environment. 

Krishnan et al. [57] optimized the continuous-time trajectory by combining a decen-

tralized algorithm with third-order dynamics that helped robots to re-plan trajectories. 

Zhang et al. [58] introduced an ant-based self-heuristic method for path planning of multi-

UAVs. In this study, the authors used U-shaped dense complex 3D space to reduce the 

confusion of obstacle detection. It reduces the deadlock state with a two-stage strategy. 

Zhou et al. [59] utilized the multi-string chromosome genetic and cuckoo search algo-

rithms to improve the MDLS algorithm. This improved algorithm proved that it had a 

better global optimization capability and diversified scheme options, and completed tasks 

in a shorter time as compared to the simplified MDLS. Qiu and Duan [60] developed an 

improved MPIO formulated on hierarchical learning behavior that gave improved dis-

tributed flocking among obstacles. Comparison with MPIO and NSGA-II showed that the 

improved MPIO proved to be more suitablefort handling the various-objective optimiza-

tion and obstacle avoidance for UAV flocking. 

Konatowski and Pawłowski [61] presented a path planning for UAVs with the help 

of ACO. It uses waypoints along its path with unknown parameters. The proposed work 

reduces the computational time and obtains the optimal route. Huang and Sun [62] de-

tailed an approach to feasible trajectory planning formation that depends on a bi-direc-

tional fast search tree for UAVs. Radmanesh et al. [63] applied a PDE-based large-scale 

decentralized approach and compared it with centralized and sequential approaches to 

obtain collision-free and optimal path planning of multiple UAVs. Xu et al. [64] linked the 
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grey wolf optimizer algorithm with the PSO algorithm to achieve cooperative path plan-

ning of multi-UAVs under the threats of ground radar, missiles, and terrain. Yu et al. [65] 

introduced an improved constrained differential evolution algorithm that reduced the fit-

ness functions and satisfied the three constraints, namely, height, angle, and slope of 

UAVs. 

Later, this improved algorithm was compared with FIDE, DE variants, RankDE, 

CMODE, and (µ + γ) − CDE and proved that the proposed CDE generated more optimal 

paths smoothly. Qu et al. [66] used a reinforcement learning-based grey wolf optimizer 

algorithm. Then, compared the outcomes with the results of GWO, MGWO, EEGWO, and 

IGWO algorithms and concluded that the proposed RLGWO gives better, feasible, and 

effective path planning for UAVs. Shen et al. [67] solved the air pollution detection prob-

lem for ships in ports and evaluated a synergistic path planning of multiple UAVs. He 

suggested an improved PSO algorithm with a Tabu Search (TS) table, proved the efficient 

detection of air pollution, and ensured less emission by ships. 

Zhen et al. [68] gave an improved method that is a hybrid artificial potential field 

with ant colony optimization (HAPF-ACO) method that executes tasks and avoids colli-

sions and obstacles efficiently for the cooperative mission planning of fixed-wing UAVs. 

The results were compared with ACOAPF and PSO algorithms that proved the suggested 

algorithm to be highly efficient in task execution. Li et al. [69] detailed an ORPFOA algo-

rithm that allows online changing tasks for optimal path planning of multi-UAVs for solv-

ing faster and giving higher optimization. Then, the outcomes of this suggested algorithm 

were compared with GWO, PSO, PIO, PSOGSA, PPPIO, and FOA. The proposed algo-

rithm gave faster convergence and optimization than the others. 

Shao et al. [70] obtained multi-UAV path planning by using the distributed coopera-

tive PSO approach. This study presents a complex dynamic environment with a higher 

success rate of 0.9 compared to CCGA. Ilango and R. [71] studied Bio-inspired algorithms 

and analyzed their performance in the autonomous landing of UAVs. Wu et al. [72] ap-

plied a new method to UAVs that is based on consensus theory for their formation control 

as well as obstacle avoidance. 

In 2021, recent research by Ali et al. [73] developed a multi-colonies optimization and 

combined MMACO and DE techniques for the cooperative path planning of many UAVs 

in a dynamic environment. WANG et al. [74] proposed an MPC framework along with 

Chaotic Grey Wolf Optimization (CGWO) and an event-triggered approach to give UAV 

coordination control and trajectory tracking. Ali et al. [75] used combined movement 

along with the reflexivity of a UAV swarm via the cluster-based technique by combining 

the PSO algorithm with the MAS. It showed better convergence and durability. Shafiq et 

al. [76] suggested a cluster-based hierarchical approach for control and path planning. It 

quickly finds the optimal path along with the minimal costs. Ali et al. [77] applied a hybrid 

algorithm of the max-min ant colony optimization algorithm with CM operators on mul-

tiple UAVs for collective path planning. It gives the optimal global solution in minimum 

time. He and Duan [78] considered flying, as well as touching down, issues and suggested 

an improved PIO for tuning the parameters of ADRC. Liang et al. [79] developed an opti-

mal route planning for the landing of micro-UAVs using hybrid optimization algorithms 

with orthogonal learning. 

Pustokhina et al. [80] designed clustering that is energy efficient and plans optimal 

routes by developing Energy Efficient Neuro-Fuzzy Cluster-based Topology Construc-

tion with the MRP technique for UAVs. Chen et al. [81] suggested a coordination strategy 

for fixed-wing UAVs with wind disturbances and developed a hardware-in-the-loop 

(HIL) simulation. Jiang et al. [82] worked on path planning for UAVs under various ob-

stacles and proposed a diversified group teaching optimization algorithm with a segment-

based fitness approach that has better global exploration ability. Cho et al. [83] gave a 

coverage path planning strategy with two phases for multi-UAVs that helped in searching 

and rescuing in maritime environment. Zhang et al. [84] presented a hybrid FWPSALC 

mechanism for the path planning method for UAVs that proved to be robust in searching 
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and handling constraints and had a better speed convergence. Phung and Ha. [85–88] de-

veloped a novel technique with spherical vector-based particle swarm optimization 

(SPSO) that ensures safety, feasibility, and optimal paths and gives results better than 

classic PSO, QPSO, θ-PSO, and various other algorithms. 

6. Discussion 

The most crucial challenge in the field of UAVs is efficient motion planning. It re-

quires a state-of-the-art optimization method to counter issues. This research evaluates 

various challenges faced by UAVs and all the current designs of motion planning tech-

niques. The recent developments discussed the results in high adaptable ability, cost and 

time reductions in task executions, energy efficiency, obstacles, and collision avoidance. 

While reviewing various motion planning approaches, it became evident that most 

of the researchers preferred to use an optimization approach with nature-inspired algo-

rithms. While discussing numerous categories of path planning strategies, it appears that 

hybrid algorithms give better performance. These improved and optimized algorithms 

overcome the limitations of numerical and analytical techniques. By analyzing the manu-

script, it can be concluded that the best optimization approaches are swarm-based due to 

their exceptional ability to solve complex issues with their simplified approach. 

7. Conclusions 

UAVs are flying machines that possess safe and task-oriented mobility in the pres-

ence of uncertainties with the help of modified techniques and the latest technological 

developments. The autonomous capability of these machines is also advancing and up-

grading to provide efficient flying and stable formation in dynamic environments. How-

ever, motion planning issues in UAVs are most challenging among scholars. In this article, 

a detailed comparative study on the motion planning issues and achievements of UAVs 

has been presented, along with the limitations of each article. The study also presents re-

cent challenges in all possible categories of UAVs to highlight the importance of UAVs in 

our society along with their developments and state-of-the-art work performed in the last 

3 years. 

8. Future Work 

There is a very bound analysis in the comparison field of motion planning and opti-

mization algorithms that exists already and the determination of the best among them. To 

deploy the multiple UAV systems in a finer way, various challenges and possibilities need 

more exploration, as well as a reduction in exploitations. Leads for future work are to 

model different swarm-based intelligent optimization approaches with high accuracy and 

efficiency and further feasible algorithms for 3D-path planning strategies. 
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Abbreviations  

Acronyms Definitions 

UAV Unmanned Aerial Vehicles 

AI Artificial Intelligence 

P2P Point-to-Point 

MAC Medium Access Control 

IETF Internet Engineering Task Force 

MAVLink Micro Air Vehicle Link 

NBC Nuclear, Biological, and Chemical 

CAS Collision Avoidance System 

IR InfraRed 

GA Genetic algorithm 

EP Evolutionary Programming 

ES Evolutionary Strategy 

DE Differential Evolution 

HS Harmony Search 

AIS Artificial Immune System 

PSO Particle Swarm Optimization 

BFO Bacteria Foraging Optimization  

CS Cuckoo Search  

ABC Artificial Bee Colony  

ACO Ant Colony Optimization  

CRO Coral Reef Optimization  

TLBO Teaching-Learning Based Optimization  

FA Firefly algorithm 

SFLA Shuffled Frog Leaping algorithm 

PIO Pigeon Inspired Optimization 

SA Simulated Annealing 

GSA Gravitational Search algorithm 

COA Chaotic Optimization algorithm 

IWD Intelligent Water Drops 

MOA Magnetic Optimization 

TS Tabu Search algorithm 

ICA Imperialistic Competition algorithm 

MACO Metropolis Criterion ACO 

MA Munkres algorithm 

GIFC Gaussian information fusion control 

DA Decentralized algorithm 

SHA Self-Heuristic Ant 

TDRS Task Decomposition Recourse Scheduling 

CDE Constraint Differential Evolution 

PDE Partial Differential Equation 

DCPSO Distributed Cooperative Particle Swarm Optimization 

DO Dragonfly Optimization 

QALO Quantum Ant Lion Optimization 

CPFC Coordinated Path Following Control strategy 

RSH Randomized Search Heuristic 

GTO Group Teaching Optimization 

SDCM Swarm Distributed Cooperation Method 

MFO Moth Flame Optimization 

BOA Bat Optimization algorithm 
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