
����������
�������

Citation: Sajjadi, S.; Mehrandezh, M.;

Janabi-Sharifi, F. A Cascaded and

Adaptive Visual Predictive Control

Approach for Real-Time Dynamic

Visual Servoing. Drones 2022, 6, 127.

https://doi.org/10.3390/

drones6050127

Academic Editor: Diego

González-Aguilera

Received: 26 April 2022

Accepted: 12 May 2022

Published: 14 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Cascaded and Adaptive Visual Predictive Control Approach
for Real-Time Dynamic Visual Servoing
Sina Sajjadi 1 , Mehran Mehrandezh 1,* and Farrokh Janabi-Sharifi 2

1 Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Pkwy,
Regina, SK S4S 0A2, Canada; sinasajjadi@uregina.ca

2 Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria St,
Toronto, ON M5B 2K3, Canada; fsharifi@ryerson.ca

* Correspondence: mehran.mehrandezh@uregina.ca

Abstract: In the past two decades, Unmanned Aerial Vehicles (UAVs) have gained attention in
applications such as industrial inspection, search and rescue, mapping, and environment monitoring.
However, the autonomous navigation capability of UAVs is aggravated in GPS-deprived areas such
as indoors. As a result, vision-based control and guidance methods are sought. In this paper, a vision-
based target-tracking problem is formulated in the form of a cascaded adaptive nonlinear Model
Predictive Control (MPC) strategy. The proposed algorithm takes the kinematics/dynamics of the
system, as well as physical and image constraints into consideration. An Extended Kalman Filter
(EKF) is designed to estimate uncertain and/or time-varying parameters of the model. The control
space is first divided into low and high levels, and then, they are parameterised via orthonormal
basis network functions, which makes the optimisation- based control scheme computationally less
expensive, therefore suitable for real-time implementation. A 2-DoF model helicopter, with a coupled
nonlinear pitch/yaw dynamics, equipped with a front-looking monocular camera, was utilised for
hypothesis testing and evaluation via experiments. Simulated and experimental results show that the
proposed method allows the model helicopter to servo toward the target efficiently in real-time while
taking kinematic and dynamic constraints into account. The simulation and experimental results are
in good agreement and promising.

Keywords: visual predictive control; visual servoing; unmanned aerial vehicles; adaptive VPC;
extended Kalman filter

1. Introduction

In recent years, rapid development in UAV technology has led to evolutionary appli-
cation domains. Unmanned Aerial Vehicles (UAVs) are being employed in applications
related to agriculture, military, search and rescue, aerial photography, health care, and
environment monitoring. To enable the autonomous operation of UAVs, the research com-
munity focuses on enhancing kinematic/dynamic modelling, real-time motion planning,
guidance, navigation, and trajectory control. Recently, there has been an increased focus on
improving the control performance and robust manoeuvrability of UAVs. In the past two
decades, and due to an exponential increase in indoor applications, UAVs equipped with
camera vision have emerged. This has shifted the research community’s focus towards
the design and development of fast, yet robust, vision-based flight control strategies. Aca-
demic research on visual navigation and path planning for UAVs has seen a quantum leap.
Further developments of their algorithmic foundation in the realm of vision-based control
of UAVs have gained significant attention.

As part of the vision-based robot control method, called Visual Servoing (VS), visual
sensor data are used to guide the motion of a robot. VS systems use images taken by a
camera to measure the error between the robot’s current and desired poses. In other words,
images taken by the camera provide feedback to the servo motion control of the robot. In
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terms of control architecture and error function definitions, VS methods can be classified as
(1) Image-Based Visual Servoing (IBVS), (2) Position-Based Visual Servoing (PBVS), and
(3) Hybrid Visual Servoing (HVS) [1,2]. The PBVS methods provide robot trajectory paths
that are feasible in a 3D space. However, pose estimation, as a critical element of PBVS,
can be susceptible to camera calibration errors. Furthermore, the target model must be
known beforehand. IBVS, on the other hand, relies on the 2D camera images for the 3D
robot trajectory; thus, the trajectories might not be physically feasible in the 3D action space.
Moreover, the IBVS system might be subject to the singularity of the Jacobian problem [1].
Hybrid VS (HVS) is a method that combines IBVS and PBVS and addresses some of the
shortcomings mentioned above [3].

On a separate line, the development of Model Predictive Control (MPC) has pro-
vided the essential infrastructure to formulate VS as a constrained optimisation problem.
The main objective of Visual Predictive Controllers (VPCs) is to provide a systematic
framework to accomplish VS problems in a mathematically optimal fashion while taking
the inputs, states, and task constraints into account [4]. In most of the proposed VPC
approaches, constraints due to the camera’s Field of View (FoV), the kinematics of the
robot, and sensor/inputs saturation are considered. Despite this, no systematic strategy
has been provided in the above-mentioned literature to deal with system/measurement
uncertainties.

VPC systems are prone to uncertainties due to a variety of factors including imperfect
system models, measurement noises, and exogenous disturbances. Some uncertainties in
the VS system may have a parametric/deterministic nature (e.g., kinematics error in the
robot model or calibration error in the focal length of the camera). Adaptive VS methods
have been proposed to compensate the deterministic/parametric uncertainties in VS [5,6].
For example, an adaptive camera calibration technique was proposed in [7] to solve the
problem of underwater camera calibration in complex underwater environments affected
by changing optical conditions. Many of the adaptive VS techniques rely on the application
of parameter estimation methods such as Extended Kalman Filters (EKFs) and Unscented
Kalman Filters (UKFs). Apart from the parametric uncertainties, some system uncertainties
involved in the VS task might exhibit stochastic behaviour (e.g., noisy feature detection
algorithms). In the presence of random uncertainties, Robust Visual Servoing (RVS) tech-
niques have been explored as a method for improving the performance of VS tasks. The
main objectives of RVS are to improve the accuracy and constraint compliance [8] while
maintaining stability [9]. Typically, robust VPC methods make use of a bounded determin-
istic uncertainty model in order to take worst-case uncertainty realisations into account.
Despite that robust VPC techniques provide a robust, constraint-compliant solution to
system uncertainties, their performance is unnecessarily conservative. In fact, robust VPC
ignores the probability-based nature of system uncertainties. To exploit the probability of
system uncertainties, Stochastic Visual Predictive Control (SVPC) approaches have been de-
veloped [10]. In contrast to robust VPC, which takes the worst-case scenario of uncertainty
realisations into account, SVPC algorithms consider the chances of the system encountering
those uncertainties. Accordingly, SVPC provides superior control over RVPC in terms of
performance and constraint handling. However, RVPC and SVPC method formulations
both yield computationally intensive problems, which need to be handled in real-time.

The formulation of the above-mentioned predictive visual servoing problems typically
yield a constrained nonlinear optimisation problem to be solved over a finite prediction
horizon. Due to the computational complexity of constrained nonlinear optimisation
problems, several methods have been suggested by researchers for reducing the time
required for computation and making the VPC algorithms more suitable for real-time
applications. For example, gain scheduling VPC involves identifying local linear time-
invariant state-space models around a family of operating points, designing corresponding
linear-model-based predictive controllers, and selecting a scheduling variable suitable
to govern the switching process [11]. The other approach proposed in the literature is
linearisation through the system Jacobian, where the system model is linearised successively
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in the proximity of each operation point in each time step [12]. Furthermore, predictive
feedback linearisation methods have been proposed to reduce the computational complexity
of real-time implementation [13].

The computational complexity of VPC approaches also increases with the size of
the control and prediction horizons. In particular, this complication is aggravated when
the system dynamics and dynamic constraints are considered in the system model. As a
consequence, this problem limits the applicability of VPC to systems with slow dynamics,
where it is possible to update control policies frequently enough to maintain stability. A
number of approaches have been suggested in the literature to reduce the computational
expense of VPC and MPC in general. Parameterising the control policies via orthonormal
basis functions has been introduced as a viable solution. The utilisation of these network
functions in the MPC formulation would reduce the number of parameters to optimise
without compromising the accuracy of the results. The effect of network parameterisation
using B-spline functions on decision variables was studied in [14]. Similarly, in [15],
Laguerrenetwork functions and in [16] Kautz orthonormal basis function were explored to
effectively reduce the computational expense of the MPC in real-time applications.

Cascaded control architectures have also been proposed as a means to further reduce
the complexity of dynamic VPC and improve its real-time applicability. As a result of the
modular design of the cascaded control architecture, the low- and high-level controllers
can be tuned separately. This also enables the system designers to set high- and low-level
controllers to run at different sampling speeds. Moreover, the fault detection, diagnosis,
and tolerance procedures of the system can be performed more systematically. A two-tier
nonlinear predictive visual servoing approach, with applications in vision-based control of
UAVs, was presented in [17]. The results reported the simulated control of the UAV, while
successfully handling physical and image constraints.

This paper contributes by proposing a cascaded adaptive predictive control approach
to conduct a dynamic visual servoing task on a UAV platform in an energy-optimal fashion,
while considering kinematics and/or dynamics, image, and actuator constraints. Addi-
tionally, a parameter estimator based on the Extended Kalman Filter (EKF) was integrated
into the feedback control loop in order to adjust the predictive control strategy on the fly
in response to model uncertainties and/or dynamic changes in the system’s physical pa-
rameters. Moreover, an orthonormal-network-function-based control input approximation
method was developed, which enables real-time experimentation and validation. To the
authors’ best knowledge, this paper is the first study in the field of visual servoing that
incorporates the dynamics of the motion platform in an adaptive manner while providing
a predictive, but computationally efficient solution that increases real-time implementation
feasibility. The proposed control strategy was tested via simulations and then implemented
on an experimental setup consisting of a helicopter model with two degrees of freedom.

The rest of this article is structured as follows. In Section 2, the general formulation
of cascaded VPC-MPC is presented. The kinematic/dynamic models of the test bench are
explained briefly in Section 2.1, followed by the formulation for the vision-based control
strategy and the image processing algorithm for feature extraction. Furthermore, a detailed
description of the controller’s architecture is covered in Section 2.1. The experimental setup
is explained in Section 3. In Section 4, the simulation and experimental results are provided.
Finally, conclusions and future work can be found in Section 5.

2. Problem Formulation

In this paper, a two-stage controller under a VPC paradigm is proposed. The goal
of the proposed two-stage controller is to overcome the shortcomings of existing VPC
approaches in real-time applications. Unlike the traditional VPC approaches, which mainly
consider the kinematics of the robotic platform, the cascaded design allows taking the
dynamics of the robot, as well as dynamic constraints into account. This control approach
optimises an objective function, which is comprised of energy expenditure within a finite
time window named the prediction horizon by computing optimal manipulated variables.
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The dynamics of the locomotion unit in addition to the constraints of the motion, as well
as sensor constraints such as the Field of View (FOV) are taken into consideration. The
objective of the predictive control approach is to minimise the error between the feature and
target points while minimising the energy consumption in the locomotion unit. The balance
between minimisation of the robotic platform’s motion and its agility of response to the error
in the image is achieved through tuning the coefficients of a quadratic performance index
under the MPC formulation. Furthermore, control space parameterisation via orthonormal
Laguerre functions decreases the computational load, therefore making the control scheme
suitable for real-time applications. The state-space models of the robot and the camera are
used to predict the behaviour and states of the system. The discrete state-space model of
the robot and the camera can be represented as a general successively linearised model:{

χk+1 = Akχk + Bkuk

γk = Ckχk + Dkuk,
(1)

Matrices Ak ∈ Rn×n, Bk ∈ Rn×p, Ck ∈ Rq×n, and Dk ∈ Rq×p are the coefficients of the
general state-space representation of the discretised dynamic system obtained through
successive linearisation of the nonlinear process and measurement model of the system
with p inputs, q outputs, and n state variables, where χk ∈ Rn, γk ∈ Rq, and uk ∈ Rm

denote vectors of states and the outputs and inputs of the system, respectively. One can
define ∆χk+1 = χk+1 − χk and ∆uk = uk+1 − uk as incremental variables and obtain the
incremental state-space model:

∆χk+1 = Ak∆χk + Bk∆uk. (2)

This representation will facilitate the implementation of the Linear-Parameter-Varying
(LPV)-based MPC of nonlinear systems through successive linearisation. By the concate-
nation of the the incremental states and output vector, the augmented state vector can
be defined as: xk = [∆χk γk]

ᵀ. Finally, the resulting augmented system model with the
embedded integrator is given as

xk+1︷ ︸︸ ︷[
∆χk+1

γk+1

]
=

A︷ ︸︸ ︷[
Ak O

Ck Ak 1

] xk︷ ︸︸ ︷[
∆χk

γk

]
+

B︷ ︸︸ ︷[
Bk

CkBk

]
∆uk

yk =

C︷ ︸︸ ︷[
O 1

][∆χk

γk

]
,

(3)

where O =
[
0 . . . 0

]
1×n. In the MPC/VPC framework, the quadratic performance index,

based on augmented states, can be defined as

J(xk, ∆uk, k) =
Np

∑
i=1

xᵀk+i|kQxk+i|k +
Nc−1

∑
i=1

∆uᵀ
k+j|kR∆uk+j|k, (4)

where Np is the prediction horizon, Nc is the control horizon, and Q and R are weighting
matrices. In each control sequence, the optimal control policy ∆U can be calculated based
on the results of the performance index optimisation. The performance index optimisation
problem can be solved subject to system dynamics and constraints over the prediction
horizon. The idea proposed in [18], which results in the reduced number of optimisa-
tion parameters, hence improving the real-time implementation feasibility of MPC, is to
approximate the following control input sequence with discrete polynomials:

∆U = [∆uᵀ
k , ∆uᵀ

k+1, . . . , ∆uᵀ
k+Np−1]

ᵀ, (5)
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and in this context, Laguerre functions yield themselves as good candidates for parametris-
ing the decision variable vector due to their orthonormal property and recursive construc-
tion identity. Laguerre polynomials can be defined in the z-domain as follows:

Lm(z) =
√

1− α2 (z
−1 − α)m−1

(1− αz−1)m ; 0 ≤ α < 1, m ∈ N, (6)

where m denotes the order of the Laguerre functions and α represents the single param-
eter describing the functions. Letting lk denote the inverse z-transform of L(z, α) and
using Laguerre functions, this design framework approach approximates ∆uk+i via the
following method:

∆uk+i = L(i)ᵀη, (7)

where L(i)ᵀ = [l1(i) l2(i) , . . . lN(i)]ᵀ, 1 ≤ i ≤ Np, η = [ηᵀ
1 ηᵀ

2 . . . ηᵀ
N ]

ᵀ, and N is the
number of basis functions used for approximation. Furthermore, owing to the recursive
nature of Laguerre functions, L(j + 1) can be calculated recursively:

L(j + 1) = Al L(j) (8)

where L(0) =
√

β[1 − α α2 . . . (−1)N−1αN−1], β = (1− α2), 0 ≤ α < 1. Accordingly,
given α as the only scalar design parameter of Laguerre polynomials, N and Np, one can
determine Al [19]:

Al =


α 0 . . . 0
β α . . . 0
−αβ β . . . 0

...
...

...
...

(−α)N−2β (−α)N−3β . . . α


N×N

(9)

The calculation of Al completes the recursive definition of Laguerre functions with Equa-
tion (8).

Figure 1 shows the control block diagram of the proposed cascaded VPC. In this
block diagram, the vector, u∗, represents the joint velocity of the robot and s represents
the detected visual features in the image. Moreover, on the block diagram. the system
input, u, denotes the joint velocity of the robotic manipulator. s and s∗ represent the
measured visual features and desired feature pose in the image. Furthermore, ξ and ξ̂
represent the measured pose of the robot and the estimated pose by the EKF, respectively.
Furthermore, Hc

e denotes a homogeneous transformation matrix utilised to transform ξ into
the position of the camera on the robot. The target pose to be followed by the robot, which
is generated by the VPC block, is denoted by ξ∗. The major elements of cascaded VPC
are the mathematical model of the plant including the camera and the robotic platform,
the cost functions for each control stage, and the optimisation methods. In the proposed
scheme, the current state error is defined as the difference between the predicted mean of
the states of the system, s, and the desired state vector s∗.

Figure 1. The architecture of the proposed two-stage controller.

As shown in the block diagram, the first step is to determine the desired robot velocity
trajectory by optimising the visual performance index based on image predictions. The
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optimisation algorithm takes into account the FOV constraints I(·), to ensure that the
feature points will not leave the image during the process and the maximum permissible
acceleration of joints, ξ̈. A sequential quadratic optimisation problem is also formed by
successively linearising the nonlinear mapping between the motion of the robot and the
optical flow of a feature point in the image domain, ζ(·):

minimise:
η

Np

∑
i=1

sᵀk+i|kQ1sk+i|k + ηᵀR1η

subject to: sk+1 = ζ(sk, ηk)

Imin ≤ I(sk) ≤ Imax

ξ̈min ≤ ξ̈ ≤ ξ̈max

(10)

The result of the optimisation in Equation (10) is the Laguerre coefficient vector η, which
can be used as described in Equation (7) to approximate ∆ξ̇∗. An MPC framework with a
receding horizon pushes only the first element of the manipulated variable forward, while
discarding the rest [19]. The output of the “VPC” block is the vector of the desired joint
motion velocities ξ̇∗. An integration of the desired velocity will provide desired joint pose
trajectories ξ∗, which are fed to the second-stage controller, “MPC”. In the “MPC”, the goal
is to minimise the performance index in Equation (11) and to compute optimal inputs to be
applied to the robot joints. The dynamics and constraints of the actuators can be considered
at this stage. The performance index optimisation problem becomes

minimiz:
η

Np

∑
i=1

ξᵀk+i|kQ2ξk+i|k + ηᵀR2η

subject to: ξk+1 = Θ(ξk, ηk)

umin ≤ u ≤ umax

ξmin ≤ ξ(k) ≤ ξmax

(11)

where Θ(·) describes the dynamics of the robot. Similar to the previous stage “VPC”, the
approximation of the optimal inputs to be applied to the joint actuators are conducted
through the Laguerre function. The trajectory control performance was also improved
further by using an EKF-based states and parameter estimator. EKF-based methods have
been extensively used in the literature for state estimation in the presence of noisy sensor
measurements [20]. In more recent applications, the EKF has been successfully utilised for
simultaneous state and parameter estimation of nonlinear dynamic systems [21–24]. For
this purpose, the general nonlinear state-space representation of the system is augmented
by uncertain parameter vector τ. The EKF’s dynamic model then can be represented by

Xk+1 =

[
xk+1
τk+1

]
=

[
f1(xk, uk, τk, k)

f2(τk)

]
+

[
ωk1
ωk2

]
(12)

where f1 represents the dynamic model of the nonlinear system, X = [x τ]ᵀ denotes the
new state vector augmented with the uncertain parameter vector, and ωk1 denotes zero
mean process noise with covariance Ω. The uncertainty associated with the parameters to
be estimated is denoted by ωk2. Moreover, the convergence rate in the parameter estimation
can be tuned through assigning values to ωk2. Considering that uncertain parameters have
stationary values results in f2(τk) = 0. The measurements can be formulated as

Yk = h(Xk) + νk (13)

where the measurement noise νk is modelled as a zero mean white noise with covariance Λ.
According to the EKF method, the measurement and system dynamics are linearised in the
proximity of the estimated state X̂k by obtaining the Jacobian of the system dynamics:
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F =
∂ f (X, u, t)

∂X
|X=X̂ , H =

∂h(X)

∂X
|X=X̂ (14)

The EKF algorithm estimates the augmented state vector in two stages, prediction based on
the system model and update based on measurements. In the prediction stage, new state
vector Xk|k−1 is calculated with the dynamic system model. Error covariance Σx

k|k−1 is also
determined through the linear error propagation model:

Xk|k−1 = f (Xk−1|k−1, uk)

Σx
k|k−1 = FkΣx

k−1|kFᵀ
k + Ωk,

(15)

In the update stage, sensor measurements improve the predictions of states and error
covariance. The Kalman gain Kk then can be calculated,

Kk =
Σx

k|k−1Hk

HkΣx
k|k−1Hk + Λk

X̂k|k−1 = X̂k|k−1 +Kk(Yk − h(Xk))

Σx
k|k = (I−Kk Hk)Σ

x
k|k−1.

(16)

where Σx
k|k and X̂k|k−1 are the improved error covariance and updated augmented state

estimation, respectively [25]. As shown in Figure 1, the EKF is implemented first, to enhance
the quality of the measurements gathered through the sensor of the robot and, second, to
estimate the uncertain or time-varying parameters of the robot and accordingly revise the
system model under the “MPC” block.

2.1. Method Validation Case Study

The selected test bench for evaluating the proposed cascaded predictive visual servoing
algorithm consists of a 2-DoF model helicopter from Quanser (https://www.quanser.com
(accessed on 1 October 2021)), shown in Figure 2. The model helicopter was mounted on
a fixed base. Two brush-type DC motors drive the front and tail propellers. The angular
positions along the pitch and yaw axes were measured via high-resolution quadrature
encoders. The pitch motion was physically restricted; however, the helicopter is capable of
rotating freely along the yaw axis, due to the slip ring mechanism utilised. The derivation of
the governing dynamics equations of the helicopter’s motion based on Lagrange’s method
can be found in [26]. The dynamics equations are:

(Jeq,p + mhelil2
cm)θ̈ = KppVm,p + kpyVm,y −mheliglcm cos θ

− Bp θ̇ −mheli sin θ cos θψ̇2

(Jeq,y + mhelil2
cm cos2 θ)ψ̈ = KypVm,p + kyyVm,y − Byψ̇

+ 2mhelilcm sin θ cos θψ̇θ̇

(17)

The parameters in Equation (17) are explained in Table 1. θ and ψ, namely the pitch
and yaw angular positions, represent two degrees of freedom. The helicopter is capable
of hovering around any pitch angle while rotating along the yaw axis. The Centre Of
Mass (COM) is located with an offset to the rotation axis, which makes the state-space
representation of the system time-varying and state-dependent. In addition, the pitch
and yaw motions are dynamically coupled. Each motor applies a counter-torque onto the
fuselage due to the gyroscopic effect.

The maximum allowed voltages applied to the pitch and yaw motors are rated as
±24 V and ±15 V, respectively. The blades used in our model helicopter were designed by
the manufacturer in a way that they could generate thrust efficiently only when rotating
in a certain direction. In general, the propellers in rotary-wing flyers are designed to give
only upward lift. For downward force, usually, this is left to gravity. Our model helicopter

https://www.quanser.com
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was not an exception to this. The blades could provide lift efficiently only when turning in
a certain direction. The aforementioned blade design would make our model helicopter
more energy efficient. Downward motion was achieved by using the passive force due to
gravity, after the motors were switched off.

Figure 2. Quanser 2-DoF model helicopter [27].

Table 1. Physical parameters of the Quanser 2-DoF helicopter.

Variable Value Unit Parameter Description

θ [−0.706,+0.706] (rad) Pitch angle

ψ [−∞,+∞] (rad) Yaw angle

g 9.81 (m/s2) Gravity constant

mheli 1.387 (kg) Total moving mass of the helicopter

lcm 0.029 (m) Position of centre of mass from pitch axis

Bp 0.015 (N/V) Viscous damping of the pitch axis

By 0.025 (N/V) Viscous damping of the yaw axis

Jeq,p 0.034 (kg m2) Moment of inertia about pitch pivot

Jeq,y 0.039 (kg m2) Moment of inertia about yaw pivot

Kpp 0.021 (Nm/V) Thrust torque coefficient of pitch propeller on pitch angle

Kyp 0.003 (Nm/V) Thrust torque coefficient of pitch propeller on yaw angle

Kyy 0.011 (Nm/V) Thrust torque coefficient of yaw propeller on yaw angle

Kpy 0.001 (Nm/V) Thrust torque coefficient of yaw propeller on pitch angle

Considering ξ = [θ, θ̇, ψ, ψ̇] as the state vector of the 2-DoF helicopter and u = [Vm,p,
Vm,y] as the manipulated variables, the nonlinear coupled dynamics of the helicopter can be
represented in the compact form given in Equation (18), where the kinematic constraints
and voltage limits applied to the propeller motors are included in the following formulation:

ξk+1 = Θ(ξk, uk)

umin ≤ u ≤ umax

ξmin ≤ ξk ≤ ξmax.

(18)
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A 3-megapixel (Logitech C270) webcam [28] with a Complementary Metal–Oxide
Semiconductor (CMOS) sensor, capable of streaming video at 30 frames per second with
720 × 1280 resolution, was attached to the tip of the helicopter as a front-looking camera. In
the experiments, the camera motion was controlled to track an orange-colour ping-pong
ball moving in front of a blue screen (see Figures 3 and 4).

Figure 3. Logitech camera, ping-pong ball, and high-contrast blue background.

Figure 4. Location of the global coordinates frame with respect to the image frame.

A projection model was developed that captures the mathematical relation between
the 3D location of points in the physical space and their 2D pixel coordinates within the
captured image. In this work, a perspective projection model (also known as pinhole
projection model) was adopted. Further details on this model can be found in [29,30].
According to the pinhole projection model, the mapped position of any arbitrary world
point Π = [x y z 1]ᵀ in the 2D image domain, Π′ = [α β 1]ᵀ, would depend on two
sets of parameters. known as intrinsic and extrinsic. Intrinsic parameters depend on the
structural features of the camera such as: the focal length, λ, the size of pixels on the CMOS
sensor array, ρ, skewness, v, and lens distortion. Furthermore, u0 and v0 represent the
principal coordinates of the image. On the other hand, the extrinsic parameters include
spatial information such as: the position and orientation of the camera with respect to the
world reference frame. Accordingly, the pinhole projection model of the camera can be
formulated as

Π′ =

λ/ρ v u0

0 λ/ρ v0

0 0 1

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

intrinsic

[
R3×3 T3×1

0 1

]−1

︸ ︷︷ ︸
extrinsic

Π
(19)
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Moreover, Equation (19) can be re-written in compact form as Π′ = GThΠ, where
matrix G reflects the intrinsic parameters and Th denotes the homogeneous transformation
matrix of projecting camera coordinates with respect to the global reference frame.

Estimating the extrinsic and intrinsic parameters of a camera is a process known
as camera calibration [18]. In this work, the camera calibration toolbox of MATLAB was
utilised for this purpose [31]. Camera parameters were then used to form the image Jacobian
Ls(s, Z), as in Equations (20) and (21), where s = [u, v] denotes the vector coordinate of the
projected point feature and Z denotes the depth of the feature point, representing how far
the feature point is from the camera’s projection centre (see Figure 3).

For any given velocity of the camera frame vc ∈ R6×1, the optical flow on image
features is denoted by ṡ = [u̇1 v̇1... u̇k v̇k]

ᵀ
2k×1, which can be estimated by using the image

Jacobian (also known as the interaction matrix) denoted by Ls(s, Z) ∈ R2k×6. The interac-
tion matrix described in Equation (20) relates the velocity of k ∈ N feature points in the
image domain to the camera velocity vector:

ṡ = Ls(s, Z)vc (20)

Given a pinhole camera projection model and a single point feature interaction matrix, the
image Jacobian, Ls(s, Z), can be written as in Equation (21), where f ′ = λ/ρ [32].

Ls =

− f ′
Z 0 u

Z
uv
f ′ − f ′2+u2

f ′ v

0 − f ′
Z

v
Z − f ′2+v2

f ′ − uv
f ′ −u

 (21)

Furthermore, the velocity of the camera attached to the tip of the helicopter vc could be
related to the angular velocities of the pitch and yaw, q̇ = [θ̇, ψ̇], via the helicopter’s Jacobian
Jr. Finally, the optical flow ṡ associated with a point of interest in the image domain could
be then formulated in a compact form:

sk+1 = sk + Ls(s, Z)Jr(ξ)q̇k

Il ≤ sk ≤ Iu

s = [α, β], q = [θ, ψ],

(22)

where the camera’s Field Of View (FOV) constraints are encapsulated in the I. The Jacobian
of the system Jr maps the helicopter’s motion to that in the camera by vc = Jr q̇, where the
2-DoF model helicopter’s Jacobian Jr can be modelled as

Jr(θ, ψ) =



−l sin θ cos ψ −l cos ψ sin θ
l cos ψ cos θ −l sin ψ sin θ

0 l cos θ
0 sin ψ
0 − cos θ
1 0

, (23)

where l denotes the distance between the centre of rotation on the helicopter’s stand and
the camera’s projection centre. Furthermore, the projection centre of the camera and the
centre of rotation of the helicopter are both located on the longitudinal axis of the helicopter,
aligned with the pitch axis.

3. Experimental Setup

The 2-DoF model helicopter from Quanser was interfaced to a Windows host computer
through a USB Data Acquisition (DAQ) card. The motion of the helicopter was measured
through rotary encoders via a slip ring. Control signals were conditioned via a linear power
amplifier to drive the pitch/yaw motors.
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Real-time images, for the visual servoing task, were acquired via a light-weight
USB camera (Logitech C270) attached to the tip of the helicopter. A conventional image
processing algorithm was implemented to distinguish an orange ping-pong ball from the
high-contrast blue background, as shown in Figure 3. The algorithm tracks the centre
point of the orange ball in the image. In unstructured and real-world scenarios subject
to a cluttered background, the target in the image should be detected using more robust
techniques such as those based on deep learning techniques. In this paper, the main focus
was on the design of the controller; therefore, a simple blob-centroid-detection algorithm
was used for tracking the target. Finding the centroid of the ball was carried out by
following simple image processing steps: First, the camera acquires the Red-Green-Blue
(RGB) image at a 720 × 1280 pixel resolution. In order to improve the processing rate, the
captured image is then down-sampled to 640 × 420 pixels. Second, the down-sampled
image is converted to the Hue-Saturation-Value (HSV) space to increase the robustness of
the ball-tracking algorithm to the external lighting disturbances. Third, the resultant image
is segmented into a binary map by using a colour threshold filter, which differentiates
the position of the ball from the rest of the image. Finally, the binary image was used
to determine the coordinates of the centroid (see Figure 5). Methods for estimating the
depth of target for VS to irregular shapes can be challenging and were extensively studied
in [33,34]. However, in this case study, the diameter of the ball in the image can be easily
extracted and utilised for the depth estimation purposes.

Figure 5. The image processing steps: (a) image captured by the camera; (b) colour threshold in the
HSV space; (c) result of the blob size filter; (d) centre of the ball and camera marked.

Furthermore, the accuracy of the algorithm is increased by filtering the noise in the
image bitmap. Lastly, the centroid of the ball is reverted to its original colour, and the centre
of the image frame is marked, as illustrated in Figure 5.

The proposed control approach and image processing algorithm were implemented in
Simulink®. The camera feed was interfaced to the Simulink model through the Webcam
Support extension package [35]. The image processing and feature detection algorithms
were developed using the functions and libraries provided in the Computer Vision Tool-
box™ [36]. Furthermore, MATLAB functions and scripts were developed for the implemen-
tation of the prediction models, control algorithms, and the Quadratic Programming (QP)
optimisation routine. The MATLAB functions were then converted into Simulink blocks
through the process described in [37] for system integration.

The processing speed of the real-time implementation was accelerated through using
Simulink® Coder™, which generates C/C++ code and runs it on the operating system as a
native application.
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4. Simulation and Experimental Results

The effectiveness and validity of the proposed cascaded predictive visual servo-
ing/tracking method was validated via various simulations and experiments. In both
the simulations and experiments, the following tests were conducted: an orange ball, at-
tached to a stick, was located within the camera’s FOV. The proposed control algorithm
then tries to bring the image of the orange ball to the centre point of the pixel frame. The
goal is to align the optical axis of the camera with the centroid of the orange ball, while
optimising the performance index and considering the constraints.

Figure 6 shows the image trajectories of the centroid of the ball for three different
simulations. In these simulations, the balls were placed at different initial locations. Fur-
thermore, the experimental results of servoing from the same initial target locations are
presented in Figure 7. As seen in the figures, the proposed method was able to servo
towards the ball, bringing its image to the centre point.

Figure 6. Simulations with different initial locations of the target and the corresponding trajectory in
the image frame.

Figure 7. Experiments with different initial locations of the target and the corresponding trajectory in
the image frame.
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Figure 8 represents the simulated results of servoing toward a stationary target that
is initially projected on S0 = [u0 v0] = [−184,−165] pixels in the image frame. Figure 8a
shows q∗, the desired trajectory generated by the “VPC” block, which should be followed
then by the helicopter. The desired trajectory generation process by vision MPC is con-
ducted while considering maximum permissible pitch/yaw accelerations of the UAV. The
second-tier controller, namely MPC, is responsible for tracking the desired trajectory calcu-
lated in the first stage. Figure 8b demonstrates the pitch/yaw trajectory followed by the
helicopter. The desired manipulated variables, namely the voltage applied to the pitch/yaw
motors, are calculated via the “MPC” block.

Figure 8. Servoing toward stationary target (simulation): (a) the trajectory generated by VPC; (b) the
trajectory followed by the UAV; (c) the feature error in the image frame; (d) the inputs applied to the
pitch/yaw motors.

The projected image of the target in the pixel domain converges to the set-point, as
seen in Figure 8c. Finally, the control efforts are depicted in Figure 8d. The results of an
identical test conducted on the experimental setup are presented in Figure 9a–d. However,
some end-of-cycle oscillations exist due to the noise in the image and uncertainties in the
helicopter’s motion measurements.

As presented in the system block diagram given in Figure 1, an EKF-based parameter
estimator was also implemented to identify the uncertain parameters of the dynamic model
in real-time. The estimated dynamic parameters update the prediction model needed by
the “MPC”. It is noteworthy that the initial experiments with the system showed that the
centre of mass of the helicopter Lcm varies during the operation due to effect of data and
power cables connected to the system. Figure 10 presents the performance of the system’s
parameter estimator in the calculation of the centre of mass of the helicopter. Furthermore,
it is worth mentioning that the time coordinate in this plot is referenced to the moment



Drones 2022, 6, 127 14 of 18

that the VS task begins. However, the MPC and EKF are activated beforehand to bring the
target to the field of view of the camera.

Figure 9. Servoing toward stationary target (experimental): (a) the trajectory generated by VPC;
(b) the trajectory followed by the UAV; (c) the feature error in the image frame; (d) the inputs applied
to the pitch/yaw motors.

Figure 10. Centre of mass of the helicopter Lcm estimated by the EKF parameter estimator.

The effect of the tuning parameter used within the Laguerre polynomials, a, the
number of utilised network functions, N, and the prediction horizon of the “VPC”, Np,
on the overall performance of the proposed algorithm were investigated via simulations
(see Figures 11–13). According to the results shown in Figure 11, the Laguerre polynomial
parameter a has a significant influence on the performance of the proposed servoing
algorithm. Additionally, by increasing the number of approximating network polynomials,
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N, the controller would have improved performance, as shown in Figure 12, but at the cost
of an increase in the computational expense. Finally, the effect of the prediction horizon,
Np, on the system’s performance is shown in Figure 13. As the results suggest, the shorter
the prediction horizon, the smoother the image trajectory will be. However, the system’s
response is more agile when predicting further ahead by selecting larger Np.

Figure 11. The effect of parameter a of the Laguerre network functions on the control performance
(simulation).

Figure 12. The influence of the number of Laguerre polynomials on servoing performance (simulation).
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Figure 13. The influence of prediction horizon Np on servoing toward the stationary target (simulation).

5. Conclusions

A cascaded two-tier predictive visual servoing approach was formulated under the
nonlinear MPC paradigm. The proposed algorithm takes the sensors’, task, and control
constraints into consideration. Moreover, the uncertain parameters of the prediction model
are estimated through an EKF-based parameter estimator in real-time and updated in each
control step, resulting in an adaptive scheme. Furthermore, the control space is parame-
terised using Laguerre network functions in order to reduce the computational intensity of
the algorithm and enable its implementation in real-time. The problem formulated on the
2-DoF model helicopter equipped with a front-facing camera and various simulation and
experimental results evaluated the performance and validity of the developed VS approach.
In the next research step, we will implement the proposed control method on a free-flying
multi-copter. Furthermore, we will improve the control performance against exogenous
disturbances such as wind gusts.
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