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Abstract: Uncrewed aerial vehicles (UAVs) are continuously gaining popularity in a wide spectrum
of applications, while their positioning and navigation most often relies on Global Navigation
Satellite Systems (GNSS). However, numerous conditions and practices require UAV operation in
GNSS-denied environments, including confined spaces, urban canyons, vegetated areas and indoor
places. For the purposes of this study, an integrated UAV navigation system was designed and
implemented which utilizes GNSS, visual, depth and inertial data to provide real-time localization.
The implementation is built as a package for the Robotic Operation System (ROS) environment to
allow ease of integration in various systems. The system can be autonomously adjusted to the flight
environment, providing spatial awareness to the aircraft. This system expands the functionality
of UAVs, as it enables navigation even in GNSS-denied environments. This integrated positional
system provides the means to support fully autonomous navigation under mixed environments,
or malfunctioning conditions. Experiments show the capability of the system to provide adequate
results in open, confined and mixed spaces.

Keywords: UAV; drone; navigation; localization; ROS; Simultaneous Localization and Mapping
(SLAM); GNSS; Real-Time Kinematics (RTK); Inertial Measurement Unit (IMU)

1. Introduction

Commercially available uncrewed aerial vehicles (UAVs) provide several failsafe
mechanisms in order to ensure secure flights, even when operated by amateur users. The
key element responsible for the ease and simplicity of their operation is the electronic
flight controller’s ability to continuously estimate and correct both precisely and rapidly,
the desired aircraft’s attitude for the requested navigational maneuvers [1]. During their
operation, the electronic flight controllers receive numerous measurements from several
sensors concerning flight parameters. Usually, installed sensors provide real-time position,
heading, acceleration vectors, angular velocity vectors and height above ground data. After
processing all available data, the flight controller is capable of controlling the aircraft’s
attitude between safe operation margins.

In Global Navigation Satellite System (GNSS)-enabled environments, autonomous
or semi-autonomous flights can be performed since global positioning data are taken into
account by the flight controller. However, many flights are performed in GNSS challenging
or even denied environments. When GNSS signals are weak, or even not available, the
flight controller struggles to ensure a safe flight, since desired attitude estimations are
missing critical input data.

Prior knowledge of GNSS availability in an area can be the decisive factor between
performing a mission manually with an active operator or autonomously. Despite the
immense processing power available on board many UAVs [2], the lack of localization data
can be a prohibitive factor for autonomous missions. Some applications require positioning
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data not only for navigation, but also for other application specific circumstances. Mapping
applications require continuous knowledge of position to ensure adequate coverage, geo-
referencing and accuracy [3,4]. In search and rescue missions [5,6], localization is required
to geolocate individuals in danger. In urban and logistic applications, localization is crucial
to aid obstacle avoidance and path planning.

A categorization of UAV navigation practices [7] includes GNSS-related implementa-
tions, integration of inertial sensors, vision-based techniques, radio-frequency (RF)-based
localization through allocated transmitters, motion capturing, mapping, and finally hybrid
solutions integrating combinations of the above-mentioned techniques.

Historically, even before the use of GNSS systems, Inertial Measurement Unit (IMU)-
only solutions [8,9] suffered from accumulated drift errors and very quickly became un-
suitable for navigation, at least as a stand-alone solution; radio frequency (RF)-based
positioning is mainly used in confined indoor spaces and often requires an already estab-
lished infrastructure of transmitters [10]. These solutions are quite ineffective in unknown
outdoor environments and they do not provide adequate coverage and precision.

Recently, the Galileo service became available to many commercially available GNSS
receivers. It has been evaluated that the integration of Galileo in GNSS receivers alleviates
the operation of navigation systems in terms of both accuracy and service availability [11],
even in Galileo only navigation approaches [12,13].

In the hybrid solution regime, GNSS-IMU fused techniques [14] are often troublesome
in terms of low satellite coverage, obstructions, and multipath effects. The IMU may
support better estimations between GNSS localization readings, yet, when GNSS fails, IMU
becomes almost useless in a few seconds.

Vision-based techniques may be assisted by known environments, based on ground
knowledge, including satellite image data, neural networks trained in specific environ-
ments [15], or even techniques focusing on absolute visual localization (AVL) [16], supple-
mented with georeferenced images from previous flights. Other vision-based methods aim
beyond conventional image matching and approach the navigation problem with optical
flow behaviors [17,18].

Recent studies perform localization tasks in GNSS-challenging environments via multi-
sensor fusion [19,20]. Some approaches try to “understand” the motion though space, by
detecting and tracking visual features existing in the flight area [21–23].

ORB_SLAM2 [24] is a highly integrable simultaneous localization and mapping
(SLAM) algorithm option, as it can utilize monocular, stereo and/or visual-depth (RGB-D)
data. Today, ORB_SLAM2 is an integral part of many localization scenarios [25–28].

Compared to these approaches, the system developed in the present study integrates
all three main navigational components including GNSS, IMU, visual and depth data. Lo-
calization redundancy is addressed by the development of a multi-tier localization system.
The system is integrated in a UAV and may provide global localization by integrating GNSS
data when possible, while continuously executing a SLAM algorithm which processes
visual, depth and inertial data in real-time. The integration of inertial data was found to
play a great role in improving the rate at which a localization output could be performed.
Furthermore, by taking into consideration not only GNSS metrics but also their change
rates, the system can perform immediate actions when selecting localization sources. These
two factors make the system agile in challenging applications, when localization rate plays
an important role, such as navigation in a highly obstructed environment, or even set the
basis of anti-spoofing engagement.

This study aims to provide a modular, real-time, UAV localization system implemented
upon a general purpose, lower power embedded system. It focuses on the ability of the
proposed system architecture to selectively integrate different sensors and localization
sources, and provides a localization output that mimics the behavior of a multiplexer.
Moreover, it provides an approach on augmenting the ORB-SLAM2 algorithm, by enabling
the integration of inertial data, allowing for higher rate positioning estimations. Such a
rate is an important parameter, especially in UAV applications, as drones usually require
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localization input in order to hover properly [1]. Furthermore, this implementation aims
to minimize possible translational and rotational drifts of the SLAM by selectively re-
initializing it on the latest systemwide known position and rotation. This aspect also aids
in saving memory in case the SLAM output is not required, if another localization source is
currently selected and reports healthy measurements. Memory alone is a constrain in the
family of embedded systems for whom this study is focused. The behavior of the system is
implemented as a package of the Robotic Operation System (ROS) environment.

The rest of the paper is structured as follows: Section 2 presents the hardware and
software components used in the system, along with applied methodologies. In Section 3,
several testing scenarios are detailed, followed by the extracted results. Finally, the main
findings of the present study are discussed in Section 4.

2. Materials and Methods

The developed system is designed to provide global positioning data to the aircraft,
even in areas where GNSS signals cannot be received. The key aspect behind the operation
of the implemented system is the selective integration of localization modules, each one
designed for different operating environments. Throughout the flight, the module can sense
the flight environment and select the appropriate localization subsystem. This selection is
primarily based on a set of thresholds applied on available GNSS metrics.

2.1. Components

The primary localization subsystem utilizes a real-time kinematics (RTK) enabled
GNSS receiver. RTK-GNSS receivers allow for centimeter-level accuracy [29] as they take
into account correctional data that improve significantly the quality of the measurements.
Data provided by the GNSS receiver are coupled with inertial, attitude and heading
measurements, supplied by onboard sensors. The combined output vector feeds the aircraft
with the required localization information when the utilization of GNSS is possible.

In order to evaluate the health of the GNSS signals, the number of available satellites, as
well as the Position Dilution of Precision (pDOP) values, are taken into account. Thresholds
are applied on their exact value as well as their rate of change. Selecting the thresholds can
be achieved by performing an evaluation flight in the area to determine the GNSS metrics
under fully operational GNSS-RTK conditions. The selection of the thresholds is described
in Section 2.2.1.

The selected criteria were preferred, as they can immediately indicate a possible
upcoming GNSS measurement degradation. When the UAV flies in a GNSS healthy
environment, these values are relatively stable and constrained inside anticipated limits.
This is not the case when the vehicle enters GNSS hard areas. Moreover, they provide ease
of integration as they are usually directly supplied by many GNSS receivers.

When the aircraft enters GNSS denied areas, the system can immediately supply the
UAV with localization information provided by another submodule. As GNSS signals
become unavailable, this submodule performs position estimation from the latest known
global fix by executing a SLAM task. As the aircraft flies in the GNSS denied area, data
provided by onboard visual, depth and inertial sensors are fed to the SLAM algorithm. The
localization output of the SLAM is then selected as the positioning source of the aircraft.

2.1.1. Hardware Components

The target deployment platform selected for this study is a custom-made hexacopter
UAV (Figure 1). The aircraft body is primarily made out of carbon-fiber composite compo-
nents to provide structural strength, while maintaining low weight.
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Figure 2. (a) Ublox F9P Global Navigation Satellite System (GNSS) solution. (b) L1/L2 Ublox ANN-

MB GNSS antenna. Source: Ublox (www.ublox.com, accessed on 1 October 2021). 

To aid the GNSS signal reception, the dual band antenna is mounted on a 0.5 mm 

thickness by 120 mm diameter aluminum disk, on top of the aircraft. The disk acts as a 

ground plane and mitigates unwanted multipath effects [32]. As the disk is made from a 

non-ferromagnetic material (aluminum), it does not interfere with the magnetic compass 

of the aircraft. The mount was custom designed and 3D printed (Figure 3). 

 

Figure 3. Mounting the GNSS antenna. 

The selected processing block for the system is a Raspberry Pi 4 (RPi4) [33] embedded 

computer. This single board computer was selected as it features a relatively “low-

power”, “low-weight” design with many available interfacing options. This module is the 

core of the system as it is responsible of continuously executing the localization task and 

Figure 1. (a) The custom hexacopter uncrewed aerial vehicle (UAV) used in this study. (b) The flight
control unit of the aircraft, Pixhawk 2 Cube.

This aerial platform is capable of carrying payloads up to 4 Kg, while enabling com-
plete customization regarding the on-board equipment arrangement. This aircraft features a
Pixhawk 2 Cube flight control unit (FCU) [30] to control the aircraft, along with a dual band
Ublox F9P [31] GNSS receiver, which provides the system with global positioning data
(Figure 2). This RTK enabled GNSS solution is able to provide centimeter level accuracy
when corrections are available.

Figure 2. (a) Ublox F9P Global Navigation Satellite System (GNSS) solution. (b) L1/L2 Ublox
ANN-MB GNSS antenna. Source: Ublox (www.ublox.com, accessed on 1 October 2021).

To aid the GNSS signal reception, the dual band antenna is mounted on a 0.5 mm
thickness by 120 mm diameter aluminum disk, on top of the aircraft. The disk acts as a
ground plane and mitigates unwanted multipath effects [32]. As the disk is made from a
non-ferromagnetic material (aluminum), it does not interfere with the magnetic compass of
the aircraft. The mount was custom designed and 3D printed (Figure 3).

Figure 3. Mounting the GNSS antenna.

www.ublox.com
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The selected processing block for the system is a Raspberry Pi 4 (RPi4) [33] embedded
computer. This single board computer was selected as it features a relatively “low-power”,
“low-weight” design with many available interfacing options. This module is the core of
the system as it is responsible of continuously executing the localization task and updating
the flight controller in real-time with the calculated data. The computer also interfaces
both the GNSS unit and visual-depth camera, which feed the localization algorithm with
vital data.

The selected visual-depth sensor is an Intel RealSense D435 camera sensor [34], which
has built-in depth estimation functionality (Figure 4). Moreover, the sensor also features
an active IR projector to further aid in the depth estimation process [35]. The module
interfaces with the RPi4 via USB 3. To install the sensor onto the aircraft, a custom mount
was designed and 3D printed (Figure 4).

Figure 4. (a) The visual-depth camera sensor Intel RealSense D435. (b) Mounting the D435 onto
the aircraft.

2.1.2. Robotic Operating System (ROS)

The operation of the localization module is based on processing of many distinct data
streams conveying global positioning, visual-depth and inertial data. In order to build the
system as a module which can be integrated in modern UAVs and communicate at protocol
level with a vast variety of commercial and even industrial sensors, the software is built on
top of the Robotic Operating System framework [36,37].

ROS is built to provide a modular approach for robotic applications. Developing
individual functional blocks can be very helpful, especially when designing high complexity
applications. This approach allows for straightforward development, as each block has a
very specific task. An application is constructed after combining the developed blocks in a
top-level design. Being able to compose applications through the use of modular design can
further aid future expansion of the application under the integration of new functionalities.

2.1.3. ORB-SLAM2

The developed SLAM-based localization processing block is structured as a ROS node
in the system environment. It utilizes the ORB-SLAM2 algorithm [24] as it allows the
execution of SLAM tasks on monocular, stereo and RGB-D data. The developed localization
module expands the initial functionality of the ORB-SLAM2, as it allows further integration
of inertial data. In this system, the algorithm receives as input visual-depth data provided
by the D435 sensor along with inertial data provided by IMUs of the aircraft.

2.2. Architecture

The developed system is built as an ROS package named “sense_nav”, in order to
allow integration in modern UAVs. The operation of the system is distributed into two ROS
nodes. The first one is called “localization_core” and the second one is called “vdio_slam”.
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Inside the ROS environment, available data streams convey vital information regarding
position and orientation estimations of the UAV. The role of the localization_core node is
to monitor the quality of these estimations for each available system and decide which
one will be used for localization. The system must support estimations provided primarily
by GNSS, while allowing other nodes to provide localization estimations as secondary
sources. Such a node is the vdio_slam, which provides localization based on visual, depth
and inertial SLAM (Figure 5).

Figure 5. Usage of the available data streams into selectable localization sources. (GNSS: Global
Navigation Satellite Systems, IMU: Inertial Measurement Unit, EKF: Extended Kalman Filter).

2.2.1. Architecture—The Localization_Core ROS Node

The operation of this node is highly important as it needs to continuously monitor
the available streams in order to be always up-to-date, regarding both the localization
availability and quality. Moreover, it is the responsibility of this node to feed the flight
control unit with localization data.

As the node initializes, the origin (0, 0, 0) (X, Y, Z) of the local three-dimensional space
is referenced with global coordinates of a fixed point described in the form of WGS84
(latitude, longitude, altitude). This process can be done either automatically or manually.
The system is able to accept as origin the first valid GNSS fix, which also satisfies the quality
parameters set by the user. In addition, the origin point can be supplied to the system as a
user-specified parameter.

The navigation system of this study complies with the rules of REP 103 [38] and
REP 105 [39], hence the East North Up (ENU) convention is used for referencing the local
three-dimensional space. As many geometric calculations need to be conducted between
many reference frames, the TF [40] transform library is utilized.

The localization_core operates as a multiplexer controlled by a state machine. By
monitoring the available localization streams, it selects as the systemwide localization
source the system with the highest priority which also reports healthy status. The system
with the highest priority is the GNSS. Next, the SYS_0 input source follows, leaving SYS_N
as the input source with the lowest priority. SYS_0 and SYS_N are sources that can be
supplied by other nodes such as the vdio_slam, which was designed and implemented
for the purposes of this study. SYS_N is an input source for further interfacing with other
localization nodes. The proposed architecture allows for ease of scaling as many localization
subsystems can by attached. The selection of the source is made based on the availability
and the priority selected by the user. The architecture follows the convention that a higher
N number implies lower priority. As the node monitors the available streams, it can be in
one of the following states (Figure 6):

• GNSS HEALTHY: GNSS provides reliable data
• GNSS WARNING: GNSS provides unreliable data
• SYS_0 HEALTHY: SYS_0 provides reliable data
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• SYS_0 WARNING: SYS_0 provides unreliable data
• SYS_N HEALTHY: SYS_N provides reliable data
• SYS_N WARNING: SYS_N provides unreliable data

Figure 6. The states of the localization_core node, along with their possible transitions. A detailed
explanation of the transition logic can be found in Figure 7.

The localization_core broadcasts, continuously and in a systemwide fashion, its status
containing the latest valid localization data. The idea is that other nodes will be able to
receive such data and update their internal knowledge regarding the localization state.
Those nodes will continuously report their latest positioning estimations and status to the
localization core, and in the case a warning arises on one subsystem, another one can take
over.

The system can be configured to operate based on GNSS measurements when certain
criteria are satisfied. As other studies suggest [41,42], the position dilution of precision
(pDOP) value can be a considerable metric when evaluating GNSS positioning data. The
criteria selected for this study are the utilized satellite count and the pDOP value, supplied
by the GNSS receiver. The configurable parameters are:

• Minimum satellites count: The minimum number of satellites which are considered
acceptable for positioning regarding a specific flight.

• Minimum satellite count drop rate: This value indicates the satellite count drop rate,
which triggers the GNSS_WARNING state.

• Maximum pDOP: The maximum pDOP value which is considered tolerable regarding
a specific flight.
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• Minimum pDOP increase rate: This value indicates the pDOP increase rate, which
triggers the GNSS_WARNING state.

• IMU/GNSS/(other localization source, e.g., vdio_slam) timeout: The amount of time
in milliseconds which triggers a timeout event, indicating that a module has become
unresponsive. Each module can be configured individually.

Selecting the thresholds is a vital task, as they determine the stability of the system.
The thresholds regarding the number of satellites used, as well as the pDOP, depend on the
selected constellations. In this study, the GNSS receiver utilizes GPS and Galileo satellites.
The lowest satellite count reported by the receiver during a time window of about 2 h was
never bellow 12 satellites, while the pDOP was constantly lower than 2. As the UAV was
maneuvered closer to buildings, some satellite signals were obstructed which resulted in
an instant decrease in the number of satellites used followed by an increase of the pDOP
value. Hence, an appropriate threshold value for the minimum satellite count should be
the lowest observation—1. The maximum pDOP for a similar setup should be set as close
to 2, as such a value was found to provide a great confidence level. Selecting the thresholds
regarding the rates is an optional step, which requires further testing as those rates are not
only affected by the surrounding area, but also from the velocity of the aircraft and the
output rate of the GNSS receiver.

This node houses two callback queues, handled by two individual threads. In the
primary queue, the callbacks that are related to the selected localization source are assigned,
while the rest are allocated to a secondary queue for monitoring purposes. After each
time the localization system changes, the assigned callbacks on those two threads are also
adjusted. This design results in the minimum amount of dropped messages.

2.2.2. Architecture—The Vdio_Slam ROS Node

Operating a UAV in GNSS-denied environments can be challenging. In order to tackle
such scenarios, a SLAM ROS node was created. This node is named vdio_slam as it uses
visual, depth and inertial data to provide odometry readings. Vdio_slam is primarily based
on the ORB_SLAM2 algorithm.

By utilizing this node, the UAV is able to gain spatial awareness by moving through
space and acquiring visual features as spatial points of reference (Figure 8). The input
streams of this node are the visual and depth frames of the RGB-D sensor, as well as the
IMU data stream of the UAV.

The visual and the depth streams are fed directly to the ORB_SLAM2 pipeline. The
execution of the algorithm is expensive in terms of performance. After performing tests
with the highest resolution settings, the on-board processing unit was able to perform pose
estimation on the surrounding area at a rate of 11 Hz. Such performance can be sufficient
for positioning use cases. However, many applications require higher rates. Increasing the
localization rate can result in higher overall stability of the system.

In order to increase the pose estimation rate, the idea was to take advantage of the
IMU data. The flight controller can provide IMU readings at a rate of 30 Hz. Hence, another
thread was created to handle the IMU data.

Integrating the readings of acceleration in time, results in velocity. Integrating velocity
results in translation. The angular velocity supplied by the IMU was also taken into account.
As the ORB_SLAM2 runs on the first thread, the other provides estimations based on the
IMU. Each time an ORB_SLAM estimation is calculated, the pose estimation is re-initialized.
Between any two ORB_SLAM poses, IMU-based pose estimations are integrated. By taking
advantage of the IMU, the output rate of the node reached a stable 30 Hz pose estimation
output on the on-board processing unit (Figure 9).
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Figure 7. State transition logic of the localization_core. Diagrams (a,b) indicate the state transi-
tion logic when the system is in GNSS_HEALTHY or GNSS_WARNING state, whereas diagrams
(c,d) describe the transition logic when other localization systems are either in SYS_N_HEALTHY or
SYS_N_WARNING. N_SAT is the current value of number of satellites used, and N_SAT_RATE is
the current value of the overtime change of N_SAT. In a similar fashion, pDOP_RATE is the current
value of the overtime change of Position Dilution of Precision (pDOP).
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Figure 8. Execution of the Simultaneous Localization and Mapping (SLAM) algorithm in a GNSS-
denied environment. (a) The estimated trajectory up to the current position of the system in a local 3D
map created by utilizing the ORB_SLAM2 algorithm. The red dots represent features of the local 3D
space as point-cloud data that are currently detected, whereas the black ones represent all recorded
features up to that moment. (b) Detected features in the surrounding space which are used by the
SLAM algorithm for tracking.

Figure 9. (a) Task allocation in vdio_slam node. (b) Execution of vdio_slam node.

The vdio_slam node interfaces with the localization_core to exchange vital data through-
out the flight. As the localization_core reports a GNSS_HEALTHY or SYS_N_HEALTHY
state, the vdio_slam resets the pose estimation and sets the origin of the tracking, on the latest
reported pose provided by the localization_core. In the case that the localization_core reports
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a WARNING state and the vdio_slam is able to perform the pose estimation, a HEALTHY
output will be forwarded.

3. Testing and Results
3.1. Evaluating the Localization Performance

To evaluate the overall performance of the localization system, actual field tests were
conducted. Among the various tests, herein we present various representative experimental
results, in GNSS-enabled areas as well as GNSS-denied ones.

As the proposed localization system runs on a limited performance embedded com-
puter, the Stereo, as well as the RGB-D ORB-SLAM 2 pipelines, were tested in various
resolutions and CPU profiles to detect which combination is more viable. The monocular
pipeline was not tested as it is a scale-depended solution, whereas both the Stereo and the
RGB-D are not, given the camera calibration profiles are known to the system.

By comparing the acquired data (Figure 10), the most appropriate combination for the
purposes of this study appears to be the RGB-D pipeline at 848 × 480 resolution when
the CPU (ARM Cortex-A72) is clocked at 2.2 GHz, considering that the output rate drops
dramatically in a non-linear fashion after this point. Moreover, such combination allows
even more than 50% of the CPU to be used for further on-board processing. After selecting
such settings, the system was prepared for field testing to evaluate the localization accuracy
for different methods.

Figure 10. (a) Comparison of SLAM output rates for each available resolution of the D435 sensor
and Central Processing Unit (CPU) profiles, performed on a Raspberry Pi 4. (b) Comparison of CPU
usage for each available resolution of the D435 sensor and SLAM pipeline, performed on a Raspberry
Pi 4.
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For the first stage of field testing, a space was selected to conduct some initial tests to
evaluate various localization subsystems and techniques. Ground truth points were spread
across the selected area and were calculated in a local coordinate system with the utilization
of a topographic 3D laser scanner (Leica BLK 360). After re-estimating the coordinates of
these points via an RTK-Aided GNSS, the local coordinate frame was converted to ENU.
For the purposes of performing an initial evaluation of possible localization methods, the
UAV did not perform an actual flight and was rather maneuvered around by hand.

The selected localization methods were an extended Kalman filter (EKF) fused output
of GNSS and IMU, an ORB-SLAM2 pipeline operating on Stereo camera streams, an ORB-
SLAM2 pipeline operating on RGB-D streams, and the vdio_node which augments the
ORB-SLAM2 RGB-D pipeline with the integration of EKF-IMU data.

After initializing the UAV as close as possible to the first ground truth point, the UAV
was maneuvered along the evaluation track, over the established ground truth points.
During those tests, no algorithms were reset or re-initialized. Throughout the test, the
UAV was at a constant height of about 2 m above ground, while maintaining its initial
orientation at a low speed of around 3 m/s. In Figure 11 and Table 1, some essential data
regarding tested localization methods are provided.

Figure 11. Localization system comparison. The output path of some essential tested subsystems
after maneuvering over the evaluation track.

Table 1. Comparison of the accuracy regarding the selected localization subsystems.

Method
Error 2D Error Height Error 3D

Average (m) Variance (m2) Average (m) Variance (m2) Average (m) Variance (m2)

GNSS 0.0129 0.0002 0.0066 <0.00005 0.0157 0.0002
Stereo SLAM 0.2195 0.0202 0.0402 0.0010 0.2255 0.0200
RGBD SLAM 0.0866 0.0024 0.0124 0.0001 0.0885 0.0023
RGBD, IMU

SLAM (VDIO) 0.0832 0.0054 0.0142 0.0001 0.0881 0.0048

Such initial data suggest that in terms of accuracy regarding the SLAM pipelines
operation on the D435 streams, the RGBD appears to obtain the highest accuracy and
lowest angular drift; hence, the vdio_node was developed, which appears to provide even
higher accuracy by integrating EKF filtered inertial data. In the next stage of field testing, the
vdio_node was put to further testing by performing an actual flight in a GNSS-enabled area.

After taking off, the UAV followed a curved path in a GNSS-enabled area in which
RTK corrections were also available by a nearby base-station. The calculated positioning
data provided by the RTK-GNSS were used as ground truth points. The vdio_slam was
initialized right after the first successful RTK augmented fix. For testing purposes, the
algorithm was forced to deny re-initialization. This test took place in daylight under
moderate sunlight exposure.
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Throughout the flight, the RGB-D sensor was able to provide both visual and depth
data (Figure 12) at a stable rate of 12 Hz, while the IMU was feeding the algorithm in a
constant rate of 30 Hz.

Figure 12. (a) Optical frame captured via the D435 camera. (b) Frame containing the depth perception
of the scene. The frames were captured simultaneously.

As indicated in the recorded GNSS data (Figure 13), the system was operating in a
GNSS-enabled environment and RTK corrections were utilized throughout the flight. The
number of satellites used never dropped below 12 and the pDOP did not report values
above 1.5. GNSS status was constantly reported as “2”, indicating the continuous usage of
RTK corrections via the ground-based augmentation system. The values of GNSS status,
the number of satellites used and pDOP are directly reported via the GNSS module (Ublox
F9P). Possible GNSS status values are:

• −1: Unable to fix position
• 0: Unaugment fix
• 1: Satellite-based augmentation
• 2: Ground-based augmentation

Figure 13. GNSS status log of the initial test, indicating the health of the GNSS captured data
throughout the flight.
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The vdio_slam was able to execute in real-time and the output of the algorithm was
recorded. Below (Figures 14–16), the estimated trajectory of the UAV can be seen along
with the ground truth path for comparison. The differences are not visible due to the
extensive overlap.

Figure 14. The vdio_slam calculated trajectory (green) along with the GNSS track (yellow).

Figure 15. Comparison between the vdio_slam estimated position and the ground truth track
provided by the RTK-GNSS.

Figure 16. The calculated planar error between the vdio_slam estimated position and the ground
truth points.
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3.2. Flying in GNSS Challenging Areas

After the initial tests of the system in GNSS-enabled environments, the UAV was put
to the test in more challenging flight scenarios. Tests were conducted in order to evaluate
the performance of the localization module in GNSS challenging environments.

To provide referenceable testing data, ground truth points were spread across the
testing areas and were registered with the utilization of a 3D laser scanner (Figure 17),
as healthy GNSS signals could not be obtained. The reported 3D accuracy of the ground
truths is 0.004 m.

Figure 17. (a) Creation of a 3D point-cloud of the testing area with the usage of a 3D laser scanner, for
evaluation purposes. Blue dots indicate the distinct points in which the 3D scanner was set. Green
lines indicate the “links” between those setups. This specific point cloud was created by selectively
merging seven setups. (b) A ground truth point, as viewed in the reconstructed 3D environment.

For the purposes of multi-environment testing (Figure 18) evaluation, two flights are
presented. The flights were initialized in the same area where the localization accuracy was
evaluated. Both flights presented were commenced in a location where a stable GNSS-RTK
fix could be established.

Figure 18. Vdio_slam execution while entering the GNSS-challenging area. (a) Detected features in the
surrounding space which are used by the SLAM algorithm for tracking. (b) The estimated trajectory
up to the current position of the system in a local 3D map created by utilizing the ORB_SLAM2
algorithm. The red dots represent features of the local 3D space as point-cloud data that are currently
detected, whereas the black ones represent all recorded features up to that moment.

In the first flight, right after the takeoff, the UAV entered a GNSS-challenging envi-
ronment. The flight area was abundant with GNSS “blind spots” (Figure 19), making it
impossible for satellite signals to be received sustainably.



Drones 2022, 6, 135 16 of 23

Figure 19. Execution of vdio_slam in a GNSS-challenging corridor. (a) Detected features inside the
corridor which are used by the SLAM algorithm for tracking. (b) The estimated trajectory up to the
current position of the system in a local 3D map created by utilizing the ORB_SLAM2 algorithm.
The red dots represent features of the local 3D space as point-cloud data that are currently detected,
whereas the black ones represent all recorded features up to that moment.

As indicated in the recorded GNSS data (Figures 20 and 21), the system was able to
initially utilize the GNSS as the localization source; however, the GNSS reported many
instabilities during the flight in the selected area. The number of satellites used was
continuously changing, as did the reported pDOP. During this test at around t = 150 s, the
UAV entered a concrete ceiling corridor (Figure 19). Inside the corridor, the pDOP reached
a peak value of 3.4, and the available satellite count dropped to 8. The recorded satellite
count and pDOP rates can be found in Figure 20 with their selected operating thresholds.

Figure 20. GNSS parameters recorded via the localization_core during a flight in a GNSS-challenging
environment, along with their selected operational thresholds, of the first experiment.
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Figure 21. Overview of the operation of the thresholds, presented in Boolean logic, of the first
experiment. The top figure indicates the regions where the number of satellites value, as well as
its drop rate, contributed to producing a GNSS_WARNING state. The middle figure indicates the
regions where the pDOP value, as well as its increase, contributed to producing a GNSS_WARNING
state. The bottom figure is the logic OR operation of the previous figures, which indicates when the
system was inside a GNSS_WARNING state.

In this flight, the UAV was maneuvered over the ground truth points to allow for
accuracy evaluation in actual conditions. The localization system was able to select the
GNSS–IMU submodule as the localization source during only the initial and middle stages
of the flight. The reception of the GNSS signals was immediately degraded after entering
the testing zone. However, the system was able to maintain spatial awareness as the
vdio_slam was able to execute uninterruptedly. The acquired trajectory of the UAV can be
seen in Figure 22.

Figure 22. The overall acquired localization output track of the first experiment. This figure indicates
the regions where the GNSS-IMU subsystem was selected as the localization source (yellow), as well
as the regions where the system handed over the localization task to the vdio_slam (blue).
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A total of 25 ground truth points were utilized to evaluate the accuracy of this ex-
periment. In this experiment, the system was operating on GNSS-IMU data from the
initial point (ground truth #1). The vdio_slam was continuously re-initialized to the latest
available GNSS fix and was handed over the localization task initially near ground truth
point #5, up until around point #12, where a healthy GNSS fix could be obtained. Near
ground truth point #14, the localization task was once again handed over to the vdio_slam,
which was re-initialized to the latest GNSS fix. This test was concluded shortly after passing
over the ground truth point #25. The accuracies acquired regarding this experiment can be
found below (Table 2).

Table 2. Accuracy evaluation of the localization system of the first experiment, inside a GNSS-
challenging environment.

Error 2D Error Height Error 3D

Average (m) Variance (m2) Average (m) Variance (m2) Average (m) Variance (m2)

0.0747 0.0052 0.1154 0.0223 0.1491 0.0240

Another experiment was conducted in a nearby area to further investigate the accuracy
of the system inside a GNSS-denied area, which is the inside of a building. In that scenario,
the UAV was once again initialized in a GNSS-RTK enabled area. A total of 29 ground
control points were spread in the area of interest, both inside and outside of the building.

In the initial stage of the predetermined trajectory, the UAV was maneuvered over an
unclouded open space before entering the building. As indicated by the recorded GNSS
data (Figures 23 and 24), the system was operating initially inside an area of adequate
GNSS-RTK coverage up until the ground truth point #13 (Figure 25), near t = 105 s. At that
point, the UAV entered the building and the GNSS vitals were quickly degraded (Figure 23).

Figure 23. GNSS parameters recorded via the localization_core during a flight in a GNSS-challenging
environment, along with their selected operational thresholds, of the second experiment. The graph
containing the pDOP rate is a zoomed-in version as the values were extremely far from the threshold
at a magnitude of about 2000.
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Figure 24. Overview of the operation of the thresholds, presented in Boolean logic, of the second
experiment. The top figure indicates the regions where the number of satellites value, as well as
its drop rate, contributed in producing a GNSS_WARNING state. The middle figure indicates the
regions where the pDOP value, as well as its increase, contributed to producing a GNSS_WARNING
state. The bottom figure is the logic OR operation of the previous figures, which indicates when the
system was inside a GNSS_WARNING state.

Figure 25. The overall acquired localization output track for the second experiment. This figure
indicates the regions where the GNSS-IMU subsystem was selected as the localization source (yellow),
as well as the regions where the system handed over the localization task to the vdio_slam (blue).
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While entering the building, the thresholds were surpassed (Figures 23 and 24), and
the vdio_slam was handed over the localization task. The vdio_slam was continuously
re-initializing at each healthy GNSS fix before this point. After entering the building, the
vdio_slam did not re-initialize until the completion of the experiment.

This experiment was concluded right after the UAV passed over the ground truth
point #29. As suggested by the acquired trajectory (Figure 25), the UAV was able to provide
sufficient localization inside the building. The calculated accuracies of this experiment can
be found in the table below (Table 3).

Table 3. Accuracy evaluation of the localization system of the second experiment, inside a GNSS
challenging environment.

Error 2D Error Height Error 3D

Average (m) Variance (m2) Average (m) Variance (m2) Average (m) Variance (m2)

0.0747 0.0052 0.1154 0.0223 0.1491 0.0240

4. Discussion and Conclusions
4.1. Discusion on the Main Findings

The developed system is able to provide sufficient localization data even in GNSS-
challenging environments. In order to supply the UAV with appropriate localization
estimations, the system initially evaluates the quality of the data acquired via GNSS, as they
are the primary source of positioning estimations. In case the GNSS data are determined as
“low” in quality, a SLAM algorithm is initialized at the latest known high quality position
fix. The SLAM algorithm takes visual, depth and inertial data, and provides a globally
referenced localization output.

As mentioned in Section 2, the system needs to continuously monitor the quality of the
GNSS data and select the localization source accordingly. In order to evaluate the quality
of the GNSS data, the algorithm takes into account the pDOP value and the number of
utilized satellites. Moreover, in order to determine possible GNSS signal degradation in a
timely manner, thresholds are applied even in the rate of change of both the satellite count
and the pDOP value.

Regarding the experiments mentioned in Section 3, the system was initially able to
output sufficient localization data, as it was operating in a GNSS-enabled area and RTK
corrections were also available. The SLAM-estimated UAV trajectory was able to follow
the RTK-GNSS track with a very low planar error of less than 0.1 m for the whole duration
of the evaluation flight. The SLAM was able to provide pose estimation based on the
visual-depth streams at a rate of 12 Hz, which is about the same rate reported by the F9P
GNSS receiver. The IMU of the aircraft was able to supply the algorithm with 30 Hz inertial
measurements. By integrating the inertial measurements between the visual-depth SLAM
estimations, the system was able to perform stably at 30 Hz, doubling the initial rate. It
is worth mentioning that the whole system was executing on a low power ARM-based
single board computer (RPi4). The selected visual-depth resolution on which the SLAM
was successfully conducted was 848 × 480 p.

In order to save processing power and memory without sacrificing positioning accu-
racy, the SLAM was continuously reinitialized to the latest known high quality position
fix. In the case that the system entered the GNSS-WARNING state, the SLAM would
immediately stop the reinitializing process and execute uninterruptedly until the system
reported the GNSS-HEALTHY state, which would trigger once again the reinitialization of
the SLAM.

During the initial test, the thresholds which assess the GNSS quality were selected and
evaluated in later flights inside GNSS-challenging areas. The minimum tolerable satellite
count was set to 12 and the minimum satellite count drop rate to 1.0. The maximum pDOP
was set at 1.8, while the selected minimum pDOP increase rate was 2.0.
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Regarding the first test inside a GNSS-challenging zone (t = 40 s), the system imme-
diately reported the GNSS-WARNING state and the SLAM became operational in less
than 50 ms. While the UAV was inside the GNSS-challenging area, it was unable to switch
back to the GNSS-HEALTHY state as at least one threshold was surpassed or the GNSS
reported 0 status. As suggested by the recorded data (see Figures 20–22), the GNSS track
indicates that the receiver was not able to provide a reliable fix continuously inside the
GNSS-challenging environment. It reported many instabilities as abrupt satellite count
drops followed by instantaneous pDOP increases. It is worth noting that around time
t = 150 s, as the UAV entered the concrete ceiling corridor, the GNSS readings were highly
degraded, and even reported a false right-hand turn after the UAV exited the corridor. On
the contrary, the vdio_slam was able to perform adequately as the track acquired had no
indications of instabilities or discrete “jumps”, but rather a smooth continuous path.

Similar performance was observed also on the second test in GNSS-challenging areas.
The system immediately sensed the drop in satellite count, and did not re-initialize the
vdio_slam from that point on, until the end of the experiment.

For both experiments, we can conclude that the most important threshold was the
available satellites number, as it was found to be the decisive factor. The thresholds
regarding the rates were found to function properly as early warnings of a possible future
decrease of GNSS integrity.

4.2. Future Work

Despite the proven abilities of this system, there is always room for improvements,
as well as added functionality. The system was designed in this configuration in order to
allow expandability as further functionality can be integrated in the form of ROS nodes.
The localization_core node has been already implemented with an unconnected port for
another localization submodule. Such a module can be an extended Kalman filter (EKF)
core, which may take as input different combinations of the available localization data.
Despite the expected increase in position estimation accuracy, the whole system will be
capable of calculating even more flight parameters, such as linear and angular velocities.

Currently, the mechanism which determines the quality of the selected attributes is a
set of thresholds. Despite being effective, it requires tuning. This aspect could be improved
if deep learning methods were introduced. Recurrent neural networks (RNNs) appear
as exceptional candidates for this operation as they can operate on timeseries. In such
architecture, an RNN may take as input the timestamped sequence of both utilized satellite
number, as well as the pDOP value, and provide a single output which will be used to
control the switching operation between GNSS_HEALTHY and GNSS_WARNING.

Finally, from an embedded software architecture design perspective, the system should
be ported in ROS_2. By migrating to ROS_2, the system can benefit in terms of higher
performance data processing for every designed node [43,44]. Given that the system is
designed as core component for modern UAVs, accurate synchronization is also required.
In such a scenario, ROS_2 can satisfy the synchronization needs [45].
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Abbreviations
EKF Extended Kalman Filter
ENU East North Up
FCU Flight Control Unit
GNSS Global Navigation Satellite Systems
IMU Inertial Measuring Unit
KF Kalman Filter
pDOP Position Dilution of Precision
RF Radio Frequency
RGB-D Red Green Blue-Depth
ROS Robotic Operating System
RPi Raspberry Pi
RTK Real-Time Kinematics
SLAM Simultaneous Localization and Mapping
UAV Uncrewed Aerial Vehicle
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