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Abstract: Traditional forest monitoring has been mainly performed with images or orthoimages 

from aircraft or satellites. In recent years, the availability of high-resolution 3D data has made it 

possible to obtain accurate information on canopy size, which has made the topic of canopy 3D 

growth monitoring timely. In this paper, forest growth pattern was studied based on a canopy point 

cloud (PC) reconstructed from UAV aerial photogrammetry at a daily interval for a year. Growth 

curves were acquired based on the canopy 3D area (3DA) calculated from a triangulated 3D mesh. 

Methods for canopy coverage area (CA), forest coverage rate, and leaf area index (LAI) were pro-

posed and tested. Three spectral vegetation indices, excess green index (ExG), a combination of 

green indices (COM), and an excess red union excess green index (ExGUExR) were used for the 

segmentation of trees. The results showed that (1) vegetation areas extracted by ExGUExR were 

more complete than those extracted by the other two indices; (2) logistic fitting of 3DA and CA 

yielded S-shaped growth curves, all with correlation R2 > 0.92; (3) 3DA curves represented the 

growth pattern more accurately than CA curves. Measurement errors and applicability are dis-

cussed. In summary, the UAV aerial photogrammetry method was successfully used for daily mon-

itoring and annual growth trend description. 
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1. Introduction 

Forests represent the primary force for absorbing and storing carbon to fight global 

warming. It is increasingly understood that forests store large quantities of carbon in both 

vegetation and soil and exchange carbon with the atmosphere. The ability to mitigate the 

impacts of climate change through the enhancement of carbon sequestration has been 

identified [1]. Meanwhile, forests generate essential raw materials for a wide range of 

needs, from household uses, such as cooking fuel, flooring, furniture, and house construc-

tion, to industrial uses, such as wooden boats, decoration, etc. Moreover, forests have 

made a significant contribution to water conservation, wind and sand control, and biodi-

versity protection.  

Research on forest monitoring and analysis plays a fundamental role in understand-

ing growth patterns and provides information for policy development to improve forest 

management. Traditional forest monitoring research has been based mainly on remote 

satellite or aircraft images. The image resolution of these data is usually >1 m, and the 

temporal resolution is generally over 1 week [2,3]. For example, the latest Landsat 9 sat-

ellite had a temporal resolution of 16 days when it worked alone and 8 days when it 

worked with the Landsat 8 satellite [4]. This temporal resolution is not sufficient for a 

detailed study of forest growth. For example, forests grow very fast in spring and 
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experience dramatic canopy/structure/size change, and in autumn, forests may turn yel-

low/red overnight. High-temporal- and -spatial-resolution data are essential for monitor-

ing forest dynamics and studying forest growth patterns in annual cycles [5,6]. Compared 

with satellites, drones with imaging sensor onboard have apparent advantages such as a 

short revisiting cycle, flexibility, and high image resolution, which have made UAVs an 

important emerging remote sensing platform for forest growth monitoring and evaluation 

[7,8]. Moreover, UAVs can still be used when the weather is cloudy, while satellites cannot 

deal with images when thick clouds exist [9,10]. Various sensors can be mounted on 

UAVs, such as thermal infrared cameras [11], hyperspectral cameras [12], and LiDAR [13]. 

UAVs have been used for forest biomass estimation [14], tree height measurement [15], 

pest and disease monitoring [16,17], disaster assessment [18–20], fire surveillance and pre-

vention [21], etc. UAV remote sensing data have high image and temporal resolution. 

These features facilitate immediate monitoring of forest disturbances and timely response 

and damage assessment after a disaster. Despite the numerous pros of UAVs, some cons 

need to be pointed out. For example, small and light commercial drones are prohibited 

from flying over 120 m above the ground because of safety policies. In addition, since the 

weight of drones is strictly limited, their flight durations are short (20–30 min) [22]. Thus, 

the range and coverage of a single flight are much smaller than those of satellites or air-

craft [23]. Usually, drones can hardly be used for city- or state-level monitoring.  

Current forest growth studies are primarily performed with multispectral or RGB 

orthoimages using different spectral vegetation indices (SVI) for ground cover segmenta-

tion [24–26]. However, analysis based on images is a kind of planimetric analysis that 

suffers from dimensional loss. Spectral inversion-based vegetation indices, such as LAI 

[27] and the most commonly used normalized difference vegetation index (NDVI) [28], 

do not depict forest growth directly or visibly enough. Computer vision and airborne Li-

DAR provide new methods for forest growth monitoring that it possible to depict forest 

growth directly and visibly in three dimensions. Structure from motion (SfM) [29] is a 

frequently used aerial photogrammetry method for 3D surface reconstruction, and 

through it, 3D point cloud (PC) data can be obtained. It estimates the 3D structure from 

2D images containing visual motion information. These images are spatially correlated. 

In [30], SfM photogrammetry was successfully applied in forestry research, showing that 

SfM had comparable resolution and precision to those of LiDAR in surface shape acquisi-

tion. The generated 3D PC and digital shape models have been successfully applied in 

tree height measurement [31], canopy volume and cover area calculation [32], tree species 

classification, and age statistics [33]. A generated PC was converted to canopy height mod-

els (CHM) for dynamics analysis. In [34], SfM was used to create an accurate forest struc-

ture and relevant spectra to measure tree height and canopy dynamics. There is a lack of 

forest monitoring research based on 3D canopy structures. In 3D canopy analysis, an in-

dex-based method that directly reflects the 3D dynamics of the forest is needed, such as 

the 3D area (3DA). In point cloud processing, the 3DA is calculated after a long process 

including segmentation, filtering, meshing, etc. Overall, in recent times the availability of 

high-resolution 3D data has made it possible to obtain accurate information on canopy 

size, which has made the topic of canopy 3D growth monitoring timely. 

Therefore, the objectives of this research were: (1) to find out the growth curve of the 

forest in the experimental area at a daily interval. Forest growth was measured from the 

reconstructed canopy 3D surface area. Different SVI-based segmentations for 3D PCs re-

constructed from UAV aerial photogrammetry were explored; (2) to study the growth 

curves of the forest canopy’s 3D area (total unilateral area of the upper surface in the can-

opy) and coverage area (area of the canopy orthographic projection to the ground) and to 

compare the measurements and curves obtained by various SVIs; (3) to explore forest 

health estimation based on forest health status and ecosystem health status in the experi-

mental area through the estimation of LAI and forest coverage rate (ratio of forest area to 

land area). 
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2. Materials and Methods 

In Figure 1, the workflow of this study is illustrated. It can be divided into image 

acquisition, PC generation and processing, canopy area calculation, and growth curve fit-

ting. 
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Figure 1. The workflow of this study. (1) Forest image acquisition based on UAV. (2) 3D PCs were 

reconstructed from these images, and noise points were removed (PCs preprocessing). (3) Points 

representing vegetation were extracted from the PCs, then the canopy was extracted from vegeta-

tion. (4) Triangulate the extracted canopy PC and calculate 3DA; make the canopy projection to the 

ground to obtain CA. (5) Time-series analysis of 3DA and CA measurements to explore the forest 

growth pattern. 

2.1. Remote Sensing Image Capture and 3D PCs Reconstruction  

2.1.1. Remote Sensing Image Capturing 

A forest was chosen as the test subject. It was located at a campus in Hangzhou 

(30°32’ N, 120°36’E, WGS 84), China, as shown in Figure 2a. The size of the experimental 

area was 107 m × 156 m. There were more than 30 species of trees in the experimental area, 

with deciduous trees covering 64% of the forest and evergreen trees covering 36%. This 

complex forest could test the generality of the proposed method. 

The experiment lasted ten months, and the forest images were captured from 1 Sep-

tember 2020 to 27 June 2021 so that a complete annual growth cycle was covered. The 

shooting interval was a day. In order to reduce shadows in forest images, all photo-shoot-

ing flights were undertaken between 12:00 and 14:00. A commercial UAV DJI Phantom 3 

(Figure 2b) equipped with a high-resolution RGB camera was used in this study for all 

image acquisition. The camera had a CMOS sensor of 12 million effective pixels (image 

size: 4000 × 3000). The UAV provided the accurate geographical position of each image 

and recorded it in the image header. The GPS/GLONASS dual-mode positioning system 

that the UAV was equipped with included an advanced navigation algorithm that ena-

bled hovering accuracy of up to ±0.5 m (vertical) and ±1.5 m (horizontal). The DJI GS Pro 

was used for mission planning and remote control of the UAV. UAV flight altitude was 

set at 55 m. The overlap rate of both forward and lateral photography was 87% (the 

planned flight path is shown in Figure 2c). A high overlap rate can balance the noise due 

to the camera sensor’s pixel loss and increase the redundancy of feature points to reduce 

the loss in 3D reconstruction. The photography interval was 3 s, and the flight speed was 

4.6 m/s. 
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(a) Experimental area (b) DJI Phantom 3 UAV (c) UAV flight path 

Figure 2. The experimental area and mission design. (a) The rectangular area marked by white lines 

represents the experimental area. (b) The DJI quad-rotor aerial photography UAV that was used in 

the experiment. (c) The flight path design of the UAV. 

2.1.2. Three-Dimensional PC Construction and Preprocessing 

The 3D PCs were reconstructed from a set of spatially correlated images using SfM. 

The significant steps in this process included (1) image alignment, (2) feature point extrac-

tion and matching, (3) false match exclusion, (4) sparse PC construction, (5) dense PC con-

struction, and (6) PC modeling. An Agisoft Photoscan (Agisoft, St. Petersburg, Russia) 

was used to construct PCs. The significant processes are shown in Figure 3. WGS 84 

(EPSG::4326) was used as the coordinate system, consistently with all the captured images. 

The PC properties included coordinates (X, Y, Z), a color channel (R, G, B), and the normal 

vector (Nx, Ny, Nz). 

  

(a) Image alignment (b) Generation of sparse PCs (c) Generation of dense PCs 

Figure 3. The significant processes of generating PCs via SfM. (a) Forest images were sequence 

matched and aligned, and feature points were extracted from these images. (b) Tie points were con-

structed from 2D images and formed sparse point clouds. (c) The sparse point clouds were filled to 

form dense point clouds. SfM constructs 3D PCs from 2D images and keeps the relative spatial po-

sitions of the points consistent. It is a process of “reflection”. 

After obtaining the PCs, some points were below the ground in clusters or scattered 

because of errors in the PC generation process, as shown in Figure 4. The RANSAC [35] 

algorithm was used to automatically fit the largest support plane to crop the subsurface 

points. Furthermore, the ground markers were used to segment the experimental area and 

remove redundancy. All processes were conducted in PyCharm using python code. 

156 m

1
0

7
 m

(30° 32′N, 120° 36′E)
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a: Underground points

b: Ground points

c: Off-ground points

Equation of the plane:

0.0x + 0.0y + 1.0z﹣38.13=0

Proportion a:

(0.0045 ± 0.00127)%

= 40 m

= 42 m

a b c

 

Figure 4. Height histogram of the experimental area’s PC model. a indicates the underground points 

in the PC model. These points needed to be removed. The equation of the plane is a mathematical 

expression for the maximum support plane (ground), and in the experiment, a minimum of 50 

points were required to satisfy this equation.  Zc represents the horizontal plane, and  Zh represents 

the highest ground points. 

2.2. Vegetation Extraction and Filtering Noise 

The vegetation needed to be extracted from the reconstructed PCs for further study. 

Obviously, vegetation is different from all the other objects, such as roads, cars, and build-

ings, in color. Three SVIs were used to extract vegetation by color.  

2.2.1. Spectral Vegetation Indices (SVIs) 

• Excess green vegetation index (ExG) 

ExG [36] is a widely used SVI for green cover extraction, which is used for crop sta-

tistics in the field by separating crops from the soil. It is calculated as follows: 

ExG = (2G − R − B)/(R + G + B) (1) 

R, G, and B denote the red, green, and blue channels of PC color, respectively. 

• Combination of green indices (COM) 

Guijarro et al. [37] proposed a new vegetation index that weighted and summed four 

green indices: ExG, excess green minus excess red index (ExGR) [36], color index of vege-

tation (CIVE) [38], and vegetation index (VEG) [39], with the advantage that the weights 

can be adjusted for different scenarios. It is calculated as follows: 

COM = 0.25 × ExG + 0.3 × ExGR + 0.33 × CIVE + 0.12 × VEG (2) 

where: 

ExGR = (3G − 2.4R − B)/(R + G + B)  

CIVE = 0.441R − 0.881 G + 0.385B + 18.789745  

VEG = G/(Ra × B(1-a)), a = 0.667.  

• Excess green union excess red index (ExGUExR) 

Vegetation changes color in autumn, as shown in Figure 5a, which means that the 

previous SVIs, which extracted single colors, may have missed some vegetation. A color 

principal component analysis was conducted on the vegetation in the test area in autumn; 

it was dominated by green and red. Furthermore, by testing various combined SVIs, the 
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ExG union excess red vegetation index (ExR) [36] was proposed as a new SVI. ExR is used 

to extract the red color, which is calculated as:  

ExR = (1.4R − G)/(R + G + B) (3) 

The color range of the ExGUExR index is shown in Figure 5b. There were no brown 

areas in the foreground similar to the color of roads and buildings. 

  

(a) Vegetation color variation in autumn (b) The color gamut of ExGUExR  

Figure 5. A demonstration of the color change of vegetation in autumn and the color gamut divided 

by ExGUExR. (a) The colors of the maple and ginkgo trees in the picture changed from green to light 

yellow, red, and brown. (b) RGB images are segmented using ExG (black lines) and ExR (red lines), 

and the combination of their foreground areas is the foreground area, in ExGUExR. The foreground 

was regarded as the interesting area. 

2.2.2. Threshold Selection of SVIs and Filtered PCs 

Histograms were used to determine the segmentation thresholds for each index. The 

histograms were obtained by graying the color of the PCs with SVI. The histograms 

showed two peaks, representing the foreground (vegetation) and background (roads, 

buildings, etc.), as shown in Figure 6. The trough values of the SVIs in the histograms were 

chosen as the thresholds. The thresholds of the SVIs were (a) ExG ≥ 0.039, (b) ExR ≥ 0.183, 

and (c) COM ≥ 6.23.  

07/09/2020

18/10/2020

09/12/2020
12/11/2020 

ExG  

07/09/2020

18/10/2020

09/12/2020
12/11/2020 

ExR  

07/09/2020
18/10/2020

09/12/2020
12/11/2020 

COM  
(a) PCs greyed by ExG (b) PCs greyed by ExR (c) PCs greyed by COM 

Figure 6. Histograms were created using ExG-, COM-, and ExR-grayed PCs. The thresholds of the 

SVIs were (a) ExG ≥ 0.039, (b) ExR ≥ 0.183, and (c) COM ≥ 6.23. The RGB value of each point was 

calculated per the equation of the relevant SVI, and the point was considered as foreground (vege-

tation) if the result was greater than the threshold value. 

The PCs, after segmentation, contained a great deal of noise. The statistical outlier 

removal (SOR) method [40] was used to remove the noise points. SOR filters out points 

that do not have a sufficient number of neighboring points within an average radius. It 

requires two parameters: the number of neighboring points for mean distance estimation 

Ginkgo

Maple

others

background

foreground

background
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and the standard deviation multiplier threshold. The number of neighbors was set as 20, 

and thresholds were set as 2.0. 

2.3. Separation Canopy from the Ground  

The extracted PCs contained not only trees but shrubs and herbs. The trees needed 

to be separated using height information. As shown in Figure 4, the difference in elevation 

between the crest and trough was 2 m. Therefore, the elevation difference between the 

canopy and the ground was about 2 m (canopy height = Zh  −  Zc). The cloth simulation 

filter (CSF) [41] was used to separate the canopy from the ground. Previous ground filter-

ing algorithms used mainly slope and height information to distinguish ground points 

from interesting points directly. The basic idea of CSF is to flip the PC and assume that a 

piece of cloth falls on the flipped PC’s surface by gravity, and the shape of the landed cloth 

is taken to represent the current terrain. The separation results are shown in Figure 7b. 

   

(a) Vegetation extraction (b) Canopy separation (c) Surface triangulation 

Figure 7. The three major processing steps of PCs. (a) The vegetation was extracted by using SVIs. 

(b) Grass was separated from the canopy using CSF. (c) The separated canopy PCs were triangu-

lated using Delaunay triangulation. 

2.4. PCs Triangulation and Canopy 3D Area Measuring 

After the canopy PCs were obtained, they needed to be triangulated to build topo-

logical connections between all points to calculate the 3D area (3DA). Delaunay triangu-

lation and Poisson reconstruction are the two most used methods to establish the topology 

connection in PC processing. Compared with the Delaunay method, the Poisson method 

is used for closed structures. However, the canopy PCs were not closed. Therefore, De-

launay triangulation was better for triangulating PCs in this research. After triangulation, 

every three points formed a triangular mesh with the smallest possible side length. The 

result of this processing is shown in Figure 7c. The 3DA of the canopy was obtained by 

calculating the area of all of the triangular facets. Only one side of each triangular facet 

was counted when calculating the 3DA. 

The Delaunay algorithm requires manually setting the maximum side length of the 

triangular facets. The patches produced by an excessive upper limit would fill the gaps 

between separated forest parts, while a small upper limit would cause PCs at sparse loca-

tions to be filtered out. Statistics on data sampling revealed that the best edge length limit 

value was between 1.5 and 2.0. The maximum relative average deviation of the measure-

ment did not exceed 2.2%. The side length was marked as L (L₀ = 1.5, L₁ = 1.6, L₂ = 1.7, L₃ 

= 1.8, L₄ = 1.9, L₅ = 2.0). SL represented the PC area as the upper limit of side length is L. 

Therefore, the canopy area was calculated as follows: 

Canopy area = 
1

6
∑ SL

L₅

L₀

 (4) 
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2.5. Forest Canopy Coverage Area and Leaf Area Index (LAI) 

Forest coverage area (CA) is an index used to characterize ecological health that is 

widely used in satellite-based forest monitoring [1]. PCs contain height information, 

which can be used to distinguish trees from green grass when calculating the forest cov-

erage area. This can hardly be performed with satellite images. The orthogonal projection 

of a canopy PC to the ground represents the projected area covered by the canopy. Calcu-

lating the CA also requires Delaunay triangulation for the projected PCs. After CA is ob-

tained, another parameter, the forest coverage rate, used to evaluate the ecological health 

level, can be calculated by the CA-to-land area ratio. 

LAI is a widely used structural parameter of ecosystems that reflects plant foliage 

quantity, canopy structure changes, etc. The LAI is defined as the ratio of the sum of each 

tree leaf area to the tree-covered area. The traditional method of obtaining LAI has mainly 

been inversion [27]. This is because the adding-up of all leaf areas is impossible. However, 

UAV aerial photogrammetry provides a possibility for measurement of LAI, as the canopy 

surface area has a close relation to the sum of all leaf areas.  

2.6. Logistic Regression 

The measurement results of the canopy area (3D area and coverage area) were fitted 

by logistic regression. Pierre Francois Verhulst [42] first proposed the logistic function, or 

logistic curve, in a study on population growth patterns. The logistic function is as follows, 

and the fitting requires finding the parameters A1, A2, x0, and p: 

y = 
A1 - A2

1 + (
x

x0
)
p  (5) 

Origin (OriginLab, Northampton, USA) and a self-developed python program were 

used for the regression analysis of the data. 

3. Results and Analysis· 

3.1. Canopy Area and Time-Series Analyses 

The measurements of the canopy area and time-series analyses thereof are shown in 

Figure 8. The canopy area was represented in two ways: the 3DA (red points) and the CA 

(blue points). The error bars indicate the error range of the measurements, which was 

related to the PC triangulation parameters and used to illustrate the error range under 

different upper values of side length. Figure 8a–c represents the canopy areas and fitted 

curves from different SVIs. The R2 is the coefficient of determination, which indicates the 

level to which the fitted logistic model explains the change in the measured values. Usu-

ally, the closer R2 is to 1, the better the fitting result is.  
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(a1) Defoliation period (a2) Leafing period 

(a) ExG-based measurements and fitted curves 
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(b1) Defoliation period (b2) Leafing period 

(b) COM-based measurements and fitted curves 
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(c1) Defoliation period (c2) Leafing period 

(c) ExGUExR-based measurements and fitted curves 

Figure 8. Three index-based measurements and time-series analyses of the 3D area and coverage 

area. R2 is the coefficient of determination (a–c). 

As shown in the graphs, the proposed method successfully measured the canopy 

area (3DA and CA) and successfully fitted time-series curves of canopy growth. Curves 

were collected for one annual growth cycle (lasting 294 days with 203 flights). According 

to the seasons in which the data were collected, the growth was divided into two periods: 

the defoliation period and the leafing period. The time-series analyses and their parame-

ters mathematically expressed the forest growth pattern. These parameters are shown in 

Tables 1–3. That all values of R2 were ≥0.92 showed that the fitted logistic model was well-

matched with the trend of the canopy area and reflected the forest’s growth pattern. This 

can be attributed to the high resolution of the images obtained by the UAV at an altitude 

of 55 m. Based on this result, it was concluded that the forest growth followed an S-shaped 

curve during the annual cycle, similar to the general pattern of forest growth demon-

strated in [43,44]. 

Table 1. The fitted parameters of the curves obtained from the ExG-extracted PCs. 

□Curve A1 A2 X0 P R-Squared 

3DA-D 50,123.9 ± 713.844 22,882.5 ± 686.61 62.4312 ± 1.59166 3.7929 ± 0.33546 0.94 

CA-D 8997.99 ± 39.4368 6147.66 ± 174.537 83.030 ± 3.61838 3.52454 ± 0.35416 0.94 

3DA-L 24,421.3 ± 593.151 60,853.04 ± 1140.82 212.505 ± 1.34808 21.3015 ± 2.38037 0.93 

CA-L 6414.93 ± 134.02 10,386.79 ± 79.5138 213.028 ± 1.45161 15.7965 ± 1.58301 0.94 

Notes: 3DA-D: “Canopy 3D area in defoliation period”; others are similar. 
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Table 2. The fitted parameters of the curves obtained from the COM-extracted PCs. 

□Curve A1 A2 X0 P R-Squared 

3DA-D 49,368.4 ± 766.624 23,848.54 ± 885.832 67.6951 ± 2.10352 3.79503 ± 0.41044 0.93 

CA-D 9019.31 ± 45.0857 6210.25 ± 213.575 86.4642 ± 4.66807 3.37483 ± 0.40016 0.92 

3DA-L 25,745.8 ± 643.349 62,077.17 ± 1193.38 213.54 ± 1.39402 22.1629 ± 2.63264 0.93 

CA-L 6592.14 ± 126.991 10,379.16 ± 80.0287 212.507 ± 1.41324 16.3605 ± 1.72635 0.93 

Table 3. The fitted parameters of the curves obtained from the ExGUExR-extracted PCs. 

□Curve A1 A2 X0 P R-Squared 

3DA-D 56,639.9 ± 841.416 28,754.74 ± 1138.9 74.9277 ± 2.51035 3.79381 ± 0.45909 0.92 

CA-D 9268.64 ± 45.1712 6602.57 ± 262.303 98.6821 ± 7.22509 2.90367 ± 0.35385 0.92 

3DA-L 31,373.2 ± 580.940 62,344.78 ± 557.329 202.221 ± 1.62907 24.4656 ± 3.13427 0.93 

CA-L 7250.35 ± 104.877 10,406.68 ± 88.3461 212.867 ± 1.46264 16.2736 ± 1.99931 0.93 

3.2. Canopy Growth Curve and Growth Rate Curve Analysis 

Based on the above analysis, the time-series analysis curves of the canopy area were 

considered the growth curves of the canopy. To further obtain growth rate curves, the 

first-order derivatives of the growth curves were calculated. The growth curves and 

growth rate curves are shown in Figure 9. Parts I and II represent the growth rate curves 

of 3DA and CA, respectively. 
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Figure 9. Growth curves and growth rate curves of the canopy. The rate curve is the first-order 

derivative curve of the growth curve, during the defoliation period, this curve indicates the rate of 

canopy area reduction, and during the leaf-bearing period, it indicates the rate of canopy area in-

crease. Column (a), ExG-based growth and rate curves. Column (b), COM-based growth and rate 

curves. Column (c), ExGUExR-based growth and rate curves. ExG-3DA-D: “ExG index-based can-

opy growth and rate curves in defoliation period”. Others are similar.  

3.2.1. General Growth Analysis Based on the Growth Curves and Rate Curves 

The growth curves showed that the forest canopy in the experimental area was stable 

in the summer months and gradually decreased in October. Since there were both decid-

uous and evergreen trees in the experimental area, the growth curves endured a long de-

cline process. In the spring, the growth curves increased rapidly in a short time and began 

to stabilize at the end of the spring. The growth rate of the canopy area obeyed a “slow–

fast–slow” pattern; that is, the rate of decrease (or increase) in the canopy area reached a 

peak first and then gradually decreased. The canopy growth time was shorter than the 

defoliation time, and the peak growth rate was greater than the peak defoliation rate. This 

was perhaps due to the warm climate and sufficient rainfall in spring, which are favorable 

for tree cell reproduction [45–47]. 

3.2.2. Comparison of SVI-Extracted Vegetation and Their Curves 

In this research, three SVIs were used to extract the forest canopy. The extraction 

results thereof are shown in Figure 10. For better display purposes, the canopy was not 

extracted separately. As seen in the figures, all indices removed the roads and buildings 

clearly, but the extracted vegetation had different levels of integrity. In summer, the veg-

etation extracted by the three indices was similar; a closer look reveals that the ExGUExR-

index-extracted vegetation had fewer holes and that, in fact, the void region was almost 

all green. In autumn, the vegetation extracted by the three SVIs was significantly different. 

The ExG and COM indices extracted only green and a few yellow areas, while the 

ExGUExR index extracted almost all vegetation. 
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In summer 

    

In autumn 

(a) (b)  (c)  (d) 

Figure 10. Comparison of the vegetation extracted by the ExG, COM, and ExGUExR indices at dif-

ferent growth stages (summer and autumn). (a) Raw PCs of the experimental area; (b) vegetation 

extracted by ExG; (c) vegetation extracted by COM; (d) vegetation extracted by ExGUExR. 

Similar conclusions could be obtained from Figure 10 as from Figures 8 and 9; i.e., on 

the same day, the measured values of ExG and COM were close to each other. The values 

measured by ExGUExR were the largest. Therefore, the logistic regression curves of ExG 

and COM were very close in morphology and parameters. These indices corresponded to 

two physical connotations. The ExG and COM indices extracted mainly the green compo-

nent in the canopy, while the ExGUExR index extracted almost the whole canopy. How-

ever, even in autumn, the vast majority of the areas in the extracted canopy (in Figure 10, 

the complete vegetation area is shown without canopy separation) remained green, so 

overall, the logistic regression curves of ExGUExR were close to those of ExG and COM. 

According to this and the relevant results: (1) during the same period, the canopy and the 

green regions in the canopy had similar growth patterns, and the values of the logistic 

function parameters are also close. However, in the defoliation period, the canopy area 

reached the peak rate later than the green regions in the canopy; (2) in the leaf-bearing 

period, the canopy area reached the peak rate before the green area in the canopy. 

3.2.3. Comparison between 3DA and CA Curves  

The 3DA and CA curves are shown in Figure 9. They characterized canopy growth 

differently. The 3DA rate curves reached their peak about 10 days earlier than the CA rate 

curves during the defoliation period. During the defoliation period, the canopy changed 

from dense to sparse, and the leaves were heavily shaded against each other such that the 

lateral area change could not be observed in the orthograph. Therefore, the CA produced 

only a tiny reduction when the 3DA was heavily reduced. However, there was almost no 

shading during the leaf-bearing period, so the growth trends in 2D and 3D were relatively 

uniform.  

In Figure 11, the correlations between 3DA and CA are shown, 0.93 ≤ Pearson’s r ≤ 

0.95 (0.87 ≤ coefficient of determination R2 ≤ 0.9), which quantitatively illustrates the level 

of their consistency in characterizing canopy growth. The basic trends of CA and 3DA 

were consistent, but CA described only the 2D expansion (and decay) of the canopy in the 

plane. In summary, CA, as a 2D analysis method, has the obvious drawback of missing a 
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dimension. Therefore, though the CA of the canopy can be obtained more easily by PCs, 

using CA to characterize canopy growth may not be the best choice. 
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Figure 11. Correlation analysis of 3DA and CA obtained by linear fitting. R2 is the coefficient of 

determination. 

3.2.4. Calculation of Forest Coverage Rate and LAI 

As mentioned in Section 2.5, forest coverage rate and LAI can also be obtained from 

PCs. They are calculated as follows: 

Forest coverage rate=
Forest coverage area (m2)

Land area (m2)
 (6) 

LAI=
Total leaves area (m2)

Land area (m2)
 (7) 

As an example to illustrate this approach, in summer, the forest coverage area of the 

experimental site was 10,500 m2, and the experimental area was 16,692 m2; thus, the forest 

coverage rate is 62.9%. The canopy 3D area was about 60,000 m2, so the LAI value was 

about 3.59. In the autumn, the most credible data were based on the results of the 

ExGUExR index; otherwise, the results skewed small. Based on this result and reference 

to biological and environmental evaluation indicators, it is possible to estimate the level 

of ecological and vegetation health. In the case of the experimental area, the forest cover-

age rate exceeded the average in China [48], and the forest growth was healthy [49]. 

4. Discussion 

4.1. Error Analysis 

4.1.1. Error Source Analysis 

In the experiment, the first source of error lay in the geographic coordinates of im-

ages. In open areas, the positioning error of the UAV was less than the limit values of ±0.5 

m in the vertical and ±1.5 m in the horizontal direction. While since the experiment site 

was on the campus, the surrounding buildings influenced the accuracy of positioning. The 

second source of error was camera position resolving error during the PC generation. 

However, this error was relative to the geographic coordinates in the UAV images. These 

two sources of errors eventually accumulated in the generated PCs. Since we had no avail-

able means by which to obtain the true value of the canopy area of this forest, the system 

error level was illustrated by comparing a control length in the experimental area with the 

size of the same object in PCs.  
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As shown in Table 4, the length and width of the experimental area in the PCs were 

sampled for 10 days. According to the results, the systematic error did not exceed 0.8%. 

Table 4. The length and width of the test area were measured from the PCs. 

 True Value  Measured Value  Average Error  

Length (m) 154.9 156 156 156 156 157 155 157 156 156 156 1.2 

Width (m)  106.2 107 107 107 107 106 107 108 107 107 106 0.7 

4.1.2. Analysis of Random Errors in Measurements 

The residuals (RESID, error between measurements and fitted values) were used here 

to demonstrate the level of random error in the 3DA measurements, as shown in Figure 

12. In fact, even without considering the cost and deployment effectiveness advantages, 

the measurement accuracy based on aerial photogrammetry was encouraging compared 

with that based on satellites, the resolution of which is limited in small areas and subject 

to atmospheric influences. Solar illumination was the primary source of random errors 

(take the fitted value as the truth value) in the measurements. In the experiment, the 

weather data were divided into strong illumination and normal illumination according to 

the light intensity. The statistics revealed that the data distribution was more discrete un-

der strong illumination conditions. In Figure 12, residual values extremely far from the 0-

scale line were obtained most often under strong illumination. The normal illumination 

measurements were generally close to 0.  

Table 5 shows the PC reconstruction parameters under intense illumination and nor-

mal illumination, the latter of which were greater than the former. This indicates that the 

conversion efficiency of transforming the 3D spatial structure model from the 2D images 

was higher, and the PC quality was better, under normal illumination. 

Under intense illumination, shadows were generated locally on the forest surface be-

cause of leaf shading. The grayscale variation in the shaded area was too significant, mak-

ing it difficult to extract information from this area and generating local deficiencies in the 

reconstruction. In the step of sparse PC generation, the relative position estimation be-

tween images was performed using SIFT feature points. Thus, the possible reasons for the 

missing reconstruction data were supposed as follows: (1) uneven illumination may have 

led to partial corner point miss detection and false detection and then reduced the accu-

racy of corner point detection under intense illumination; (2) the uneven illumination may 

have reduced the accuracy of feature extraction, such as in the case of edge corner points, 

which would have reduced the calibration accuracy. 

  

(a) Defoliation period (b) Leafing period 

Figure 12. Regular residuals of 3DA measurements. 
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Table 5. PC quality statistics under strong and normal illumination conditions. 

Illumination Grade Sample Quantity Average Tie Points Average Dense PC Points Average Point Density 

intense 55 125,992 12,789,007 137 

normal 56 132,434 13,441,000 143 

In summary, UAV aerial photogrammetry, as a method with significant advantages 

of excellent deployment efficiency, high ground resolution, and accessibility of data, could 

effectively be used for daily monitoring and description of the growth pattern of a forest. 

With higher budgets, using UAVs carrying RTK positioning equipment or airborne Li-

DAR may be better to reduce errors. UAVs with RTK can further reduce system errors, 

which may benefit the quality of canopy PCs. UAVs equipped with LiDAR can generate 

higher-accuracy PCs, but their colors depend on the fusion with RGB images. Further-

more, small LiDAR sensors suitable for UAV applications are expensive and are limited 

to a few manufacturers. They are far more costly than small-scale UAVs with digital cam-

eras [50]. Larger UAVs, such as fixed-wing drones and oil-powered helicopters, can ex-

tend flight duration and enlarge coverage so as to promote and validate the time-series 

forest monitoring method in much larger experiments. 

4.2. Comparison with Other Studies 

In some similar studies, researchers measured tree height or crown spread to charac-

terize tree growth using UAVs and SfM [51,52]. However, tree height measurements are 

usually taken in areas where trees are sparse. In a study by Mlambo et al. [53], the re-

searchers evaluated SfM horizontal and vertical accuracy for measuring the height of in-

dividual trees. The results showed that, at Dryden, poor correlation was observed be-

tween SfM tree heights and ground-measured heights (R2 = 0.19). Obviously, UAVs can-

not capture the ground in dense forests because of canopy shading. Therefore, in the PCs 

generated by SfM, tree height is difficult to measure accurately, because there is no ground 

reference. This view was also confirmed in a study by Kameyama et al. [33]. In 16 condi-

tions, tree height and crown were undecipherable in their experiment. In a study by Miller 

et al. [54], the researchers used multiview stereophotogrammetry and SfM (SfM–MVS) to 

measure individual tree height, crown spread, crown depth, stem diameter, and volume. 

The results showed that, apart from height and crown depth, all modeled variables had a 

negative bias, suggesting that SfM–MVS tended to underestimate the size of trees. How-

ever, tree height, crown spread, crown depth, and stem diameter can represent the growth 

of trees only in a particular direction/plane. Canopy volume calculation requires the 

model structure to be closed, which is easy to achieve for individual trees, but in forest 

PCs, there are gaps in the crowns, and the whole forest canopy is an unclosed surface.  

The method proposed herein can be used for canopy 3D area measurements of indi-

vidual trees and entire forests (careful segmentation would be required to measure a sin-

gle tree canopy in a dense forest). Moreover, 3DA was shown to be a 3D indicator that can 

comprehensively characterize tree growth. 

4.3. The Applicability of the Proposed Method in Natural Forests 

In this study, a small forest on campus was chosen as the test subject. Since it is dif-

ficult for drones to photograph forests at the city level, discussion of the applicability of 

the proposed method should focus on scenarios such as forest parks or nursery gardens. 

Typically, forest parks do not exceed 20 square kilometers in China, so they can be photo-

graphed by dividing the area or using large, long-endurance drones. The flight altitude of 

drones can be flexibly adjusted. The natural forest airspace is clean and open. Thus, the 

flight altitude can be set lower than the 55 m set in this experiment to obtain higher-reso-

lution ground images if there are no concerns about the battery life of the UAV. Under 

natural conditions, the color contrast between soil and trees is obvious; usually, the 

ground is brownish, and the vegetation is green. Therefore, the use of SVIs may hardly be 
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restricted in most situations. Natural forest parks have diverse topography. Although the 

complex terrains have a negative impact on canopy extraction, successful application in 

numerous studies has proven that CSF may have utility in most terrains [55–57]. The other 

PC processing mainly involves hunting for suitable parameters, which can be obtained by 

a few attempts or statistical analysis. In summary, according to analysis of the experiment 

and other relevant studies available [58–60], we believe that the proposed method has 

applicability in forestry. 

5. Conclusions 

In this paper, we proposed and tested a method for calculating the 3D area of a forest 

canopy to characterize annual canopy growth in forests. The proposed method was based 

on UAV remote sensing and PC processing. In the study, (1) three SVIs (ExG, COM, 

ExGUExR) were used to extract the vegetation in PCs based on the colors. The results 

showed that ExG and COM extracted the green areas in the canopy, while ExGUExR ex-

tracted the complete canopy; (2) a more convenient method of obtaining CA from a can-

opy PC was demonstrated, and the differences between 3DA and CA curves describing 

canopy growth were compared, with the conclusion that the canopy growth described by 

3DA was more accurate; (3) based on the basic definition of LAI and the knowledge that 

leaves cluster, forming canopies, a novel method of estimating LAI was proposed and 

successfully verified. A new method of calculating forest coverage rate was also demon-

strated.  

Both the systematic and random errors are discussed, and in general, the accuracy of 

the measured values met expectations. Compared with methods in other studies, the pro-

posed method can depict forest dynamics in a 3D space, which could have multiple ap-

plications in forestry. 

In summary, with the main advantages of efficient deployment, high ground resolu-

tion, and easy data acquisition, the UAV aerial photogrammetry method was successfully 

used for daily monitoring and annual growth trend description of the forest in this exper-

iment. The potential use of this study is to provide new production management methods 

for forestry in growth monitoring, growth trend description, etc. 

Author Contributions: Conceptualization, W.Z., C.Z. and Y.Z.; methodology, W.Z., F.G. and N.J.; 

software, validation, formal analysis, and writing—original draft preparation, W.Z.; resources, pro-

ject administration, funding acquisition, supervision, Y.Z; writing—review and editing, C.Z. and 

Y.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (NSFC), 

grant number: 61905219. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using Landsat time series 

data: A review. Can. J. Remote Sens. 2014, 40, 362–384. 

2. Wu, L.; Li, Z.; Liu, X.; Zhu, L.; Tang, Y.; Zhang, B.; Xu, B.; Liu, M.; Meng, Y.; Liu, B. Multi-Type Forest Change Detection Using 

BFAST and Monthly Landsat Time Series for Monitoring Spatiotemporal Dynamics of Forests in Subtropical Wetland. Remote 

Sens. 2020, 12, 341. 

3. Bai, B.; Tan, Y.; Guo, D.; Xu, B. Dynamic Monitoring of Forest Land in Fuling District Based on Multi-Source Time Series Remote 

Sensing Images. ISPRS Int. J. Geo-Inf. 2019, 8, 36. 

4. LANDSAT 9. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-9/ (accessed on 22 March 2022). 

5. Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m resolution global annual burned area 

mapping based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489. 

6. Walther, S.; Guanter, L.; Heim, B.; Jung, M.; Duveiller, G.; Wolanin, A.; Sachs, T. Assessing the dynamics of vegetation 

productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis. Biogeosciences 2018, 15, 

6221–6256. 



Drones 2022, 6, 158 17 of 18 
 

7. Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. 

Coal Sci. Technol. 2019, 6, 320–333. 

8. Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. 

9. Perz, R.; Wronowski, K. UAV application for precision agriculture. Aircr. Eng. Aerosp. Technol. 2019, 91, 257–263. 

10. Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. 

Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2017, 38, 2427–2447. 

11. Whitehead, K.; Hugenholtz, C.H. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A 

review of progress and challenges. J. Unmanned Veh. Syst. 2014, 2, 69–85. 

12. Hassan-Esfahani, L.; Torres-Rua, A.; Ticlavilca, A.M.; Jensen, A.; McKee, M. Topsoil moisture estimation for precision 

agriculture using unmmaned aerial vehicle multispectral imagery. In Proceedings of the 2014 IEEE Geoscience and Remote 

Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3263–3266. 

13. Chang, K.-J.; Chan, Y.-C.; Chen, R.-F.; Hsieh, Y.-C. Geomorphological evolution of landslides near an active normal fault in 

northern Taiwan, as revealed by lidar and unmanned aircraft system data. Nat. Hazards Earth Syst. Sci. 2018, 18, 709–727. 

14. Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A. UAV-based automatic tree growth measurement for biomass 

estimation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 8, 685–688. 

15. Dempewolf, J.; Nagol, J.; Hein, S.; Thiel, C.; Zimmermann, R. Measurement of within-season tree height growth in a mixed 

forest stand using UAV imagery. Forests 2017, 8, 231. 

16. Yuan, Y.; Hu, X. Random forest and objected-based classification for forest pest extraction from UAV aerial imagery. Int. Arch. 

Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1093. 

17. Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through 

remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. 

18. Otsu, K.; Pla, M.; Vayreda, J.; Brotons, L. Calibrating the Severity of Forest Defoliation by Pine Processionary Moth with Landsat 

and UAV Imagery. Sensors 2018, 18, 3278. https://doi.org/10.3390/s18103278. 

19. Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Huang, W.; Han, L.; González-Moreno, P.; Ma, H.; Ye, H.; Sobeih, T. A deep learning-based 

approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remote Sens. 2019, 11, 

1554. 

20. Shin, J.-I.; Seo, W.-W.; Kim, T.; Park, J.; Woo, C.-S. Using UAV multispectral images for classification of forest burn severity—

A case study of the 2019 Gangneung forest fire. Forests 2019, 10, 1025. 

21. Sherstjuk, V.; Zharikova, M.; Sokol, I. Forest fire-fighting monitoring system based on UAV team and remote sensing. In 

Proceedings of the 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 24–

26 April 2018; pp. 663–668. 

22. Mohan, M.; Richardson, G.; Gopan, G.; Aghai, M.M.; Bajaj, S.; Galgamuwa, G.; Vastaranta, M.; Arachchige, P.S.P.; Amorós, L.; 

Corte, A.P.D. UAV-supported forest regeneration: Current trends, challenges and implications. Remote Sens. 2021, 13, 2596. 

23. Hwang, M.-H.; Cha, H.-R.; Jung, S.Y. Practical endurance estimation for minimizing energy consumption of multirotor 

unmanned aerial vehicles. Energies 2018, 11, 2221. 

24. Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index 

(NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. 

25. Tian, J.; Wang, L.; Li, X.; Gong, H.; Shi, C.; Zhong, R.; Liu, X. Comparison of UAV and WorldView-2 imagery for mapping leaf 

area index of mangrove forest. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 22–31. 

26. Thapa, S. Assessing annual forest phenology: A comparison of Unmanned Aerial Vehicle (UAV) and Phenocamera Datasets. 

Master’s Thesis, Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden, 2020. 

27. Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. 

28. Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. Quantifying vegetation change in semiarid environments: Precision and 

accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens. Environ. 2000, 73, 87–102. 

29. Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the world from internet photo collections. Int. J. Comput. Vis. 2008, 80, 189–210. 

30. Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from motion photogrammetry in forestry: A 

review. Curr. For. Rep. 2019, 5, 155–168. 

31. Gülci, S. The determination of some stand parameters using SfM-based spatial 3D point cloud in forestry studies: An analysis 

of data production in pure coniferous young forest stands. Environ. Monit. Assess. 2019, 191, 1–17. 

32. Bayati, H.; Najafi, A.; Vahidi, J.; Gholamali Jalali, S. 3D reconstruction of uneven-aged forest in single tree scale using digital 

camera and SfM-MVS technique. Scand. J. For. Res. 2021, 36, 210–220. 

33. Kameyama, S.; Sugiura, K. Estimating tree height and volume using unmanned aerial vehicle photography and sfm technology, 

with verification of result accuracy. Drones 2020, 4, 19. 

34. Dandois, J.P.; Ellis, E.C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer 

vision. Remote Sens. Environ. 2013, 136, 259–276. 

35. Derpanis, K.G. Overview of the RANSAC Algorithm. Image Rochester NY 2010, 4, 2–3. 

36. Mao, W.; Wang, Y.; Wang, Y. Real-time detection of between-row weeds using machine vision. In Proceedings of the 2003 ASAE 

Annual Meeting, Las Vegas, NV, USA, 27–30 July 2003; p. 1. 

37. Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.; Burgos-Artizzu, X.; Ribeiro, A. Automatic segmentation of relevant textures 

in agricultural images. Comput. Electron. Agric. 2011, 75, 75–83. 



Drones 2022, 6, 158 18 of 18 
 

38. Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop growth estimation system using machine vision. In Proceedings of the 2003 

IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; Volume 

1072, pp. b1079–b1083. 

39. Hague, T.; Tillett, N.; Wheeler, H. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 2006, 7, 21–32. 

40. Rusu, R.B. Semantic 3d object maps for everyday manipulation in human living environments. KI-Künstliche Intell. 2010, 24, 

345–348. 

41. Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based 

on Cloth Simulation. Remote Sens. 2016, 8, 501. https://doi.org/10.3390/rs8060501. 

42. Miner, J.R. Pierre-François Verhulst, the discoverer of the logistic curve. Hum. Biol. 1933, 5, 673. 

43. Yuancai, L. Remarks on Height-Diameter Modeling; US Department of Agriculture, Forest Service, Southern Research Station: 

Washington, D.C., USA, 2001; Volume 10. 

44. Gavrikov, V.L.; Karlin, I.V. A dynamic model of tree terminal growth. Can. J. For. Res. 1993, 23, 326–329. 

45. Kramer, K.; Leinonen, I.; Loustau, D. The importance of phenology for the evaluation of impact of climate change on growth of 

boreal, temperate and Mediterranean forests ecosystems: An overview. Int. J. Biometeorol. 2000, 44, 67–75. 

46. Corlett, R.T.; Lafrankie, J.V. Potential impacts of climate change on tropical Asian forests through an influence on phenology. 

Clim. Change 1998, 39, 439–453. 

47. Grogan, J.; Schulze, M. The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species 

in Southeastern Amazonia, Brazil. Biotropica 2012, 44, 331–340. 

48. Wang, X. Chinese Forest Cover 22.96%. Available online: http://www.forestry.gov.cn/main/65/20190620/103419043834596.html 

(accessed on 22 March 2022). 

49. Jorgensen, S.E.; Fath, B. Encyclopedia of Ecology; Newnes: 2014. 

50. Frey, J.; Kovach, K.; Stemmler, S.; Koch, B. UAV photogrammetry of forests as a vulnerable process. A sensitivity analysis for a 

structure from motion RGB-image pipeline. Remote Sens. 2018, 10, 912. 

51. Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry remote sensing from unmanned aerial vehicles: 

A review focusing on the data, processing and potentialities. Remote Sens. 2020, 12, 1046. 

52. Sakai, T.; Birhane, E.; Abebe, B.; Gebremeskel, D. Applicability of Structure-from-Motion Photogrammetry on Forest 

Measurement in the Northern Ethiopian Highlands. Sustainability 2021, 13, 5282. 

53. Mlambo, R.; Woodhouse, I.H.; Gerard, F.; Anderson, K. Structure from motion (SfM) photogrammetry with drone data: A low 

cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests 2017, 8, 68. 

54. Miller, J.; Morgenroth, J.; Gomez, C. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter 

and volume estimates. Urban For. Urban Green. 2015, 14, 932–940. 

55. Zeybek, M.; Şanlıoğlu, İ. Point cloud filtering on UAV based point cloud. Measurement 2019, 133, 99–111. 

56. Fan, Z.; Huashan, L.; Tao, J. Digital Elevation Model Generation in LiDAR Point Cloud Based on Cloth Simulation Algorithm. 

Laser Optoelectron. Prog. 2020, 57, 130104. 

57. Serifoglu Yilmaz, C.; Yilmaz, V.; Güngör, O. Investigating the performances of commercial and non-commercial software for 

ground filtering of UAV-based point clouds. Int. J. Remote Sens. 2018, 39, 5016–5042. 

58. Liu, Q.; Li, S.; Li, Z.; Fu, L.; Hu, K. Review on the applications of UAV-based LiDAR and photogrammetry in forestry. Sci. Silvae 

Sin. 2017, 53, 134–148. 

59. Ota, T.; Ogawa, M.; Mizoue, N.; Fukumoto, K.; Yoshida, S. Forest structure estimation from a UAV-based photogrammetric 

point cloud in managed temperate coniferous forests. Forests 2017, 8, 343. 

60. Fawcett, D.; Azlan, B.; Hill, T.C.; Kho, L.K.; Bennie, J.; Anderson, K. Unmanned aerial vehicle (UAV) derived structure-from-

motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation. Int. J. Remote 

Sens. 2019, 40, 7538–7560. 

 


