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Abstract: This research effort proposes a novel method for identifying and extracting roads from 
aerial images taken after a disaster using graph-based image segmentation. The dataset that is used 
consists of images taken by an Unmanned Aerial Vehicle (UAV) at the University of West Florida 
(UWF) after hurricane Sally. Ground truth masks were created for these images, which divide the 
image pixels into three categories: road, non-road, and uncertain. A specific pre-processing step was 
implemented, which used Catmull–Rom cubic interpolation to resize the image. Moreover, the 
Gaussian filter used in Efficient Graph-Based Image Segmentation is replaced with a median filter, 
and the color space is converted from RGB to HSV. The Efficient Graph-Based Image Segmentation 
is further modified by (i) changing the Moore pixel neighborhood to the Von Neumann pixel neigh-
borhood, (ii) introducing a new adaptive isoperimetric quotient threshold function, (iii) changing 
the distance function used to create the graph edges, and (iv) changing the sorting algorithm so that 
the algorithm can run more effectively. Finally, a simple function to automatically compute the k 
(scale) parameter is added. A new post-processing heuristic is proposed for road extraction, and the 
Intersection over Union evaluation metric is used to quantify the road extraction performance. The 
proposed method maintains high performance on all of the images in the dataset and achieves an 
Intersection over Union (IoU) score, which is significantly higher than the score of a similar road 
extraction technique using K-means clustering. 

Keywords: efficient graph-based image segmentation; road extraction; computer vision;  
post-disaster aerial footage 
 

1. Introduction 
The International Disaster Database, Université Catholique de Louvain—Brussels—

Belgium, shows that roughly 300–400 natural disasters have occurred annually since 2000 
[1]. Natural disasters such as hurricanes, earthquakes, wildfires, and volcanic activity can 
cause extreme destruction of property and infrastructure, personal injury, and death. A 
particular threat to Floridians and other coastal states is hurricanes. It has been projected 
that the combined forces of coastal development and climate change will increase the 
amount of hurricane damage in the future [2–6]. One of the undeniable aftermaths of hur-
ricanes is the damage and obstructions to roadways, which can inhibit emergency vehi-
cles from rescuing people. These obstructions may include: flooding, uprooted vegeta-
tion, sinkholes, structural damage to the road, and other debris. Injuries that are sustained 
from a hurricane impact may be life-threatening and require immediate emergency med-
ical services (EMS) [7]. An EMS driver does not have time to deal with blocked or defec-
tive roadways. It is imperative that an EMS driver takes the fastest traversable route in 
order to maximize the probability of saving a person’s life. 

The use of satellite imagery and unmanned autonomous vehicles equipped with 
cameras permits the mapping and exploration of territories that may be inaccessible and 
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unsafe. For instance, a swarm of unmanned aerial vehicles (UAVs) can be deployed after 
a disaster to assess damage to critical infrastructure. Similarly, a UAV can stream video to 
a high-performance server with dedicated algorithms used to assess infrastructure dam-
age and the traversability of roads after a major hurricane. Mainly, the first step in as-
sessing the traversability of roads is to identify and extract the roads from images or video 
streams. The difficulty of extracting continuous road segments can indicate that the road 
contains debris and is potentially not traversable. After extraction, road segments can be 
fed into classification algorithms to further assess traversability.  

In this research, high-resolution UAV imagery was taken from the aftermath of hur-
ricane Sally at the University of West Florida (UWF). The images have been stored in a 
custom dataset. Ground truth masks were created for images in this dataset so that the 
quality of subsequent road extraction on these images could be assessed. A new approach 
was developed for road extraction using a particular set of pre-processing techniques, a 
modified version of Efficient Graph-Based image segmentation, and a novel post-pro-
cessing heuristic. 

The original contributions of this study can be summarized as: (i) the use of custom 
aerial footage data taken from the UWF campus after hurricane Sally, (ii) the development 
of ground truth masks to measure the quality of road extraction, (iii) the development of 
a new post-processing heuristic which can identify and connect segments of the road after 
image segmentation and help address one of the shortcomings of Efficient Graph-Based 
image segmentation, and (iv) performing a hue and saturation analysis for the segments 
neighboring road segments so that the segments that are similar enough can be merged. 
The intention of this paper is to present our modified Efficient Graph-Based image seg-
mentation framework design with analysis and to show proof-of-concept results of the 
entire pipeline on custom aerial footage data recorded after hurricane Sally in 2020. Fur-
ther analysis, such as robustness to noise and comparison with other methods, are not 
included in the scope of the originally intended contribution in this article, and they are 
left for a future work. Additionally, the planned future work also includes another im-
portant aspect of comprehensive computational time analysis.  

The remainder of the paper is organized as follows. Related work on image segmen-
tation is discussed in Section 2, followed by the details of Efficient Graph-Based Image 
Segmentation in Section 3. Road Extraction is presented in Section 4, followed by the re-
sults and discussion in Section 5. Conclusions are presented in Section 6. 

2. Related Work 
Image segmentation is a computer vision technique that divides an image into sev-

eral specific components with unique attributes. Modern image segmentation algorithms 
are usually categorized as semantic (pixel-wise association with class label), instance (ac-
curate delineation of each object in an image), and panoptic (assigning class labels to ob-
jects in images). Early image segmentation methods include threshold-based, centroid-
based, density-based, graph-based, fuzzy theory-based, hierarchical, and distribution-
based methods. The goal of this section is to outline some of the most popular techniques 
that are well-suited to solving the problems of road extraction and traversability assess-
ment. A comprehensive survey of clustering algorithms can be found in [8]; furthermore, 
a survey of clustering algorithms used in Image segmentation can be found in [9]. 

Centroid-based image segmentation and clustering involve finding an arbitrary 
number of centroids in a dataset and then grouping together data points with the smallest 
distance to a particular centroid. One of the most algorithms, K- means, is a centroid-based 
clustering algorithm [10]. However, K-means has significant drawbacks as it lacks flexi-
bility in the shape of the clusters, and there are no probabilities associated with cluster 
assignments [11]. In other studies, the K-means algorithm is used to segment images; of 
particular relevance, in [12], the road is extracted from images using the K- means algo-
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rithm and morphological operations. The K-means algorithm is used to generate seg-
ments, and then a simple geometric post-processing heuristic is applied, which attempts 
to identify the segments that are road. 

Hierarchical clustering has also been used to segment images, both as a standalone 
segmentation method and in combination with other segmentation methods. In [13], im-
ages were first pre-segmented with the well-known graph-based segmentation method of 
Normalized Cuts. Afterward, hierarchical segmentation was applied. In [14], the study 
proposes an agglomerative hierarchical clustering-based high-resolution remote sensing 
image segmentation algorithm. The algorithm showed favorable results over standard K-
means image segmentation. In [15], an agglomerative clustering technique within a fea-
ture matrix is presented. It is shown to compare favorably with the image segmentation 
algorithm and has the advantage of not needing to know the number of clusters in ad-
vance.  

The fuzzy sets-based method is another approach presented in the literature for im-
age segmentation [16]. In [17], the authors developed a fuzzy system to identify roads in 
aerial images with five fuzzy membership functions (Good values, Up-Probable values, 
Down-Probable values, Up-Bad values, and Down-Bad values), which help classify pixels 
as either being road or non-road with a certain probability. Some limitations of this 
method are that it is designed for 8-bit images, cannot handle regions of road less than 5 
pixels in width, relies on hard-coded values, and cannot handle shadows. In [18], the au-
thors develop an approach based on Fuzzy C-Means (FCM) to extract roads from foggy 
aerial images. The authors point out that aerial image quality is susceptible to weather 
conditions, variations in lighting, and properties of the ground. Fog can obscure the gray 
scale difference between road and non-road regions in an image; thus, a defogging proce-
dure should be applied if fog is present. Other segmentation methods include density-
based algorithms [19,20], Mean Shift-based methods [21–26], and Gaussian mixture mod-
els (GMM)-based approaches [27–32].  

In graph-based image segmentation methods, images must first be converted into a 
graph where each pixel is a node in the graph. Next, a decision must be made as to which 
edges to add to the graph. One option is to add edges between a pixel and all other pixels 
that are in its neighborhood. Two obvious neighborhoods that can be used are the Von 
Neumann 4-pixel neighborhood and the Moore 8-pixel neighborhood [33,34]. In [35], Nor-
malized Cuts is used to segment high-resolution satellite images. Although the experi-
ments showed “good operability,” the slow running time of the algorithm was discour-
aging. In [36], the Normalized Cuts method was used for the detection of roads in aerial 
images. The aerial image is first segmented into 20 components. Next, color and shape are 
used to determine which components are roads. 

In terms of road extraction, there are several studies with various methods presented 
in the literature, some of them worth mentioning here. The U-net neural network is one 
of the methods presented for road extraction [37]. In [38], the authors propose an object-
based classification approach for automatic road detection from orthophoto images. Ad-
ditionally, a deep convolutional neural network (CNN)-based framework for road detec-
tion and segmentation from aerial images is presented in [39]. Similarly, another advanced 
algorithm, namely Fully Convolutional Network (FCN) and conditional Generative Ad-
versarial Networks (GAN), are used for road extraction using RGB images captured by a 
UAV [40]. In [41], the author used the Mask-R-CNN neural network to detect flood water 
on roads, and in [42], a Mask-R-CNN approach was used to segment images in an effort 
to monitor the road surface condition. There are numerous other high-performing neural 
network architectures used for image segmentation presented in the literature. The lack 
of availability of large labeled datasets and the unsuitability for sparse scenes limit the 
effectiveness of neural network-based methods [43]. A comparison of a large number of 
image segmentation methods, including neural network and non-neural network-based 
methods, is conducted in [43]. 
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There are also other notable techniques that have been used to segment images. In 
the Affinity Propagation method, real number messages are exchanged between data 
points until a high-quality set of clusters gradually emerges [44,45]. In [46], the authors 
present MRF (Markov Random Fields) models that can accurately capture road network 
topologies in synthetic aperture radar (SAR) images. In [47], the author proposes a genetic 
algorithm to find the initial contour points so that an Active Contour Model can be used 
to find the road in images. In [48], ant colony optimization is used for parameter selection 
of fuzzy object-based image analysis to extract the roads from remotely sensed images. 

Although significant research has been conducted on image segmentation, road ex-
traction based on image segmentation after a major disaster using aerial footage is still an 
open area of research. Little attention has been imparted to the development of custom 
pre- and post-processing steps. In this paper, an Efficient Graph-Based Image Segmenta-
tion approach with improvements performed via developed algorithms is introduced. 
This approach shows advantages over K-mean clustering with a higher Intersection over 
Union (IoU) score. 

3. Efficient Graph-Based Image Segmentation 
The image segmentation approach that was used in this study to isolate segments of 

traversable road is based on the Efficient Graph-Based image segmentation algorithm. In 
this section, an overview of Efficient Graph-Based image segmentation (EGS) and the 
modifications that are made is presented. The word efficient in the name of the algorithm 
refers to the algorithm’s fast running time. 

Consider an undirected graph 𝐺 =  (𝑉, 𝐸), with 𝑉 being a set of vertices of and 𝐸 
being the set of edges consisting of two vertices (𝑣, 𝑣) and a weight 𝑤. In EGS, edge 
weights represent how dissimilar two pixels in an image are. Similarity can be measured 
in terms of pixel attributes, including hue and intensity, and a distance function such as 
the L2 norm can be used for that purpose. EGS constructs a segmentation 𝑆 by partition-
ing 𝑉  into 𝑘  connected components 𝐶 ∈ 𝑆, |𝑆|  =  𝑘  (|●| represents the cardinality, 
numbers of elements in that set). Next, the issue of deciding if there is evidence for a 
boundary between components is considered. EGS introduced a novel pairwise region 
comparison predicate that measures the similarity between boundary elements of two 
components relative to the similarity inside of each component. The difference inside of 
each component is quantified by 𝐼𝑛𝑡(𝐶), which is the largest edge weight in the minimum 
spanning tree (MST) of the component [34]. 𝑰𝒏𝒕(𝑪)  =  𝒎𝒂𝒙(𝒘(𝒆)), 𝒆 ∈ MST(𝑪) (1)

In Equation (1), if e is a graph’s edge, w(e) returns the weight of that edge. The differ-
ence between components is captured by the term 𝐷𝑖𝑓(𝐶ଵ, 𝐶ଶ) , which represents the 
smallest edge weight connecting the components [34]. 𝐷𝑖𝑓(𝐶ଵ, 𝐶ଶ)  =  𝑚𝑖𝑛(𝑤(𝑒)) | 𝑣, 𝑣  ∈  𝑒,  𝑣  ∈  𝐶ଵ, 𝑣  ∈ 𝐶ଶ (2)

In Equation (2), min(w(e)) refers to this minimum edge weight, that is, the smallest 
(minimum) edge weight that exists connecting two distinct components C1 and C2. The 
minimum edge weight must be used because using some quantile, such as the median, 
produces an NP-hard computational problem. The region comparison predicate of EGS is 
defined to be [34]: 𝐷(𝐶ଵ, 𝐶ଶ)  = ൜𝑇𝑟𝑢𝑒,          𝐷𝑖𝑓(𝐶ଵ, 𝐶ଶ)  >  𝑀𝐼𝑛𝑡(𝐶ଵ, 𝐶ଶ)𝐹𝑎𝑙𝑠𝑒,                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (3)

where the minimum internal difference, 𝑀𝐼𝑛𝑡(𝐶ଵ, 𝐶ଶ), is defined as [34]: 𝑀𝐼𝑛𝑡(𝐶ଵ, 𝐶ଶ)  =  𝑚𝑖𝑛(𝐼𝑛𝑡(𝐶ଵ)  +  𝜏(𝐶ଵ), 𝐼𝑛𝑡(𝐶ଶ) + 𝜏(𝐶ଶ)) (4)

where 𝜏(𝐶) is a threshold function used to control how different two components must 
be from each other in order for a boundary to exist between them. In Equation (4), Int(C) 
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is the largest edge weight in the MST. The default threshold function given in the EGS 
algorithm is defined as [34]: 𝜏(𝐶)  =  𝑘|𝐶| (5)

where 𝑘 is the lone parameter of EGS and can be thought of as the affinity for larger 
components or, more succinctly, as a parameter to control scale. Any function that is not 
negative can be used as 𝜏(𝐶). 

The EGS algorithm works by first constructing a graph, G, from the image with n 
vertices and m edges. The output of the algorithm is a segmentation of the vertices into k 
components. The following steps define the algorithm [34]: 
1. Sort the edges by non-decreasing edge weight. 
2. Start with segmentation 𝑆 where each vertex is its own component. 
3. Construct the q-th segmentation 𝑆 from 𝑆ିଵ by doing the following. Let 𝑣, 𝑣 be 

the vertices connected by the q-th edge. If 𝑣, 𝑣  are not in the same compo-
nents 𝐶, 𝐶 ∈ 𝑆ିଵ | 𝐶ଵ ≠ 𝐶ଶ and the weight is small compared to the internal differ-
ence of 𝐶, 𝐶 then join the two components; otherwise, take no action. 

4. Repeat (3) for each 𝑞 =  1, . . . , 𝑚. 
5. Return the final segmentation as 𝑆 =  𝑆. 

There are several highly appealing features of the EGS algorithm. Reference [34] em-
phasizes that in order for a segmentation algorithm to be of practical real-time use, it 
should run in time approximately linear in the number of image pixels. The default im-
plementation given by the author runs in O(𝑛 ∗ 𝑙𝑜𝑔(𝑛)) time where n is the total number 
of pixels in the image; however, this can be improved to O(𝑛 + 𝑘) by using integer edge 
weights and a constant time sorting algorithm. For images, the use of integer edge weights 
is a great option because the color of each pixel in an image is usually represented by one 
or more integers. Further details about the implementation of EGS on aerial images can 
be found in [49]. 

The results section (Section 5) will show the application of EGS in road extraction 
that the higher number of unique edge weights generated from the Euclidean distance is 
not worth the sacrifice of computational speed. A lookup table can be pre-computed to 
increase computational time efficiency if needed. Alternatively, using a sorting optimiza-
tion can decrease the computational time. However, even without using any sorting opti-
mization, the EGS method is incredibly fast and possibly the fastest method that can be 
used to segment an image while considering all of the pixels in the image. 

In this study, original contributions include the changes that were made to the de-
fault algorithm as: (i) a simple way of automatically computing the parameter k and (ii) a 
new adaptive isoperimetric quotient threshold function designed for road extraction. The 
basis for this formula is that k should increase with image size to prevent tiny segments 
from forming and attenuate the burden of post-processing. 𝑘(𝑧, 𝑛, 𝑚) =  𝛼𝑧 √𝑛𝑚 (6)

The variable z captures the elevation of the UAV. The constant 𝛼 is some real num-
ber that controls the degree to which the elevation of the UAV affects the size of the road 
segments. Presumably, the higher the elevation, the smaller the road segments will be. In 
this study, ఈ௭ was set equal to 2.5. Additionally, a new threshold function is introduced in 
this study, which has been given the name adaptive isoperimetric quotient threshold function 
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𝑝 =  2𝜋𝑟 → 𝑟 = 𝑝2𝜋  𝐴௦ = 𝜋( 𝑝2𝜋)ଶ = 𝑝ଶ4𝜋 𝜏(𝐶) = 𝐴௦𝑘|𝐶|ଶ  

(7) 

where p is the perimeter of a segment, r is the radius of a circle that encloses the segment, 
and Aiso is the isoperimetric area of the circle that encloses the segment. The key feature of 
this threshold function is that more compact circular components are less favorable than 
long and skinny geometries. This provides a great improvement in the algorithm’s ability 
to extract paths and roads. Further modifications to the EGS algorithm can be found in 
[49]. 

4. Road Extraction 
4.1. Data 

The dataset consists of high-resolution aerial images captured of the UWF campus 
after hurricane Sally [49–51]. The original dataset consisted of both images and videos 
taken by the UAV. Out of these images, the 10 images that achieved the best job of cap-
turing the road were selected. Additionally, 21 screenshots from the UAV videos were 
taken. These images were combined into a validation dataset, and ground truth masks 
were generated for each image. The ground truth masks were created by assigning each 
pixel in the image to one of three categories: road, non-road, or uncertain. Each category 
was associated with a color: road with black, non-road with green, and uncertain with red. 
Each image is approximately 5472 pixels by 3648 pixels. The “jpeg” file format of the 
source images was converted to the non-lossy “png” file format. An image from the da-
taset and its corresponding mask can be seen in Figure 1. In the right image (Figure 1), the 
black region is road, the green region is non-road, and the red region is a region of uncer-
tainty. 

 
Figure 1. A sample frame from aerial footage and its corresponding mask. 

There are several interesting properties of the road in these images. One interesting 
feature of the roads is that they are often located next to trees or large structures such as 
buildings or poles. These objects can cast large shadows on the road, which creates a var-
iation in the color of the road. The road is generally located several inches below the sur-
rounding land, which is separated by a curb. Therefore, during a storm, the road serves 
as a repository for dirt, sand, mud, leaves, and a myriad of other substances from the 
surrounding land. Additionally, car tires can end up transferring dirt and other matter 
across the road leading to discolorations and tire tracks. The UWF campus is a heavily 
wooded environment. In particular, the longleaf pine grows all over the campus, and the 
needles turn brown annually and shed all over the surrounding road. Similar to other 
urban roads, the roads on the UWF campus have many painted markings and symbols. 
All of these properties have a profound impact on road extraction and traversability as-
sessment; they tend to obfuscate these tasks. Figures 2 and 3 highlight various properties 
of the roads in the dataset. In Figure 2, it can be seen from the top image that different 
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parts of road in an aerial image can vary drastically depending on various effects, such as 
dirt, mud, and faded parking line marks. The bottom three images in Figure 2 show that 
trees can partially block large chunks of road. Determining whether or not these trees lie 
on the road and lead to non-traversability is an important question. 

 

 
Figure 2. Top row: example of various effects on the road surface. Bottom row: examples of trees 
blocking view of the road in aerial footage. 

 

 
Figure 3. (A–H) Various road markings, pine needles, sand, tree leaves, dirt, and other debris can 
be found on the road in the UAV images. 

4.2. Pre-processing 
This section introduces a high-performing pre-processing stack that aids in quality 

road extraction. First, the image is resized using bicubic Catmull–Rom interpolation. Next, 
a median filter with a kernel size proportional to the ratio of the original image size to the 
resized image is applied. Finally, the color space is transformed from RGB to HSV. This 
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pre-processing stack was chosen in an effort to maximize the performance of road extrac-
tion. 

4.2.1. Catmull–Rom Bicubic Interpolation 
The first step in the pre-processing stack is Catmull–Rom bicubic interpolation. All 

subsequent operations (pre-processing, EGS, and post-processing) run more effectively 
after this step. Although the nearest neighbor’s interpolation runs slightly better, the per-
formance-to-quality tradeoff observed from [52] is reason enough to stick with Catmull–
Rom. 

Catmull–Rom resizing works by generating an interpolating spline curve to find the 
pixel values in the down-sampled image. A Catmull–Rom spline with centripetal param-
eterization can be computed as follows: let 𝑝 =  [𝑥 𝑦]் denote some point. For a curve 
segment 𝐶  defined by control points 𝑝ିଵ, 𝑝, 𝑝ାଵ, 𝑝ାଶ  and knot sequence 𝜏ିଵ, 𝜏, 𝜏ାଵ, 𝜏ାଶ. The Catmull–Rom spline can be plotted with the following function [53]: 𝐶  = 𝜏ାଵ − 𝜏𝜏ାଵ − 𝜏 𝐿ଵଶ + 𝜏 − 𝜏𝜏ାଵ − 𝜏 𝐿ଵଶଷ 

𝐿ଵଶ = 𝜏ାଵ − 𝜏𝜏ାଵ − 𝜏ିଵ 𝐿ଵ + 𝜏 − 𝜏ିଵ𝜏ାଵ − 𝜏ିଵ 𝐿ଵଶ 

𝐿ଵଶଷ = 𝜏ାଶ − 𝜏𝜏ାଶ − 𝜏 𝐿ଵଶ + 𝜏 − 𝜏𝜏ାଶ − 𝜏 𝐿ଶଷ 

𝐿ଵ = 𝜏 − 𝜏𝜏 − 𝜏ିଵ 𝑝ିଵ + 𝜏 − 𝜏ିଵ𝜏 − 𝜏ିଵ 𝑝 
𝐿ଵଶ = 𝜏ାଵ − 𝜏𝜏ାଵ − 𝜏 𝑝 + 𝜏 − 𝜏𝜏ାଵ − 𝜏 𝑝ାଵ 

𝐿ଶଷ = 𝜏ାଶ − 𝜏𝜏ାଶ − 𝜏ାଵ 𝑝ାଵ + 𝜏 − 𝜏ାଵ𝜏ାଶ − 𝜏ାଵ 𝑝ାଶ 

𝜏ାଵ = |𝑝ାଵ − 𝑝|ఈ + 𝜏, 𝛼 ∈ [0,1] 

(8) 

4.2.2. Median Filter 
The default EGS algorithm utilizes Gaussian blurring into the algorithm as a pre-

processing step to remove noise. For the process of road and path extraction, preserving 
edges and linear structures is critical. The median filter has been shown to exhibit better 
edge-preserving properties relative to linear image filters [54]. Since the EGS paper was 
released, tremendous work has been conducted on improving the computational speed 
of the median filter [55]. Thus, the Gaussian filter was removed from the algorithm and 
replaced by a median filter. The kernel size of the median filter is chosen based on the 
ratio of the original image size to the image size after resizing. The kernel is chosen this 
way so that the compound effect of resizing and blurring does not result in potentially 
hazardous objects on the road being blurred out of existence. 

4.2.3. HSV Color Space 
The color space is transformed to HSV in the developed pre-processing algorithm. 

The numerical value of each channel remains an integer from 0–255 in order to use the 
sorting optimizations that are presented in [49]. Given an 8-bit RGB image, the transfor-
mation to HSV is defined as follows: 
(1) The 8-bit B, G, R integers are scaled to fit in the range 0 to 1. 
(2) 𝑉 =  𝑚𝑎𝑥(𝐵, 𝐺, 𝑅) 
(3) 𝑆 = 𝑉 − 𝑚𝑖𝑛(𝐵, 𝐺, 𝑅) 𝑖𝑓 𝑉 ≠ 0; otherwise 0 
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(4) 𝐻 =  ቐ (60𝐺 − 60𝐵)(𝑉 − 𝑚𝑖𝑛(𝐵, 𝐺, 𝑅))ିଵ  𝑖𝑓 𝑉 = 𝑅120 + (60𝐵 − 60𝑅)(𝑉 − 𝑚𝑖𝑛(𝐵, 𝐺, 𝑅))ିଵ  𝑖𝑓 𝑉 = 𝐺240 + (60𝑅 − 60𝐺)(𝑉 − 𝑚𝑖𝑛(𝐵, 𝐺, 𝑅))ିଵ  𝑖𝑓 𝑉 = 𝐵 

(5) 𝐻 =  𝐻 +  360 𝑖𝑓 𝐻 <  0 
(6) 0 ≤ 𝑉 ≤ 1, 0 ≤ 𝑆 ≤ 1, 0 ≤ 𝐻 ≤ 360 
(7) The H, S, V values are then scaled to fit back into the 0-255 range 𝑉 = 255(𝑉), 𝑆 = 255(𝑆), 𝐻 = 𝐻2  (9) 

4.2.4. Compound Effect of Blur and Resize 
In this study, an object in the road is analyzed before and after resizing and blurring 

to assess their effects of them. Blurring after resizing has the obvious computation benefit 
of needing to process fewer pixels than blurring prior to resizing. Additionally, the range 
of usable kernel sizes will be smaller and more restricted, which will lead to more effective 
blurring. In [49], before and after resizing and blurring images shows an interesting dif-
ference between the Catmull–Rom interpolation plus median filter (CRM) combo versus 
the nearest neighbor plus Gaussian filter (NG) combo. Specifically, when blurring is com-
pleted after interpolation, for larger kernels, the CRM combo does a great job at smoothing 
the road while preserving the edges along the side. Unnatural lighting effects, discolora-
tions, noise, and even road markings not relevant to the application at hand are smoothed 
over. However, a glaring issue is that the speed bumps are virtually blurred out of exist-
ence if the kernel gets too large and the image size is reduced too much. If those had been 
potentially hazardous non-traversable objects instead of speed bumps, then it is crucial 
that they are identified at some point. On the other hand, the NG combo does not smooth 
over-the-road discolorations and lighting variations, as well as the CRM combo. The NG 
combo image just becomes progressively blurrier for larger kernels. By strategically 
choosing the percentage by which the image size is reduced and the median filter kernel 
size, it is shown that the CRM combo performs better than the NG combo for pre-pro-
cessing [49]. 

4.3. Post Processing 
EGS has a post-processing operation baked into the algorithm. Specifically, for each 

edge connecting two nodes a and b and for some user-defined integer, minSize: 
1. If a is not b, go to (2); otherwise, keep iterating. 
2. If the size of a’s segment is less than minSize or the size of b’s segment is less than 

minSize, then merge segments a and b. 
This post-processing operation allows the user to adjust how large the segments 

should be. Although having an additional hyperparameter can be convenient in some sit-
uations, for the purpose of automated road extraction, it is better to have a way to auto-
matically compute a reasonable value. This heuristic relies on the fact that neighboring 
segments have a higher probability of belonging to a larger unified segment. However, 
the main drawback of this approach is that the characteristics of each segment are not 
compared in any way. This means that merging segments with no relation to each other 
is a likely outcome. Since this method does not consider the similarity between neighbor-
ing segments that are merged, large values should be used cautiously. A simple method 
to auto-compute a value for this parameter is: 
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𝑚𝑖𝑛𝑆𝑖𝑧𝑒 = 𝑘2 ∗ (2.5)ଶ = ඥ𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡5  (10) 

After this, a new method is introduced, which is called Median Color Quantization 
(MCQ). Median color quantization simply assigns a color to each segment, and that as-
signed color is the median color of all pixels in that segment. Median color quantization 
can be observed in Figure 4. 

 

 
Figure 4. Segmentation followed by EGS post-processing and MCQ. 

The next step is to determine which segments are actually roads. The shape of the 
road segments varies not only naturally but as a function of the location and angle of the 
UAV camera. Furthermore, deposits of pine needles or other debris at the road-curb in-
terface can obfuscate the geometry of the road segments. The adaptive isoperimetric quo-
tient threshold function introduced earlier already searched for road-like geometries. Ad-
ditionally, in some cases, the road is not all in one segment. The road might be broken up 
into multiple large sub-segments. These subsegments need to be merged. Before the road 
segments are merged, if more than one exists, it is important to identify at least one seg-
ment that is likely to be a road segment. This segment is called the Nucleation Site, from 
which any remaining road segments will be merged. The nucleation site is identified via 
a process called the Road Segment Identification (RSI) heuristic, defined below. 
1. For each segment, compute the Road Segment Similarity Metric (𝛿ோௌௌ). 
2. Use the developed algorithm with k=1 to choose the best road segment, 𝑆. 
3. Asses probability that 𝑆 is, in fact, road and not non-road. If 𝑆 is determined to be 

non-road, conclude that there are no road segments in the image and halt. Otherwise, 
go to step 4. 

4. For each neighbor of 𝑆, compute the difference in hue and saturation between 𝑆 
and the neighboring segment 𝑆. If the change in hue and saturation is small, then 
merge the two segments. 

5. For all neighbors that were merged, repeat steps 4–5 using each neighbor in place of 𝑆. 
The Road Segment Similarity Metric (𝛿ோௌௌ) is defined as: 
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𝛿ோௌௌ(𝑐, 𝑟𝑆) = 𝑑𝑖𝑠𝑡(𝑐, 𝑟𝑆)𝑚𝑎𝑥(𝑑𝑖𝑠𝑡(𝑥, 𝑟𝑆)) ∈ [0,1]  (11) 

where dist is just some Minikowski distance, and 𝑚𝑎𝑥(𝑑𝑖𝑠𝑡(𝑥, 𝑟𝑆)) refers to the largest 
possible distance from rS. The parameter c is the color value of the segment, and rS (road 
sample) is a predefined value for the ideal color of the road. Two ways to compute rS are 
as follows: 
1. Crop a small piece of road out of an image or some small number of images. Then 

use these samples to compute a value for rS. These road sample images can be taken 
from the UAV dataset and treated as calibration images, or they can be obtained from 
some pre-existing database. 

2. Simply choose some shade of gray. 
Some problems with this approach include: road markings can decrease the satura-

tion of a segment, and lighting effects and discoloration can cause the road to have a 
lighter gray color. Using K-nearest neighbors and setting a k value assumes that there will 
be at least one road segment in the image. 𝛿ோௌௌ can be treated as a probability, and values 
below a certain threshold can be deemed non-road. Therefore, if 𝛿ோௌௌ is small enough for 𝑆, it can be concluded that no road segments exist in the image. Another issue arises with 
this approach if the road segments are not connected and cannot be chained together; a 
sample case is depicted in Figure 5. In the figure, if region B is taken to be the nucleation 
site, then region A would never be labeled as a road since the two segments are not con-
nected. To address this issue, after RSI completes for 𝑆, it can be run again, excluding all 
segments that have already been labeled as road. This process can continue until a 𝛿ோௌௌ 
for 𝑆 is computed. 

 
Figure 5. A sample case of image mask depicting multiple road segments that are not connected. 

Reference [28] uses the minimum weight edge connecting disparate segments to look 
for evidence of a boundary between them; the median or any other quantile edge weight 
cannot be used because it results in an NP-hard problem. Since MCQ was applied, each 
segment is represented by the median color of the underlying pixels in that segment. Now, 
it is possible to make a more robust comparison of the median colors of neighboring seg-
ments and decide whether or not to merge segments. The value color channel is not con-
sidered in an effort to merge segments that were separated because of shadows. Shadows 
will cause a spike in the value channel in an HSV image. The difference in HSV color 
between a segment of road with a shadow and a segment of road without a shadow is 
depicted in Figure 6. 
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Figure 6. HSV difference between region of road with shadow and region of road without shadow. 

5. Results and Discussions 
In order to assess the quality of the road extraction, the Intersection over the Union 

(IoU) technique was used. The IoU quantifies the extent to which the predicted segmen-
tation overlaps with the ground truth segmentation. The parameters used in the presented 
results are percent reduction (n%), minimum size (minSize), pixel neighborhood (k), 
threshold function (𝜏(𝐶)), and recursion depth (d). 

5.1. Resizing and Median Filter Kernel 
For the median blur operation that occurred during pre-processing, three different 

kernel sizes were used. Their value is computed as a function of the image size. The size 
of these three kernels corresponds to three levels of blurring: subtle, moderate, and high. 
It can be seen from Table 1 that the moderate median kernel size of 15 results in the highest 
IoU scores. These results show that not enough or too much median blurring can result in 
poorer road extraction. For resizing, three different levels of size reduction were consid-
ered. The image dimensions were reduced by n%. The n values used were: 50, 75, and 90. 
From the data in Table 1, it can be seen that the highest IoU scores come from the images 
that were reduced the least. Unfortunately, these higher IoU scores come at the cost of 
longer algorithm running times. Figures 7–10 show results overlaying the ground truth 
mask on the predicted mask for different images. 
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Figure 7. Case-1. Top row: Comparison of predicted mask to the actual mask for different median 
filter values. Bottom row: overlaying the ground truth mask on the predicted mask. 

 
Figure 8. Case-2. Top row: Comparison of predicted mask to the actual mask for different median 
filter values. Bottom row: overlaying the ground truth mask on the predicted mask. 
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Figure 9. Case-3. Top row: Comparison of predicted mask to the actual mask for different median 
filter values. Bottom row: overlaying the ground truth mask on the predicted mask. 

 
Figure 10. Case-4. Top row: Comparison of predicted mask to the actual mask for different median 
filter values. Bottom row: overlaying the ground truth mask on the predicted mask. 

Table 1. Catmull–Rom Interpolation and Median Filter. Comparison of IoU for different image and 
median filter kernel sizes. 

% Resized Subtle Moderate High 
50% 0.835 0.892 0.882 
75% 0.788 0.825 0.823 
90%  0.683 0.785 0.692 
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5.2. Pixel Neighborhood and the MinSize Parameter 
Three different pixel neighborhoods—extended, Von Neumann, and Moore, were 

tested along with three values for the minSize parameter: k, 𝑘 2⁄ , and 𝑘 5⁄ . The extended 
neighborhood is the Moore neighborhood plus the extra ring of pixels that border the 
Moore neighborhood. This results in a maximum of 24 possible neighbors per pixel. Table 
2 shows that segmentation using the Von Neumann neighborhood achieves the highest 
overall IoU score. This is interesting because building a graph while using the Von Neu-
mann pixel neighborhood results in the sparsest graph of the three neighborhoods used 
in this study. The extended neighborhood performs the worst, even though it yields 
roughly six times as many graph edges as the Von Neumann neighborhood. The Moore 
neighborhood shows the least amount of variance for different values of the minSize pa-
rameter. Figures 11–13 depict the results for each neighborhood. 

 
Figure 11. Extended neighborhood with minSize set at k/5. 
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Figure 12. Moore neighborhood with minSize set at k. 

 
Figure 13. Von Neumann neighborhood with minSize set at k/2. 
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Table 2. Pixel neighborhood and minSize. Comparison of IoU for different pixel neighborhoods and 
values of minSize. 

 minSize 
Neighborhood 𝑘 𝑘 2ൗ  𝑘 5ൗ  
Von Neumann 0.825 0.878 0.755 
Moore 0.846 0.816 0.814 
Extended 0.707 0.758 0.786 

5.3. Threshold Function and Distance Function 
In this study, different distance functions and threshold functions were also analyzed. 

The integer Euclidean distance is computed from a pre-computed lookup table. The 
lookup table is created by calculating the square of each unique Euclidean distance and 
assigning it a unique integer. The Euclidean distance performed very poorly for these im-
ages. Another drawback of using the Euclidean distance is that it results in slower algo-
rithm running times. The newly proposed adaptive isoperimetric quotient threshold func-
tion yields the highest overall IoU score when coupled with the Manhattan distance. The 
standard threshold function seems to work better with Euclidean distances. The IoU 
scores are given in Table 3. Figures 14–16 depict the results from modifying the threshold 
and distance functions. 

 
Figure 14. The adaptive isoperimetric quotient threshold function is compared to the standard 
threshold function. The Euclidean distance was used to create the graph edges. 

 
Figure 15. The adaptive isoperimetric quotient threshold function is compared to the standard 
threshold function. The integer Euclidean distance was used to create the graph edges. 
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Figure 16. The adaptive isoperimetric quotient threshold function is compared to the standard 
threshold function. The integer Manhattan distance was used to create the graph edges. 

Table 3. Threshold Function and Distance Function. Comparison of IoU for different threshold and 
distance functions. 

 Distance 𝝉(𝑪) Manhattan Euclidean Integer Euclidean 
Standard 0.756 0.488 0.615 
Adaptive Isoperimetric Quotient 0.877 0.246 0.370 

5.4. Recursive Graph-Based Segmentation 
Further, an experiment was conducted where the proposed algorithm was recur-

sively called on its output. Table 4 shows results for different values of k, minSize, and the 
recursion depth. Two groups were created, group A and group B. In both groups, minSize 
and k grow as a function of the recursion depth. The rate of growth is higher for group B, 
but the initial values of minSize and k are also much lower. Although the overall IoU scores 
were lower than simply letting k and minSize automatically compute according to the 
newly proposed Equation (6), it can be observed that the IoU scores increased with recur-
sion depth. Furthermore, group B, with a recursion depth of three, showed an impressive 
IoU score of 0.872. Figures 17–19 depict the results for different recursion depths. 

 
Figure 17. The recursion depth is 1 for this result. k was set to k/2, and minSize was set to k/4. 
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Figure 18. The recursion depth is 2 for this result. k was set to k/2, and minSize was set to k/4. 

 
Figure 19. The recursion depth is 3 for this result. k was set to k/4, and minSize was set to k/8. 
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Table 4. Recursive Graph-Based Segmentation. Comparison of IoU for different growth functions 
and recursion depths. 

 Recursion Depth (d) 
Growth Function 1 2 3 
Group A 𝑘ଵ = 𝑘 2, 𝑚𝑖𝑛𝑆𝑖𝑧𝑒ଵ = 𝑘 4⁄⁄  𝑚𝑖𝑛𝑆𝑖𝑧𝑒ௗ = 𝑚𝑖𝑛𝑆𝑖𝑧𝑒ௗିଵ + 30(𝑑 − 1)  𝑘ௗ = 𝑘ௗିଵ + 50(𝑑 − 1)  0.804 0.807 0.815 

Group B 𝑘ଵ = 𝑘 4, 𝑚𝑖𝑛𝑆𝑖𝑧𝑒ଵ = 𝑘 8⁄⁄  𝑚𝑖𝑛𝑆𝑖𝑧𝑒ௗ = 𝑚𝑖𝑛𝑆𝑖𝑧𝑒ௗିଵ + 50(𝑑 − 1)  𝑘ௗ = 𝑘ௗିଵ + 100(𝑑 − 1)  0.795 0.798 0.872 

5.5. Comparison with K-Means 
As a final analysis, the K-means algorithm was used to try and extract the road from 

images, and the results were compared to the approach presented in this study. This com-
parison is depicted in Figure 20. Three different values for k were chosen. When using K-
means for road extraction, the post-processing presented in this paper is no longer valid. 
In K-means, the segments do not necessarily represent objects in the image. Completely 
unrelated objects on opposite sides of an image that happen to have similar colors can 
belong to the same segment. When the proposed post-processing is applied after K-means 
segmentation, the nucleation site that is discovered could just be some stray pixel. There-
fore, to extract the roads, a simple thresholding operation was applied. The image was 
converted into a binary image, and then morphological operations were applied. It can be 
observed from Tables 5 and 6 that the proposed method in this paper performs signifi-
cantly better than the K-means-based road extraction. The low IoU scores primarily stem 
from labeling non-road as road. 

 
Figure 20. The source images are on the left, the segmentations produced from the novel method 
proposed in this paper are in the center, and segmentations from K-means are on the right. 
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Table 5. K-means Based Road Extraction. Comparison of IoU for different values of k. 

# Centroids 25 50 100 
IoU 0.361 0.352 0.337 

Table 6. EGS versus K-means. The IoU scores of EGS and K-means are compared for the same im-
ages in the database. For K-means, the k value was chosen that resulted in the highest IoU. 

Image No. EGS K-Means 
0 0.745 0.234 
2 0.858 0.442 
4 0.846 0.403 
Mean IoU (All Images) 0.832 0.422 

6. Conclusions 
In this study, an improved Efficient Graph-Based image segmentation algorithm ap-

plied to road extraction from post-disaster aerial footage is presented. The modifications 
proposed to EGS in this study led to significant improvements in the segmentation quality 
and Intersection over Union (IoU) scores. Although less size reduction seems to yield 
higher-quality segmentations, it is important to factor in the running time required to pro-
cess more pixels. From the experiments conducted, a 75% reduction in image size yields 
high-quality segmentation results and also allows the algorithm to run efficiently for large 
images. The Von Neumann pixel neighborhood coupled with integer Manhattan distance 
edge weights led to the highest quality segmentation results. The Moore neighborhood 
showed strong performance, and it is worth noting that the change in IoU as minSize 
changed was less extreme. The introduction of the new adaptive isoperimetric quotient 
threshold function showed great promise for the application of road extraction and 
showed a significant improvement in the IoU score when compared to the standard 
threshold function. Recursively calling the algorithm and incrementing the parameters k 
and minSize resulted in progressively better IoU scores. One issue that can be seen with 
the IoU measure is that it does impose a strict enough penalty on the dissolution of non-
road segments. For the application of traversability, a non-road segment being labeled 
road should be far costlier than a road segment labeled non-road. The comparison be-
tween K-means and the developed algorithm in this paper shows that the algorithm has 
significantly better IoU scores than the K-means method. Additionally, the major issue in 
the K-means method is the large number of non-road segments being labeled as roads. It 
is conceivable to think that a more rigorous post-processing method could yield even bet-
ter results with the developed algorithm. As a future work, the novel pre-processing, im-
age segmentation, and MCQ combination presented in this research will be used to gen-
erate superpixels which could then be used as input to a state-of-the-art neural network 
architecture such as a U-net. The comparison of our developed framework with other 
methods in the literature, robustness analysis, and computational time analysis is not in-
cluded in the scope of the originally intended contribution in this article, and they are left 
for a future work. 
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