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Abstract: The design of cooperative applications combining several unmanned aerial and aquatic
vehicles is now possible thanks to the considerable advancements in wireless communication tech-
nology and the low production costs for small, unmanned vehicles. For example, the information
delivered over the air instead of inside an optical fiber causes it to be far simpler for an eavesdropper
to intercept and improperly change the information. This article thoroughly analyzes the cybersecu-
rity industry’s efficiency in addressing the rapidly expanding requirement to incorporate compelling
security features into wireless communication systems. In this research, we used a combination of
DEA window analysis with the Malmquist index approach to assess the efficiency of the cybersecurity
industry. We used input and output factors utilizing financial data from 2017–2020 sources from a US
market. It was found that U1—Synopsys and U9—Fortinet exhibited the best performances when
relating Malmquist and DEA window analysis. By evaluating ten big companies in the cybersecurity
industry, we indicate that U2—Palo Alto Networks and U6—BlackBerry Ltd. companies needed sig-
nificant improvements and that four other companies were generally more efficient. The findings of
this study provide decision-makers a clear image and it will be the first study to evaluate and predict
the performance of cyber security organizations, providing a valuable reference for future research.

Keywords: cybersecurity industry; 5G security; AI security; data envelopment analysis; Malmquist
productivity index; window analysis

1. Introduction

Cybersecurity prevents data loss and theft. Due to poor cloud service installation
and more sophisticated cybercriminals, your organization may be targeted for a cyberat-
tack [1–4] or data leak. The COVID-19 pandemic contributed to our society’s increasing
reliance on technology. The coronavirus pandemic shut down industries in many countries.
Offices, businesses, and schools must now operate online. Higher internet demand leads to
more cybercrime. Social media sites freely discuss identity theft. Social Security numbers,
credit card numbers, and bank account information are stored in Dropbox and Google
Drive. Combine this with cloud services, weak cloud service security, cellphones, and
IoT [5–8] and you have plenty of new security concerns that did not exist a few decades ago.
Assailants target cloud services’ scalability, efficiency, and cost reductions. Misconfigured
cloud settings cause data breaches, unauthorized access, insecure interfaces, and account
hijacking. Businesses must defend themselves from cloud dangers because the average
data breach costs USD 3.86 million. We are forgetting security risks and vulnerabilities
resulting from using traditional security solutions over the wireless [9] channel. Similar
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issues to wireless transmissions are raised by powerline communication channels, which
also extend serious privacy issues for most applications that use this medium.

Drones, known as Unmanned Aerial Vehicles (UAVs), are becoming increasingly
popular for personal, commercial, and military domains. Wireless communications for
drones are essential because they allow drones to operate without being tethered to a
ground-based control system [10]. This means that the drone can be flown in a broader
range of environments and can be controlled more easily. Wireless communications also
allow more data to be transmitted to and from the drone, which is essential for its opera-
tion [11,12]. The escalating use of drones or the protest against them presents strict security
and safety problems, demanding data protection and cyber security. Drones are controlled
via a remote interface, which means hackers could access the drone’s camera and other
sensors if the drone is hacked. Attackers could also take control of the drone itself, which
could pose a severe safety hazard. To protect users and prevent malicious activities, data
security and cyber security are essential to UAVs’ management [13].

The global cyber security market will be worth USD 153.16 billion in 2020. COVID-19
has had a unique and tremendous worldwide impact, with IT security demand dropping
slightly in all countries. The global market grew 7.6% in 2020 compared to 2017–2019. The
market is predicted to grow at a 12.0% compound annual growth rate (CAGR) from 2021 to
2028, from USD 165.78 billion to 366.10 billion. This market will rebound to pre-pandemic
levels after the pandemic is over, boosting CAGR. With investments from Germany, France,
India, Spain, South Korea, Italy, Canada, Qatar, and others, the demand for AI [2,5,14]
and cloud security [4,15,16] solutions should expand. Manufacturing, banking, financial
services [17], insurance (BFSI), and healthcare will drive future market growth.

Cybersecurity firms use machine learning, IoT [5,18–21], cloud computing, and big
data in their corporate security departments. This implementation would help players un-
derstand unknown trials and hazards. As the IoT market grows, more security applications
use IoT solutions. Internet security technology is one of the fastest-growing market trends
and big data and cloud technology help firms discover and evaluate risks. Cloud comput-
ing is also helping the market grow. Cisco Systems, IBM, and others focus on cloud-based
internet security. These cloud computing services employ the Analytics-as-a-Service (AaaS)
platform to identify and mitigate threats swiftly. In the study, we evaluated the solutions
and services supplied by the ten most significant cybersecurity industry participants us-
ing the data envelopment analysis (DEA) model, including the DEA Malmquist [7,22–24]
and [25–29] DEA Window Analysis, from 2017 to 2020.

This study combines two Data Envelopment Analysis (DEA) models to analyze ten cy-
bersecurity organizations’ performance efficiency in the past years (2017–2020). We ranked the
most outstanding cybersecurity companies using DEA Window Analysis and the Malmquist
Model. We also offer managerial suggestions for improving operational efficiency at ten
cybersecurity organizations. The rest of this article is organized as follows. Section 2 discusses
study methods, focusing on DEA Window Analysis and DEA Malmquist Model approaches.
In Section 3, we discuss the empirical research and analysis of findings. The final section
summarizes the study’s main points, identifies its limits, and offers recommendations for
further investigation.

2. Literature Review and Research Procedure

Data envelopment analysis (DEA) was developed as a set of approaches for measuring
the relative effectiveness of a group of decision-making units (DMUs) when price data for
inputs and outputs are either lacking or ambiguous [30]. These approaches are nonpara-
metric, relying solely on visual input-output information. Traditional DEA models almost
entirely ignore the data set’s statistical aspects, causing them to be far from nonparametric.
Since its introduction, several DEA models have been created and widely used to assess
performance in various industries and organizations, including transportation, mining,
logistics, finance, and many more.
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2.1. DEA Malmquist Model

Based on the DEA, the Malmquist productivity index evaluates productivity change
over time and may be broken down into two parts: one that measures technical progress
and the other that measures the frontier shift. The current study adds to the DEA-based
Malmquist approach by examining these two Malmquist components [31] in greater depth.

The DEA-based Malmquist productivity index is used in many applications. For
example, regarding productivity changes in Swedish hospitals (Färe et al., 1994b) [32] and
the provision of Swedish eye-care services (Löthgren and Tambour, 1999a) [33], Caves et al.
(1982) [34] established the Malmquist productivity change index, which has become an
essential part of the DEA toolset. Even though Caves, Christensen, and Diewert (CCD)
proposed distance functions as a theoretical index, these distance functions have proven
to be beneficial empirical instruments. The productivity of small and large enterprises
in the automobile sector in France, Italy, and Spain during the pre-crisis (2001–2008) and
post-crisis (2009–2014) eras is examined in M.Agostino et al.’s research (2022).

Since he was working with consumer-based indexes, Malmquist (1953), the original
paper to which CCD referred and named their proposed productivity index, defined a quan-
tity index as ratios of distances/distance functions in which observations were evaluated
relative to an indifference curve. In the spirit of Malmquist’s consumer quantity index,
CCD used the technology frontier instead of the indifference curve to define a productivity
index. The output isoquant was employed as the reference in the CCD definition of the
output-oriented Malmquist productivity index. The data under evaluation were projected
using an output distance function. Similarly, for the input-based Malmquist productivity
index, they picked an input isoquant as a reference. If and only if the data belong to the
respective isoquants, the corresponding distance functions have a value of unity.

The Malmquist productivity index has two primary surveys: Tone, 2004 [35], is
aimed toward Operations Research (OR) professionals, whereas Färe et al., 2008, are more
interested in economists. Following Tone, 2004 [29], we seek a medium ground here
and center our explanation on the Operation Research (OR) audience while maintaining
financial references. We will include recent work on dynamic Malmquist productivity
indices, endogenous technical Change, and extensions based on other distance function
specifications such as directional distance functions in our assessment of this topic.

The Malmquist productivity index comprises two parts that measure the shift in the
technological frontier and technical efficiency. In this study, we dig deeper into the two
components to uncover the origins and patterns of productivity change that the Malmquist
index’s aggregated form obscures. It is demonstrated that the separate Malmquist compo-
nents can provide more information. Our proposed new technique not only detects the
strategy shifts of individual DMUs in each period but also reveals patterns of productivity
change and provides a fresh interpretation along with the managerial implications of each
Malmquist component. We can determine whether such strategy shifts are advantageous
and promising and alterations in isoquant characterize the “strategy shift” here [36]. When
describing a “strategy shift” choice, technical, and allocative efficiency considerations
should be considered when the price information is available.

2.2. DEA Window Analysis Model

In the window variation, the methodology will be briefly explained (Charnes et al.,
1989) [37]. Much research has utilized the DEA window analysis method to analyze ef-
ficiency over several fields from time to time. Bian and Yang (2010) [38] assessed the
efficiency of resources and the environment as a whole using some existing DEA models.
The abovementioned algorithms can examine a DMU’s environmental and energy efficiency
simultaneously. Yang and Chang (2009) [39] developed “a two-stage range-adjusted model”
to assess whether the utilization of various energy sources is inefficient and congested [39].
This model was used with DEA window analysis to investigate the case throughout the
period. Řepková (2015) analyzed data from Czech commercial banks using the DEA window
analysis method [40]. She looked at the effectiveness of the Czech banking industry from



Drones 2022, 6, 363 4 of 21

2003 to 2012 and measured it using the DEA window analysis method, which is based on
a model that prioritizes inputs. Hunjet et al. (2015) [41] used DEA Window Analysis to
investigate the relative dynamic efficiency of twelve Croatian towns in six years from 2004
to 2009. The towns’ dynamic relative efficiency is shown and examined using computational
results. The influence of sector reorganization on the effectiveness of twenty one Croatian
state-owned energy distribution facilities was investigated by Zaja et al. (2017) [42]. For
the first stage of DEA, the operating costs were used as the input in a BCC model that
also included total power sales, consumers, and network length as outputs. Each year, the
relative efficiency of the power distribution centers was evaluated using pooled data from
2005 to 2013. The efficiency scores were regressed on contextual variables in the second stage
to quantify their effects on performance ratings and documentation of roughly 2.8 percent
yearly productivity gains following the regulatory adjustments.

Although numerous studies have used the DEA model, there are specific gaps in the
papers cited above, according to the author’s literature review. There are even no articles
addressing cybersecurity employing the DEA method. By combining the DEA Window
analysis with the Malmquist Productivity Index in a hybrid approach, this article may be
a dynamic assessment that provides us more insights into the efficiency changes in the
cybersecurity market. This article will examine the cybersecurity efficiency of ten companies,
which will be considered as ten different decision-making units addressing the period from
2017 to 2020.

2.3. Research Procedure

Implementing the three-phase DEA performance analysis, which will be used to
evaluate the performance efficiency of ten cybersecurity companies worldwide, is the most
crucial aspect of this research. The research technique will be broken down into four parts,
as shown in Figure 1.
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We summarize the findings of a study that looked at the performance and ranking of
all DMUS from 2017 to 2020. Then, we generate suggestions for underperforming units
to improve their performance based on the DEA Malmquist and DEA Window Analysis
findings. The following part will then explain the empirical results and outcomes.

3. Research Results and Discussion

The top ten cybersecurity companies were selected by market share. All the infor-
mation was found in the companies’ annual reports, which are published annually. Total
assets, liabilities (L), operating costs (OE), revenue ®, and gross profit (GP) were collected
during data collection (GP). J. Zhu’s DEA definitions separate these data into input and
output. Golany and Roll (1989) [43] suggested a “rule of thumb” for inputs, results, and
DMUs. This regulation required twice as many DMUs as inputs and outputs. The number
of DMUs is appropriate because it matches the study’s purpose of using from four to five
outputs and inputs. This regulation does not limit the number of DMUs. The number of
DMUs and the total number of output and input are correlated according to the law. The
limitation on the number of inputs and outputs is also intended to limit the number of
DMUs. The list of ten selected DMUs is shown in Table 1 as follows:

Table 1. DMUs List.

DMU Company Name Stock Code

U1 Synopsys, Mountain View, CA, USA SNPS
U2 Palo Alto Networks, Santa Clara, CA, USA PANW
U3 Oracle, Austin, TX, USA ORCL
U4 Microsoft, Redmond, WC, USA MSFT
U5 IBM, Armonk, NY, USA IBM
U6 BlackBerry Ltd., Waterloo, ON, Canada BB
U7 Cisco Systems Inc., San Jose, CA, USA CSCO
U8 CyberArk, Newton, MA, USA CYBR
U9 Fortinet, Sunnyvale, CA, USA FTNT
U10 Juniper Networks, Sunnyvale, CA, USA JNPR

3.1. Selection of Input and Output Variables

The identification of specific input and output variables, as well as the deployment of
DEA for efficiency assessments, is a time-consuming process. Because of the complexity
of the DEA approach, the input and output elements chosen will have a significant im-
pact on the outcomes. The author can ignore any technique that determines the correct
number of variables if they have performed enough research on the benefits of the factors.
Additionally, there is no defined rule for selecting variables in the present. According
to previous studies, the input components primarily studied are indicators of financial
aspects that organizations should balance or manage, but the output factors are signs
that must be improved. Depending on the list of previously used inputs and outputs
and the applicability of financial metrics, we choose to use three input elements factors
(assets, liabilities, operating expenses) and two output factors (revenue, gross profit) in the
analytical approach used in the proposed model as shown in Table 2. These index systems
are used to assess the operational efficiency.

Five financial factors are used to evaluate a company’s performance. Commercial
enterprises need asset management, capital control, production cost regulation, and in-
creasing earnings and income. The study’s focus on cybersecurity efficiency is tied to their
financial performance. This research’s first component focuses on finances. For the DEA to
calculate efficiency, the author used output factors that rise inexorably with input factors.
The isotonicity criteria are satisfied; otherwise, the components would be re-evaluated or
deleted. The author chose these variables for the research.
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Table 2. List of inputs and outputs in prior research using data envelopment analysis method.

Authors [Reference] Inputs/Criteria Outputs/Responses Research Topics Applied Sectors

Lu et al., 2011 [44]
Operating expenses,

Liability, Equity,
Employee

Net income, Net sales,
Intangible value,

Market value

“Exploring the efficiency
and effectiveness in global
e-retailing companies”.

E-retailing

Tao et al., 2013 [45] Equipment Operating
cost Employees Revenue Web metrics

“Online banking
performance evaluation
using data envelopment
analysis and axiomatic
fuzzy set clustering”

E-banking

Yang et al., 2014 [46] Costs Assets Labors Revenue Profit

“Website quality and
profitability evaluation in
e-commerce firms using
two-stage DEA model”

E-commerce

He-Boong Kwon,
2014 [47] Cost, Asset Revenue, Operating

income

“Performance modeling of
mobile phone providers:
A DEA-ANN
combined approach”

Mobile Devices

Yang et al., 2016 [48] Employees Operating
expenses Total assets Revenue Market share

“Efficiency and
effectiveness in
e-commerce firms”

E-commerce

Wang et al., 2021 [49]
Assets, Deposit,

Operating expense,
Liabilities

Loan, Net income

“A Decision Support
Model for Measuring
Technological Progress and
Productivity Growth: The
Case of Commercial Banks
in Vietnam”

Banking

3.2. Data Envelopment Analysis (DEA)-Malmquist Model

Before estimating the DEA efficiencies, we must calculate the correlation of input and
output data. We will utilize a Pearson’s correlation test. The Pearson coefficient measures
the linear relationship between two variables in empirical research and Auguste Bravais is
credited with publishing Karl Pearson’s 1844 approach. Each correlation score represents
a linear scale dependency between two components or data sets. A positive correlation
indicates two variables increase or decline together, a nonlinear or zero correlation means no
discernable relationship, and a negative correlation means one variable decrease while the
other increases. The correlation coefficients are −1 to +1. When the correlation coefficient
approaches +/−1, two groups form a linear relationship. The following Equation (1) is
used to calculate a Pearson’s correlation coefficient:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(1)

DEA-Malmquist Model

The MPI’s primary purpose is to examine changes in the productivity performance of
numerous DMUs over time, as measured by the product of Change in relative efficiency
(catchup) and technological Change (frontier). The DMU’s extreme in terms of coping up
to an increase or drop in efficiency performance is referred to as catchup efficiency. The
term “frontier shift” refers to how DMUs can endure the advancement in the technical
environment from one time to the next.

For a given DMUi The two periods in the DEA analysis are referred to as (xi, yi) for
the first and (xi

2, yi
2) for the second. The frontier efficiency is t2: dt2 = 1, 2 and t2 = 1, 2

to assess the efficiency score DMUi (xi, yi)
t1 . The following formulas (Equations (2)–(4))
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will be used to calculate the relative efficiency change, which is the catchup index (CA),
technological Change, frontier shift index (FR), and Malmquist Productivity Index (MPI):

CA =
d2((xi, yi))

2

d1((xi, yi))
1 (2)

FR =

[
d1((xi, yi))

1

d2((xi, yi))
1 x

d1((xi, yi))
2

d2((xi, yi))
2

] 1
2

(3)

MPI =

[
d1((xi, yi)

2)

d1((xi, yi)
1)

x
d2((xi, yi)

2)

d2((xi, yi)
1)

] 1
2

(4)

Definitions of each parameter:

Catchup Index (CA): Färe et al. (1994) break down a unit’s total productivity change
into that attributable to the “shift” in the efficient border between periods t and t + 1 and
that attributed to the unit’s efficiency “catchup”. As we move from period t to period t +
1, the catchup factor indicates the Change in the cross-sectional efficiency of an operating
unit. The boundary shift term describes the shift in the efficient boundary from period t to
period t + 1 in terms of how much (or less) input is required to maintain a specific output
level under efficient operation.

Frontier shift Index (FR): Technological Change occurs because of advancements in
R&D technology and talent, such as introducing new technology or new R&D processes
and systems. As a result, the R&D best practice manufacturing frontier moves forward. It is
critical to understand how distant one is from the R&D technological frontier at any given
time and how rapidly one may approach the border regarding R&D equipment or process
renewal and modernization. The R&D Technology Change is defined as a “boundary shift”
in R&D technology and is calculated using a formula.

With a DEA-like nonparametric technique, the Malmquist Productivity Index (MPI)
evaluates productivity changes over time and can be decomposed into improvements in
efficiency and technology. The utilization of a contemporary version of the data and the
time variations of technology in the study period is required for productivity breakdown
into technological change and efficiency catchup. Using the observations at time t and t+,
the MPI may be written in terms of distance function as Equation. In the nonparametric
framework, it is calculated as the product of catchup (or recovery) and frontier shift (or
innovation) components, both derived from DEA technology.

It is possible to determine if a DMU’s total productivity factor improves or deteriorates
using the above methods. The catchup or frontier efficiency might cause an increase or
loss in efficiency. We can see from the preceding calculations that the DMU’s total factor
productivity (TFP) reflects relative and technological innovation efficiency advances or
losses. CA, FR, and MPI values can be more than one, less than one, or equal to one,
indicating whether the DMU is progressing, regressing, or showing no change between the
two periods.

Table 3 explains the correlation coefficients in detail, where n is the sample size and xi,
yi are the individual sample points associated with i.

Table 3. Pearson correlation.

Correlation Degree of Correlation

>0.8 Very High
0.6–0.8 High
0.4–0.6 Medium
0.2–0.4 Low

<0.2 Very low
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3.3. DEA WINDOW Analysis Model

Another technique in DEA that will be used in this study is the nonparametric Window
model. In this method, n will refer to the summation of observed units, which will be
addressed as DMUn. Additionally, the input factor is m, while the output factor is s.

Incorporating with the time series element t, DMUt
n, the input and output are gen-

erated into a vector of Xt
n and Yt

n. Additionally, they are shown in Equations (5) and (6)
below, respectively.

Xt
n = d

x1t
n
·
·
·

xmt
n

e (5)

Yt
n = d

y1t
n
·
·
·

yst
n

e (6)

A window may start at any given point k (1 ≤ k ≤ T) in time T and have a width w
(1 ≤ w ≤ T − k), every window kw will be represented by the input matrix Xkw and output
matrix Ykw as presented in Equations (7) and (8) below.

Xkw =



xk
1

xk+1
1
·
·
·

xk+w
1

xk
2

xk+1
2
·
·
·

xk+w
2

. . .

xk
n

xk+1
n
·
·
·

xk+w
n


(7)

Ykw =



yk
1

yk+1
1
·
·
·

yk+w
1

yk
2

yk+1
2
·
·
·

yk+w
2

. . .

yk
n

yk+1
n
·
·
·

yk+w
n


(8)

The DEA Window analysis will proceed right after the substitution of the input and
output to the DMUt

n Equation.

4. Empirical Results
4.1. Data Used Performance Analysis

The result of cyber security companies from 2017 to 2020 are shown in Table 4. The
necessary input and output variables data are obtained from the US Stock Exchange, where
most financial records and yearly reports are publicly available. Millions of dollars are
used as the mathematical unit. The column in which the negative value appeared will be
adjusted appropriately so that the entire data set has values that meet the DEA’s isotonic
and homogenous requirements. The values in tables are appropriate already. The calculated
averages, minimum and maximum values, and standard deviation for each variable in
each year are shown in the following table as essential descriptive statistics summaries of
all the input and output data.
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Table 4. The period from 2017 to 2020: statistics and numbers.

Assets Liabilities Operating Expenses Revenue Gross Profit

2017

Max 241,086 107631 24372 79,139 36227
Min 502.58 148.61 199.53 261.7 219.85
Average 65,594 30,801 6708.9 18,163 10,889
SD 81,265 38,161 8659.8 25,979 14,097

2018

Max 258,848 106,452 23,651 79,590 36,936
Min 673.62 206.85 247.45 343.2 294.74
Average 65,714 33,937 6920.6 18,957 11,537
SD 83,607 40,183 8520.2 26,193 14,302

2019

Max 286,556 131,201 25,857 77,147 36,488
Min 1405.2 781.03 309 433.9 371.28
Average 67,640 38,142 7279 19,282 11,982
SD 90,056 46,119 8932.5 25,753 14,350

2020

Max 301,311 135,245 28,680 73,621 35,575
Min 1562.4 855.06 375.85 464.43 381.86
Average 70,426 42,140 7769.4 19,044 12,112
SD 93,872 50,497 9273.9 24,435 13,915

4.2. Pearson Correlation

Table 5 shows the calculated Pearson Correlation coefficient scores for 2017, 2018, 2019,
and 2020 in chronological order. A positive relationship requires Pearson test coefficients to
range from 0 to 1. The kind of parameters used as inputs and outputs significantly impact
the research’s outcomes and the quantity of the variables is essential. Another factor to
consider is that the required isotonicity in the relationship between the input and output
variables must be met before any DEA models can be used. As previously stated, each
increase in output variables must be accompanied by a rise in input variables. The study
data must be validated using a correlation test to meet this criterion, determining whether
the inputs and outputs are isotonic.

Table 5. Pearson Correlation coefficient of the period from 2017 to 2020.

Assets (A) Liabilities (L) Operating
Expenses (OE) Revenue (R) Gross Profit

(GP)

2017

A 1 0.7383 0.5247 0.4935 0.5565
L 0.7383 1 0.9493 0.9328 0.9486
OE 0.5247 0.9493 1 0.984 0.9931
R 0.4935 0.9328 0.984 1 0.9621
GP 0.5565 0.9486 0.9931 0.9621 1

2018

A 1 0.7821 0.4982 0.4692 0.5465
L 0.7821 1 0.9175 0.8944 0.9345
OE 0.4982 0.9175 1 0.9821 0.9947
R 0.4692 0.8944 0.9821 1 0.9632
GP 0.5465 0.9345 0.9947 0.9632 1

2019

A 1 0.8151 0.4626 0.4746 0.5206
L 0.8151 1 0.8748 0.8747 0.8802
OE 0.4626 0.8748 1 0.991 0.9844
R 0.4746 0.8747 0.991 1 0.9649
GP 0.5206 0.8802 0.9844 0.9649 1

2020

A 1 0.8551 0.4924 0.4918 0.5557
L 0.8551 1 0.842 0.8254 0.8538
OE 0.4924 0.842 1 0.9962 0.9657
R 0.4918 0.8254 0.9962 1 0.9646
GP 0.5557 0.8538 0.9657 0.9646 1
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4.3. Results of the Malmquist Model

The Malmquist productivity index (MPI) was utilized to assess the performance of
10 DMUS in this study. It is calculated as the sum of efficiency gains (catchup index) and
technological advancements (frontier shift index). The productivity grows over time (i.e.,
more output for the same or lower level of inputs) for any organization in the industry and
they may increase in technical efficiency (i.e., catch up with their borders) or technological
progress (i.e., the frontier is growing over time) or both. The original dataset from Morn-
ingstar.com for 2017–2020 is used as input for DEA-Malmquist. The findings are broken
down into three categories: catchup, frontier shift, and Malmquist.

4.3.1. Technical Efficiency Change (Catch up Index—CA)

Because of its three components: improvements in relative efficiency, technological
advancements, and productivity, the MPI is the most appropriate DEA model for evaluating
performance. The catchup index is the first component, indicating the relative efficiency
change between the two periods. The catchup index of each DMU can be seen in Table 6
for each period.

Table 6. Result of the DMUs’ Catchup Index (efficiency change) (2017–2020).

Catchup Company Name 2017 => 2018 2018 => 2019 2019 => 2020 Average

U1 Synopsys, Mountain View, CA, USA 0.9673 1.3722 0.9225 1.0873
U2 Palo Alto Networks, Santa Clara, CA, USA 0.8363 1.1374 0.8916 0.9551
U3 Oracle, Austin, TX, USA 1.0966 1.1686 1.2215 1.1622
U4 Microsoft, Redmond, WC, USA 1.3965 2.7213 0.9708 1.6962
U5 IBM, Arkmont, NY, USA 1.0318 0.7599 0.9868 0.9262
U6 BlackBerry Ltd., Waterloo, ON, Canada 0.7234 1.1676 0.8711 0.9207
U7 Cisco Systems Inc., San Jose, CA, USA 1.1558 1.26 1.0418 1.1525
U8 CyberArk, Newton, MA, USA 1.019 0.5431 0.9701 0.8441
U9 Fortinet, Sunnyvale, CA, USA 0.9588 0.9968 1.1405 1.032
U10 Juniper Networks, Sunnyvale, CA, USA 0.8874 0.9101 0.8871 0.8949

Average 1.0073 1.2037 0.9904 1.0671
Max 1.3965 2.7213 1.2215 1.6962
Min 0.7234 0.5431 0.8711 0.8441
SD 0.1857 0.5873 0.1148 0.2465

In 2017–2020, the Technical Efficiency Change (catchup index—CA) [7,36] was used to
access developments in the technical field of cybersecurity organizations. It also represents
the DMU’s efforts to improve efficiency. The performance assumptions for the catchup
index are as follows: Index scores larger than one (>1) indicate progressive efficiency,
whereas those less than one (<1) indicate non-progressive performance. The efficiency
change (catchup) of the 10 DMUs from 2017 to 2020 is shown in Table 6 and Figure 2. In
general, the technological effectiveness of all DMUS fluctuated during the 2017–2020 period.
The average CA of all DMUs in this period is 1.0671. The best efficiency performance was
U4 (Microsoft, Redmond, WC, USA) with CA = 1.6962, while the worst was U8 (CyberArk,
Newton, MA, USA) with CA = 0.8441. Especially from 2017 to 2018, five of the ten DMUs
met technical efficiency standards (average CA > 1). U4 (Microsoft) achieved the most,
with CA = 1.3965. On the other hand, U6 (BlackBerry Ltd., Waterloo, ON, Canada) had
the least effective technological capability with CA = 0.7234. The years 2018 and 2019
saw an increase in organizations’ technical improvements in efficiency compared to the
years 2017 and 2018. Five of the 10 DMUs were technically efficient (average CA > 1). The
most popular DMU, U4 (Microsoft, Redmond, WC, USA), exhibited incredible efficiency
performance with CA = 2.7213. Meanwhile, U8 (CyberArk, Newton, MA, USA) had the
least effective technological capability with CA = 0.5431.
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Figure 2. The technical Change (catchup) of DMUs (2017–2020).

Among those with scores below 1, the DMUs that showed low technical efficiency
in 2017–2018 (namely, U1—Synopsys, U2—Palo Alto Networks, U6—Blackberry, U9—
Fortinet, U—10 Jupiter), U1—Synopsys, U2—Palo Alto Networks, U6—Blackberry, and
U9—Fortinet have been able to return to the progressive state with CA > 1 in the next
period from 2018 to 2019 leaving U10—Jupiter Network below the 1.0 threshold. While
some companies perform notable improvement in efficiency, the 2019–2020 period has seen
a technical efficiency decrease in U5—IBM and U9—CyberArk (regressive with a score of
0.7599 and 0.5431).

In 2019–2020, only 3 out of 10 DMUS achieved technical efficiency (average CA > 1).
U3 (Oracle) is the most achieved with CA = 1.2215. Additionally, U6 (BlackBerry Ltd.,
Waterloo, ON, Canada) had the least effective technological capability with CA = 0.8711.
In particular, the remarkable improvement of U9 (Fortinet) must be included with the
technical efficiency with CA = 1.1405. During the 2019–2020 year, the giant U4—Microsoft
switched from being progressive to regressive, dropping dramatically from 2.7213 in 2018–
2019 to 0.9868 in 2019–2020. The big players such as U4—Microsoft must watch out since
the flexibility and adoption of new technology can provide huge advantages to smaller
companies such as U9—Fortinet.

Most of the index scores for 2019–2020 are slightly above and below the 1.0 threshold.
Due to a lack of planning, cybersecurity firms have been impacted by the pandemic
and the global economic downturn. Companies with poor performance should focus
on technological aspects to improve their market competitiveness. Developing internet
security solutions based on artificial intelligence (Al) platforms is a top priority for key
market companies [2,50–52].

4.3.2. Technological Change (Frontier Shift Index—FR)

Table 7 index scores describe the DMU’s response to technical changes over two time
periods and reveal how progressive or regressive a DMU is in the world of technological
improvements in the cybersecurity business, which could be applied for many fields which
were introduced in [47–50] and drones as well.
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Table 7. Technological Change (frontier shift index) of DMUs (2017–2020).

Frontier Company Name 2017 => 2018 2018 => 2019 2019 => 2020 Average

U1 Synopsys, Mountain View, CA, USA 0.9956 0.8995 0.917 0.9374
U2 Palo Alto Networks, Santa Clara, CA, USA 0.9843 0.9879 0.9556 0.9759
U3 Oracle, Austin, TX, USA 0.9096 0.9407 0.8672 0.9058
U4 Microsoft, Redmond, WC, USA 0.8376 0.7284 0.8369 0.801
U5 IBM, Armonk, NY, USA 1.0061 0.9666 0.8563 0.943
U6 BlackBerry Ltd., Waterloo, ON, Canada 0.9952 0.9905 0.8946 0.9601
U7 Cisco Systems Inc., San Jose, CA, USA 0.9203 0.9717 0.9767 0.9562
U8 CyberArk, Newton, MA, USA 0.989 1.0342 0.9216 0.9816
U9 Fortinet, Sunnyvale, CA, USA 0.9663 0.9934 0.9942 0.9846
U10 Juniper Networks, Sunnyvale, CA, USA 1.0111 1.0119 0.9432 0.9887

Average 0.9615 0.9525 0.9163 0.9434
Max 1.0111 1.0342 0.9942 0.9887
Min 0.8376 0.7284 0.8369 0.801
SD 0.0556 0.0871 0.0525 0.0562

As seen in Table 7, the first period, from 2017 to 2018, has been very challenging for
all the companies except for IBM and Jupiter Network, which progressively exhibited
efficiency despite less technological Change. However, in the second period, from 2018 to
2019, IBM’s frontier shift index (FR) declined while the FR of CyberArk increased. In this
period, most DMUs’ surges remained in the regress region (below the 1.0 threshold), with
negative results. The results during this period imply that all the cybersecurity companies
have not put enough effort into adapting to the changing technological environment.

Drone security technology has seen dramatic improvements between 2017 and 2020.
In 2017, the focus was on improving drone detection and identification capabilities, which
led to the developing of new sensors and better algorithms for analyzing data from those
sensors [53]. In 2018, the focus shifted to improving intercepting drones; further tracking
systems and better ways to disable drones were developed [54]. In 2019, the focus shifted
to improving the ability to defend against drone attacks and this improvement led to the
development of new countermeasures and better ways to protect against drones [55]. In
2020, the focus shifted to improving the ability to recover from an attack by drones, which
is a severe push to increase new recovery protocols and better ways to repair damage from
drones [13].

Figure 3 indicates that U1—Synopsys and U4—Microsoft show an inverted triangle. It
means that Synopsys and Microsoft have gained a very intensive effort in applying high
tech in this period compared to the previous period. Nevertheless, all DMUs could not
maintain the progressive status in terms of technology when all the FR are lower than
1 and U4—Microsoft has the worst efficiency performance with FR = 0.8369. Therefore,
companies need to put effort into a continuous investment, mainly in technological areas,
to increase their efficiency to correspond with the expansion of the present cybersecurity
industry.

4.3.3. Total Factor Productivity (Malmquist Index)

As evidenced by several other relevant examples in the literature about MPI’s usage
in efficiency analysis across a wide range of industries, this method can also be a valuable
tool in evaluating the performance of cybersecurity companies. The total productivity of
the DMU is calculated using the combined product of the catchup and frontier indexes. All
manufacturers’ overall performance regresses when the average MPI falls below the 1.0
criterion, as seen in Table 8.
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Figure 3. Technological Change (frontier shift) of DMUs (2017–2020).

Table 8. Malmquist productivity index of the DMUs from 2017 to 2020.

Malmquist Company Name 2017 => 2018 2018 => 2019 2019 => 2020 Average

U1 Synopsys, Mountain View, CA, USA 0.963 1.2342 0.8459 1.0144
U2 Palo Alto Networks, Santa Clara, CA, USA 0.8232 1.1237 0.852 0.933
U3 Oracle, Austin, TX, USA 0.9974 1.0993 1.0593 1.052
U4 Microsoft, Redmond, WC, USA 1.1697 1.9821 0.8124 1.3214
U5 IBM, Armonk, NY, USA 1.0382 0.7345 0.845 0.8725
U6 BlackBerry Ltd., Waterloo, ON, Canada 0.72 1.1564 0.7792 0.8852
U7 Cisco System Inc., San Jose, CA, USA 1.0636 1.2244 1.0176 1.1019
U8 CyberArk, Newton, MA, USA 1.0079 0.5617 0.894 0.8212
U9 Fortinet, Sunnyvale, CA, USA 0.9265 0.9902 1.1339 1.0168
U10 Juniper Networks, Sunnyvale, CA, USA 0.8972 0.9209 0.8367 0.885

Average 0.9607 1.1028 0.9076 0.9903
Max 1.1697 1.9821 1.1339 1.3214
Min 0.72 0.5617 0.7792 0.8212
SD 0.1273 0.3775 0.1192 0.1472

It can be observed in Figure 4 that even though the second period shows a significant
improvement, the influence on the overall operation is minor due to the low MPI in the
first and second periods. This conclusion, however, suggests that DMUs should focus on
adjusting to changes in technological aspects of cybersecurity, notably new trends and
innovations, to maintain productivity.
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4.4. DEA Window Analysis Results
4.4.1. Relative Efficiency Scores

The results of the DEA Malmquist model reflect the current operational picture of the
top 10 global cybersecurity companies after evaluating productiveness through changes
in efficiency scores (catchup index) and technological investment effects (frontier shift
index). The DEA Window model is used in this phase to rank the efficiency and inefficiency
scores of 10 DMUS for the 2017–2020 period. Window analysis is a powerful technique
for analyzing the relative efficiency of each DMU over a range of periods. The author
calculated the specific efficiency scores in each period using the two-window analysis in
this study. We chose to employ the two-window class to complement the results of the
window analysis with the Malmquist model. The excellent efficiency value in this analysis
is equal to 1.000. Unlike the Malmquist model, the values here will not exceed one and
correlate to relative efficiency. The comparable efficiency scores of the DMUs utilizing the
Window analysis are shown in Table 9.

Table 9. DMU efficiency scores based on DEA Window analysis using two years Window from 2017
to 2020.

DMU Company Name 2017–2018 2018–2019 2019–2020

U1 Synopsys, Mountain View, CA, USA 0.9465 0.9739 0.9729
U2 Palo Alto Networks, Santa Clara, CA, USA 0.7239 0.7288 0.6797
U3 Oracle, Austin, TX, USA 0.6998 0.8437 0.9274
U4 Microsoft, Redmond, WC, USA 0.7073 0.9414 0.9625
U5 IBM, Armonk, NY, USA 0.9899 0.9223 0.9336
U6 BlackBerry Ltd, Ontario, Canada 0.6624 0.6068 0.5889
U7 Cisco Systems Inc., San Jose, CA, USA 0.7783 0.9380 1.0000
U8 CyberArk, Newton, MA, USA 1.0000 0.8735 0.6986
U9 Fortinet, Sunnyvale, CA, USA 0.9883 1.0000 0.9678

U10 Juniper Networks, Sunnyvale, CA, USA 1.0000 0.9997 0.9619

Average 0.8496 0.8828 0.8693
Max 1.0000 1.0000 1.0000
Min 0.6624 0.6068 0.5889

The Window analysis results describe the relative efficiency of each DMUs. With scores
ranging from 0 to 1, the highest scorers mean performing highly efficiently during specific
periods. A 2-year window analysis was used to complement the 2-year configuration of
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the MPI results. These results are also to be able to compare the efficiency of an initial year
to the next one and the next one to the following year. The efficiency of each DMU will be
categorized into three, as shown in Table 10 below.

Table 10. Equivalent efficiency categories per range.

Efficiency Score Range Categories

0.9223–1.000 Highly Efficient
0.7239–09222 Moderately Efficient
0.7238 and below Least Efficient

The minimum to maximum values obtained during the first to last period the author
decided is used to create these categories and ranges. When looking at Table 10, certain com-
panies had excellent efficiency at one point in time. From 2017 to 2018, the U8—CyberArk
and DMU U10—Jupiter Networks had the best results. U9—Fortinet is exceptionally effi-
cient in the second period (2018–2019) and U7—Cisco is highly efficient in the third phase
(from 2019 to 2020). As DEA evaluates the whole ten companies, this suggests a balance
between input and output factors among these companies. Some DMUs are very efficient
for the first period, then rapidly drop to moderate efficiency and eventually to the least
efficient state. The efficiency scores of the DMUs can be seen fluctuating over time.

4.4.2. DMUs Efficiency Categories

To properly observe the status of the DMUs in different year periods. Table 11 will list
the DMUs according to their efficiency categories.

Table 11. List of companies per efficiency categories by year periods.

Year Period Least Efficient Moderately Efficient Highly Efficient

2017–2018

Microsoft, Redmond, WC, USA
Oracle, Austin, TX, USA

BlackBerry Ltd., Waterloo,
ON, Canada

Synopsys, Mountain View,
CA, USA

Cisco Systems Inc., San Jose,
CA, USA

Palo Alto Networks, Santa
Clara, CA, USA

CyberArk, Newton, MA, USA
Juniper Networks, Sunnyvale,

CA, USA
IBM, Armonk, NY, USA

Fortinet, Sunnyvale, CA, USA

2018–2019

Palo Alto Networks, Santa
Clara, CA, USA

BlackBerry Ltd., Waterloo,
ON, Canada

Oracle, Austin, TX, USA
CyberArk, Newton, MA, USA

Fortinet, Sunnyvale, CA, USA
Juniper Networks, Sunnyvale,

CA, USA
Synopsys, Mountain View,

CA, USA
Microsoft, Redmond, WC, USA

Cisco Systems Inc., San Jose,
CA, USA

IBM, Armonk, NY, USA

2019–2020

CyberArk, Newton, MA, USA
Palo Alto Networks, Santa

Clara, CA, USA
BlackBerry Ltd., Waterloo,

ON, Canada

Fortinet, Sunnyvale, CA, USA
Juniper Networks, Sunnyvale,

CA, USA
Synopsys, Mountain View,

CA, USA
Microsoft, Redmond, WC, USA

Cisco Systems Inc., San Jose,
CA, USA

IBM, Armonk, NY, USA
Oracle, Austin, TX, USA

As seen in Table 11, most cybersecurity companies are from moderately to highly
efficient during the first period. There were only three least efficient companies: Microsoft,
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Redmond, WC, USA; Oracle, Austin, TX, USA, and BlackBerry Ltd., Waterloo, ON, Canada.
It seems that the period from 2018 to 2019 was a good year for the cybersecurity industry.
From the second to the third period, there was a change in the performance of 10 DMUs.
Microsoft moved from the least efficiency to highly efficient group in 2018–2019, while
Palo Alto Networks fell to the least efficient list. From least efficient in 2016–2018, Oracle
jumped to the moderately efficient group in 2018–2019. CyberArk fell to moderate in the
second period from being previously highly efficient, while Synopsys and Cisco Systems
Inc. jumped up highly efficient in the last period.

Juniper Networks, IBM, and Fortinet were companies that could maintain their effi-
ciency categories. Table 11 shows the cybersecurity companies that offer consistency in
their efficiency categories.

CyberArk continues losing their efficiency score to the least efficiency during the
second to the third period from being highly efficient on the first. In contrast, Oracle contin-
uously improved efficiency from the least efficient in the 2017–2018 period to moderately
efficient in the 2018–2019 period and finally jumped to highly efficient in the third period,
2019–2020.

BlackBerry Ltd., Waterloo, ON, Canada which did not significantly improve its effi-
ciencies during the three periods, must focus on changing its handling of input factors to
produce more valuable outputs. The three companies that are on the list of highly efficient
ones (Juniper Networks, Sunnyvale, CA, USA; IBM, Armonk, NY, USA, and Fortinet,
Sunnyvale, CA, USA) must only need to maintain their current performance.

Figure 5 below shows the movement of the average relative efficiencies of the compa-
nies from the 10 DMUs during the three periods. Table 12 below lists the 10 DMUs and
arranges them according to their average efficiency scores.
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Figure 5. Comparative relative efficiencies of cybersecurity companies.

Table 12. Average efficiency scores of DMUs.

DMU Company Name Average Efficiency

U10 Juniper Networks, Sunnyvale, CA, USA 0.9735
U9 Fortinet, Sunnyvale, CA, USA 0.9693
U1 Synopsys, Mountain View, CA, USA 0.949
U5 IBM, Armonk, NY, USA 0.8893
U7 Cisco Systems Inc., San Jose, CA, USA 0.8574
U8 CyberArk, Newton, MA, USA 0.8275
U4 Microsoft, Redmond, WC, USA 0.7486
U3 Oracle, Austin, TX, USA 0.748
U2 Palo Alto Networks, Santa Clara, CA, USA 0.6831
U6 BlackBerry Ltd., Waterloo, ON, Canada 0.6162
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4.5. Relating Malmquist Productivity Index and Window Analysis Relative Efficiency

The final classifications of the ten cybersecurity companies were created using the
same efficiency categories used in the window analysis and the MPI conditions. Table 13
below shows a list of countries categorized according to their relative efficiency.

Table 13. List of DMUs’ efficiency levels and corresponding MPI conditions.

Highly Efficient and Progressive Highly Efficient but Regressive

U1—Synopsys, Mountain View, CA, USA;
U9—Fortinet, Sunnyvale, CA, USA U10—Juniper Networks, Sunnyvale, CA, USA

Moderately Efficient yet Progressive Moderately Efficient yet Regressive

U3—Oracle, Austin, TX, USA; U4—Microsoft,
Redmond, WC, USA U5—IBM, Armonk, NY, USA

Least Efficient, but Progressive Least Efficient and Regressive

-
U2—Palo Alto Networks, Santa Clara, CA,
USA; U6—BlackBerry Ltd., Waterloo,
ON, Canada

In the window analysis, U1—Synopsys and U9—Fortinet were successful in achieving
average high-efficiency scores and turned out to be progressive in compliance with their
average productivity index, as shown in Table 13. Synopsys and Fortinet established
important output factors while maintaining exceptional control over the input elements
by being highly efficient and progressive. This condition does not need to achieve perfect
efficiency over the three periods (if the efficiency scores are increasing and within the
range of 0.9223–1.000). However, U10—Juniper Networks proved highly efficient yet
regressive. This classification indicates that Juniper Networks can maintain an average
relative efficiency inside the highly efficient category despite three periods of decline.
Juniper Networks must improve the output factors while maintaining control over the
inputs, and this is to achieve any growth in relative efficiency and progress in the future.

Table 13 demonstrates that the U3—Oracle and the U4—Microsoft have remained
relatively efficient while also progressing. Based on these results, we can see that the
company’s average relative efficiencies are improving. We can also assume that if the
efficiency trend continues, Oracle and Microsoft will be classified as highly efficient in the
future. The second company in the moderately efficient group, U5—IBM also had moderate
relative efficiency, but it declined across three periods. If this company’s efficiency does not
increase in the future, it will be relegated to the data source’s least efficient category.

The least efficient and regressing companies include U2—Palo Alto Networks and
U6—BlackBerry Ltd., Waterloo, ON, Canada Their average relative efficiencies are equal to
or lower than the 0.7238 indexes, suggesting that they have a long road ahead to improving
their efficiency and strength. Consistent annual improvements in relative efficiency enable
it to become progressive and highly efficient.

5. Conclusions
5.1. Remarkable Conclusions and Findings

In this paper, we have thoroughly examined the effectiveness of the cybersecurity
sector and the steps that can be implemented to enhance drone security. The outcomes of
relative efficiency, change in relative efficiency over time, technological progress, and total
factor productivity of cybersecurity enterprises over four years are also illustrated in this
study. The findings suggest that many businesses may enhance their performance, particu-
larly relative efficiency, during periods of relative decline. This increase has the potential
to lead to technical improvement. The input variables include total assets, liabilities, and
operating expenses.
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In 2017–2020, 5 out of 10 companies are improving technical efficiency (U1, U3, U4,
U7, U9). Even if the sector is very competitive, technological growth in these areas must
continue and begin within the organization. Total factor productivity will result from the
combination of catchup and frontier efficiency. Because the idea of a productivity index
is the product of these two efficiencies, producers must be concerned about the balance
between these two efficiencies to obtain a progressive conclusion. U7—Cisco Systems Inc. is
the only firm with a productivity index greater than 1.0 during all the periods, according to
the Malmquist model’s results. Cisco Systems Inc. is the most reliable in terms of efficiency,
causing it to be the best among all.

We showed that if the same period frontier is used to start the window with the year in
issue, only gains in productivity can be recognized, resulting in lower efficiency scores than
before the increase. However, when the same temporal frontier is the window that ends
with the year in question, only efficiency declines are visible. Allowing the same period
frame to be specified by its middle year allows for detecting both gains and decreases
in production, but not differentiation. Second, we show that, when using DEA window
analysis scores, the traditional breakdown of the neighboring or base period Malmquist
index into the frontier shift and catching up effects is incorrect. When Malmquist indices
are calculated from DEA window scores, the high fluctuation in index values that are
typically observed is balanced out by the analysis’ inherent averaging, causing the index
values to be more credible, but at the expense of the decomposition property.

5.2. Main Limitation of the Approach

However, there are certain limitations that have been explored in this research. First,
the findings of this study are highly dependent on the value obtained from the collected
data on financial input and output variables. The quantitative data results might not
have been comparable or applicable to other industries, including those connected with
cybersecurity, such as 5G, machine learning, or cloud computing.

Secondly, it is important to note that while all units inside a window are compared
against each other, this method assumes that there are no technical differences between
them. This approach is a common issue in DEA window analysis and even worse when
combined with the Malmquist index technique used to estimate technological advance-
ments. This problem is reduced by using a restricted window width. The window width
should be chosen so that it is acceptable to believe that technical Change within each
window is insignificant for a DEA window analysis to produce reliable conclusions.

5.3. Future Research Suggestion

According to the original study direction, if this research direction is recommended to
continue in the future, the following paths will be proposed:

The first approach is that if the research focuses solely on the application aspect,
many additional things and regions can be explored. The second technique combines DEA
models with other forecasting models such as Grey or Fuzzy.

For future research on the same topic, the author recommends changing the input and
output components and comparing the results. In this manner, a more objective outcome
can be achieved. Other aspects, such as total units of production, undesirable factors, such
as recalled defective units and certain non-financial variables, can all be considered.

In addition, the DEA has various models available to be exploited and researched.
Future studies may dig into the DEA model’s algorithms to indicate and point out some
limitations in this study, such as the relationship between the number of inputs, outputs,
and DMUs. Additionally, they may answer how and why the input and output selection
affects DEA analysis results or to clarify some relatively abstract concepts in the analysis.
If the following articles are ready to dive deeper into this issue, it will be a fully qualified
study and an excellent potential option. A promising application could be employed for
drones to improve their security. It is clear that [56–60] proposed the possible applications
of our approaches.
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