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Abstract: Grazing is the most important and lowest cost means of livestock breeding. Because of
the sharp contradiction between the grassland ecosystem and livestock, the grassland ecosystem
has tended to degrade in past decades in China; therefore, the ecological balance of the grassland
has been seriously damaged. The implementation of grazing prohibition, rotational grazing and
the development of a large-scale breeding industry have not only ensured the supply of animal
husbandry products, but also promoted the restoration of the grassland ecosystem. For the large-scale
breeding industry, the animal welfare of livestock cannot be guaranteed due to the narrow and
crowded space, thus, the production of the breeding industry usually has lower competitiveness than
grazing. Disorderly grazing leads to grassland ecological crises; however, intelligent grazing can
not only ensure animal welfare, but also fully improve the competitiveness of livestock husbandry
products. Under the development of urbanization, the workforce engaged in grazing and breeding
in pastoral areas is gradually lost. Intelligent grazing breeding methods need to be developed and
popularized. This paper focuses on intelligent grazing, reviews grass remote sensing and aerial
seeding, wearable monitoring equipment of livestock, UAV monitoring and intelligent grazing robots,
and summarizes the development of intelligent grazing elements, exploring the new development
direction of automatic grazing management with the grazing robot at this stage.

Keywords: UAV; intelligent grazing; the forage remote sensing; perception and control of the
grazing robot

1. Introduction

China is rich in grassland resources. Livestock husbandry based on grassland re-
sources is an important part of agriculture. In recent years, the production of major
livestock products in China has shown an overall upward trend [1]. The year-end stock of
beef cattle has increased year by year from 88.35 million in 2016 to 102.16 million in 2022,
and beef production has shown a similar trend, increasing from 6.17 million tons in 2016 to
7.18 million tons in 2022. The production of mutton sheep fluctuated slightly, but overall
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showed an increasing trend, with the year-end inventory increasing from 299.31 million
in 2016 to 326.27 million in 2022. The production of pork has been greatly affected by the
African swine fever situation. The year-end stock of live pigs decreased from 442.09 million
in 2016 to 310.41 million in 2019, and gradually rebounded, reaching 452.56 million in
2022. Pork production also showed a similar trend of change during this period, decreasing
from 54.26 million tons in 2016 to 42.55 million tons in 2019, and gradually increasing
until reaching 55.41 million tons in 2022 [2,3]. The current development of the livestock
industry can hardly meet people’s needs in terms of quantity and quality and cannot keep
up with the development of the times. Firstly, at the level of the ecological environment,
the development of animal husbandry is inefficient, leading to waste of resources, envi-
ronmental pollution and serious ecological problems. Secondly, at the level of ecological
carrying capacity, especially in grassland pasture areas, the scale of animal husbandry
production is expanding in a disorderly manner, and the livestock carrying capacity in the
region seriously exceeds the ecological carrying capacity of the grassland, resulting in the
phenomenon of grassland overgrazing [4]. For example, due to unscientific grazing by
pastoralists, pastures are degraded and land is exposed. At the same time, animals stam-
pede on the soil, promoting land erosion and exacerbating soil desertification. According
to survey data, the underground biomass of the light pastoral area is 497 g/m2 and the
above-ground biomass is 275 g/m2; the underground biomass of the over-pastoral area
is 203 g/m2, which is 40.85% of the light pastoral area; the above-ground biomass of the
over-pastoral area is 85 g/m2, which is only 30.91% of the light pastoral area. It can be
seen from this that with the increase in grazing intensity, both above-ground biomass and
underground biomass will be greatly reduced. The emergence of this phenomenon has
brought serious grassland ecological environmental problems [5].

Behind the steady progress of the “Grain for Green Project”, the livestock industry
plays an important role in relieving the sharp contradiction between grassland ecosystem
and livestock. The breeding industry has standardized production objectives and high-tech
facility technology, which can alleviate the crisis of resource poverty, reduce heavy manual
labor and improve production efficiency [6,7]. With the development of large-scale facilities
in the breeding industry, the indoor breeding method has led to a series of problems,
such as antibiotic abuse and low animal welfare [8]. Compared with grazing, indoor
breeding suffers with narrow spaces and noise, so that livestock can easily be in a sub-
health state. Barn feeding not only increases the cost of livestock health maintenance, but
also increases the risk of livestock diseases [9]. Raising livestock by grazing can effectively
improve the production quality of livestock husbandry [10]. As in the old saying in China,
“More grazing outdoor, less diseases and joy livestock”, under good ecological conditions,
grazing breeding stock has great advantages over barn feeding, it is has also the lowest
cost and is the most economical breeding method for the effective utilization of a large
area of natural grassland in China [11,12]. However, in past decades, livestock husbandry
production only paid attention to quantity and did not pay attention to quality, resulting in
the serious overload of the grassland ecosystem. The fundamental reason is the deficiency
in grassland ecological environment information and management, such as the forage yield
information, which results in mistakes in estimating livestock carrying capacity and grazing
planning [13]. Moreover, the “Crop, Forage and Cash crop” balance rotation would help
grass self-support and reduce forage imports [14]. With the advancement in urbanization,
more and more herdsmen choose to live in cities. The urbanization of pastoral areas
promotes the transformation of herdsmen’s livelihood, reduces the population of herdsmen
and the livestock quantity, and indirectly protects the ecological environment of grassland
in China. However, due to the financial burden and other reasons, many herdsmen still
retain livestock in the pastoral area and the livestock are taken care of by family and
friends or management who are hired to raise them, resulting in the reduction in herdsmen
who are full-time engaged in animal husbandry and the concentration of livestock in the
pastoral area [15–17]. Facing the above problems, the development of intelligent grazing is
a new idea. Intelligent grazing is a new livestock husbandry development mode based on
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obtaining multi-source information, the “grazing + supplementary feeding” is the main
breeding method, ecological balance is the goal, and an intelligent grazing management
and control platform around a grazing robot is the technology platform [18]. At present,
there is no systematic and mature intelligent grazing system in China or other countries.
In the guide to the key special project of “breeding of new livestock and poultry varieties
and scientific and technological innovation of modern pasture” in the 14th five-year plan
National Key R&D Program of China, “key technologies of intelligent grazing of natural
grassland and precise control of grass and livestock” is the systematic exploration for
intelligent grazing [19]. At present, some key technologies for intelligent grazing have
been matured and are widely employed in many applications. How to complete an
intelligent grazing systematically is the main goal of this paper. Therefore, this paper will
summarize the mature and widely used intelligent grazing technology and discuss the
development direction of intelligent grazing. In this paper, the foundation of intelligent
grazing is the information, which contains the grassland information from remote sensing,
the position information of the livestock herd, the health condition information of each
livestock. Aiming at how a UAV (Unmanned Aerial Vehicle) attracts sheep to move
directionally, the research idea of “positive reinforcement” of Harper Adams University is
adopted [20]. As shown in Figure 1, the salt brick is mounted on the UAV, which attracts the
leader of the sheep and the flock to move in a planned direction. After a period of training
of the reward mechanism, the leader of the sheep can establish a positive relationship with
the leading UAV carrying the salt brick so that the flock follows the planned flight path of
the UAV for grazing.

Drones 2023, 7, x 3 of 31 
 

tration of livestock in the pastoral area [15–17]. Facing the above problems, the develop-

ment of intelligent grazing is a new idea. Intelligent grazing is a new livestock husbandry 

development mode based on obtaining multi-source information, the “grazing + supple-

mentary feeding” is the main breeding method, ecological balance is the goal, and an in-

telligent grazing management and control platform around a grazing robot is the technol-

ogy platform [18]. At present, there is no systematic and mature intelligent grazing system 

in China or other countries. In the guide to the key special project of “breeding of new 

livestock and poultry varieties and scientific and technological innovation of modern pas-

ture” in the 14th five-year plan National Key R&D Program of China, “key technologies 

of intelligent grazing of natural grassland and precise control of grass and livestock” is 

the systematic exploration for intelligent grazing [19]. At present, some key technologies 

for intelligent grazing have been matured and are widely employed in many applications. 

How to complete an intelligent grazing systematically is the main goal of this paper. 

Therefore, this paper will summarize the mature and widely used intelligent grazing tech-

nology and discuss the development direction of intelligent grazing. In this paper, the 

foundation of intelligent grazing is the information, which contains the grassland infor-

mation from remote sensing, the position information of the livestock herd, the health 

condition information of each livestock. Aiming at how a UAV (Unmanned Aerial Vehicle) 

attracts sheep to move directionally, the research idea of “positive reinforcement” of Har-

per Adams University is adopted [20]. As shown in Figure 1, the salt brick is mounted on 

the UAV, which attracts the leader of the sheep and the flock to move in a planned direc-

tion. After a period of training of the reward mechanism, the leader of the sheep can es-

tablish a positive relationship with the leading UAV carrying the salt brick so that the flock 

follows the planned flight path of the UAV for grazing. 

 

Figure 1. The schematic diagram of UAV carrying a salt brick to attract sheep to move in the planned 

direction. 

In this paper, the research and dynamic comparative analysis of key technologies for 

intelligent grazing in China and other countries are presented. Then, this paper further 

focuses on intelligent grazing, reviews from grass remote sensing and aerial seeding, 

wearable monitoring equipment of livestock, UAV monitoring and intelligent grazing ro-

bots, and summarizes the current development of intelligent grazing elements, explores 

the new development direction of automatic grazing management with grazing robots 

and proposes an intelligent grazing strategy with “Remote sensing, herd perception, guid-

ance and control “ as the core content. The main contributions summarized are as follows: 

(1) Aiming at the problems of the extensive area of natural grassland and fragile ecol-

ogy in China, based on the research ideas of “remote sensing of pastoral areas, herd per-

ception and guidance, health monitoring, periodic grazing track planning and control”, a 

new model of integration of grazing and detection based on UAV formation is proposed. 

Figure 1. The schematic diagram of UAV carrying a salt brick to attract sheep to move in the
planned direction.

In this paper, the research and dynamic comparative analysis of key technologies for
intelligent grazing in China and other countries are presented. Then, this paper further
focuses on intelligent grazing, reviews from grass remote sensing and aerial seeding,
wearable monitoring equipment of livestock, UAV monitoring and intelligent grazing
robots, and summarizes the current development of intelligent grazing elements, explores
the new development direction of automatic grazing management with grazing robots and
proposes an intelligent grazing strategy with “Remote sensing, herd perception, guidance
and control “ as the core content. The main contributions summarized are as follows:

(1) Aiming at the problems of the extensive area of natural grassland and fragile
ecology in China, based on the research ideas of “remote sensing of pastoral areas, herd
perception and guidance, health monitoring, periodic grazing track planning and control”,
a new model of integration of grazing and detection based on UAV formation is proposed.

(2) This paper analyzes the key technologies of intelligent grazing and proposes a
detailed technical framework and implementation route, which include the remote sensing
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technology of UAVs in grazing areas, comprehensive monitoring of UAVs for the herds,
the cyclical grazing path planning of UAVs, the formation tracking and surround control of
UAVs, and other core technologies.

(3) Based on the constructed technical framework, this paper proposes a grid grazing
area comprehensive classification method with multi-source data fusion and inversion of
biomass information based on the self-learning model of scarce samples, designs the pas-
toral area perception technology based on deep learning and hybrid-driven key individual
tracking, and introduces biological/abiotic hybrid formation control technology.

2. Dynamic Comparative Analysis of Intelligent Grazing Technology in China and
Other Countries
2.1. Pasture Remote Sensing and Grassland Ecological Maintenance Technology

Remote sensing is the most common way of monitoring the ecological environment and
agricultural information, crop information acquisition and phenotypic detection [21–23]. For
different remote-sensing scales, different data sources and remote sensing platforms could
be selected, such as ground-based sensors, medium and small-scale UAVs, manned aircrafts,
and satellites. For pasture remote sensing, because of the short harvest period, for obtaining
data of different growth periods, the attendance and adaptability show higher priority
in platform selection [24–26]. Ref. [26] achieved the remote sensing of weed invasion in
alfalfa based on multispectral sensor and UAVs; the herbicide spray management could
be concluded by the remote sensing results. Ref. [27] analyzed hundreds of crop pheno-
types through the indices of biomass yield, plant height, NDVI (normalized difference
vegetation index), leaf area index and ground coverage, all of the data are obtained by
UAVs. Considering the interactive influence of natural grassland and grazing process on
the utilization of natural grassland, Ref. [28] used GNSS equipment as the acquisition tool
for grazing data, through the study of grazing temporal and spatial trajectory data, the
temporal and spatial evolution mode of livestock feeding behavior were obtained, also the
growth of natural grassland vegetation in combination with the existing natural grassland
UAV remote-sensing estimation model were obtained, and then the livestock feeding and
natural grassland grass were integrated and the utilization of natural grassland was evalu-
ated according to the index above. Ref. [29] employed a UAV only equipped with a digital
camera for a regression model of grassland vegetation coverage obtaining with parts of
existing remote sensing data, the dynamic characteristics of grassland coverage during the
growing season were analyzed by the obtained model. The RGB-D reconstruction method
was used in Ref. [30] for plant height and biomass monitoring; furthermore, the difference
between UAV-based RGB-D reconstruction and ground-based RGB-D reconstruction was
discussed in application view. Tang et al. [31] focused on the phenotype modeling of alfalfa
and the evaluation of model accuracy was carried out by UAV-based multispectral remote
sensing in multiple test fields. In [32], the unmanned aerial vehicle remote sensing platform
was used to collect the multi-spectral images of the experimental field and identify the
sunflower growth period based on the different population features during its different
growth periods. All of the UAV-based remote sensing methods above take full advantage
of high attendance, high resolution, which are key elements for high frequency monitoring
in the short growth cycle of pasture.

For intelligent grazing, pasture ecological maintenance technology is aimed at the
degradation and restoration of pasture ecosystem and improving the primary productivity
of pasture. It can be mainly divided into natural regulation and restoration means relying
on the self-restoration ability of grassland ecosystem and auxiliary restoration means of
manual intervention. For the natural self-restoration, there are mainly grazing prohibi-
tion, regional rotation grazing, etc., and for the auxiliary restoration means of manual
intervention, there are mainly root cutting and loosening, grassland fertilization, forage
supplementary seeding, etc. For natural self-restoration, Liu et al. [33] showed that under
the condition of appropriate livestock carrying capacity, the restoration of natural condi-
tions such as vegetation coverage can be realized through natural self-restoration without
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affecting the composition of the vegetation. Similarly, the research of Neilly et al. [34]
shows that natural self-restoration can ensure the recovery of vegetation coverage after
grazing stopped, but it cannot meet the requirements of rapid recovery. Therefore, human
intervention for grassland biomass recovery in pastoral areas is necessary for intelligent
grazing. Connor [35] et al. showed that under the condition of long-term grazing pro-
hibition, the grassland ecology can be significantly improved, even for grassland with
serious degradation. However, in the short term, only the restoration method with reduced
grazing intensity as the core has little effect on the grassland improvement in the short
term, which also proves the importance of human intervention for the short-term grass-
land ecosystem restoration. The research of Hailey et al. [36] showed that for grassland
ecosystems with different ecological conditions and grazing intensity, the grassland eco-
logical restoration period is expected to be 6 to 16 years without manual intervention for
grassland management.

These research studies show that grazing prohibition, rotational grazing and other
means need to be carried out under regular planning. For grazing prohibition, Poren-
sky et al. [37] studied the impact of rotational grazing in cold and warm seasons on grass-
land restoration. The cold season is more sensitive to the frequency of rotational grazing.
For rotational grazing management, regular time management can maintain the balance be-
tween grass and livestock in the long-term process. For rotational grazing, Mosier et al. [38]
pointed out that under the conditions of high-density breeding and grazing, the efficiency
of nitrogen and carbon fixation of rotational grazing is higher than that of default grazing.
The key to rotational grazing is the accurate acquisition of pasture information.

Manual intervention combined with natural regulation can often obtain better results.
The research of Davidson et al. [39] showed that for grassland ecological restoration, the
introduction of appropriate plants can improve the effect of grassland restoration. Similarly,
for the management of intelligent pasture, appropriate different forage combinations can
improve the yield of pasture. Wang et al. [40] analyzed the soil’s physical and chemical
properties, soil biological communities, and the interaction between vegetation and soil of
overgrazing grassland and concluded that good grazing management and human interven-
tion can indirectly promote the restoration of grassland ecological capacity and improve
the capacity of nitrogen and carbon fixation. Mesiga et al. [41] studied the distribution of
nitrogen and phosphorus in grassland roots in different soil layers, providing a theoretical
basis for specific grassland fertilization and improvement methods. Similarly, for the the-
oretical basis of forage fertilization, the research of Sun et al. [42] showed that the effect
of magnesium on forage photosynthesis depends on the content of soil nitrogen. Once
the soil’s condition requirement is met, magnesium can effectively promote the efficiency
of forage photosynthesis. The authors of [43] studied the root soil complex system in
grassland ecosystems in detail and found that this system has an important contribution to
grassland biodiversity. The study of the root soil complex is the key to increasing forage
yield. Li et al. [44] designed a soil breaking and root cutting machine, for increasing grass-
land iteration through root cutting to increase forage yield. Zhang et al. [45] showed that
compared with grazing, cutting promoted the decomposition of ground and root litter and
promoted the growth of forage in the next year, and the forage harvested by cutting can be
used for supplementary feeding, further increasing the yield of grassland forage.

2.2. Research on the Development of Intelligent Grazing

UAV-based intelligent grazing involves remote sensing, perception, guidance, control
and other fields. Firstly, it needs to classify the grazing area to plan the grazing path. The
classification of forage remote sensing images is based on deep learning, but the datasets
of remote sensing images of pasture are insufficient. In order to solve the problem of
insufficiency of training samples in remote sensing image classification based on deep
learning, Rao et al. [46] proposed a spatial spectral relationship network (SS-RN) with
limited training samples for hyperspectral classification to solve this problem. However, in
the sample preprocessing stage, the method is complex, and the effect is general in solving
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the classification accuracy of scarce samples. In order to solve the problem of shortages of
training sets, a model using the meta learning method is proposed in the intelligent grazing.
The model can train the classifier from a small number of samples, and the knowledge
learned from a dataset can easily adapt to a new dataset, and in an intelligent grazing
strategy, using few-shot learning based on model-agnostic meta-learning (MAML) can not
only solve the problem of scarcity of samples, but also have a good accuracy effect.

For the estimation of the natural grassland biomass of pasture, Sun et al. [47] used
multi-rotor UAVs to obtain high-resolution multispectral images; thus, combined with the
measured ground data, the estimation model of biomass and multi vegetation index was
carried out by the regression analysis method based on the correlation analysis between the
natural grassland aboveground biomass and the vegetation index. However, the biomass
information is simple due to the complex structure of the sampling location, whether
there is solar radiation deviation or certain information error. Zolkos et al. [48] compared
different remote sensing ways of calculating ground biomass. Compared with other
optical-based methods, it is concluded that the calculation of ground biomass based on an
airborne LiDAR sensor is the most accurate, and the model obtained by integrating optical
information and LiDAR information is more valuable for the estimation of data of the
ground biomass. For the future intelligent development strategy, it is proposed to integrate
the amount of multi-source data information, including airborne LiDAR and airborne
multispectral image. The multispectral image is used for radiation correction to obtain the
radiation correction model to eliminate the impact caused by solar radiation. At the same
time, the LiDAR data are introduced to obtain the vegetation canopy height information.
Combined with the airborne remote-sensing image data fusion, the model is established to
discover the inversion model of grassland biomass and chlorophyll content, and, thus, the
grassland biomass and chlorophyll content of the whole pastoral area are obtained. The
method of multi-source data fusion can enrich the means of information acquisition, and
the inversion of pasture remote-sensing information obtained from multiple channels can
greatly improve the data accuracy of biomass estimation, so that its effect is also better.

Using intelligent grazing UAVs needs to complete herd perception, group counting
and key individual perception of these three aspects of work. Han et al. [49] used a
convolutional neural network to develop a herd detection method based on UAV remote
sensing images. Taking Qinghai yak as the detection object, they solved the problems of
difficult detection and low detection accuracy of large-scale grazing herds. Among them,
UAV high-resolution remote sensing images and aerial view fields provided excellent
detection conditions. Rivas et al. [50] developed a herd detection algorithm based on
convolutional neural networks. The herd behavior is quite different from sheep, and
the herd formation behavior is scattered, which is of significance for the perception of
herd behavior. Similarly, Barbedo et al. [51] also studied herd detection based on a UAV
platform. Barbedo et al. systematically explored various methods based on convolution
neural networks and compared the detection effects of various methods in detail. The
above three researchers have two things in common. The first is to conduct further research
with the help of a UAV platform. The second is that they all apply their methods based
on convolutional neural networks. Overall, both in China and abroad, many researchers
have used convolutional neural networks to realize herd monitoring. The research of
Barbedo et al. has shown that convolutional neural networks can realize stable and reliable
herd detection after training with massive quantities of data. However, the method of
obtaining high-resolution image information and convolution operation is completely
adopted, which is simplistic. Sufficient samples are needed for training to obtain a better
model. Therefore, for herd perception and group counting, the multi-source data fusion
for scene segmentation and target tracking is necessary. Through the fusion of RGB
three channel high-resolution herd information and herd high-resolution infrared image
data, the scene is segmented to obtain the boundary position of the herd. At the same
time, the attention mechanism is introduced to improve the segmentation accuracy. The
thermal infrared image can eliminate the biological segmentation data through temperature
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threshold and reduce the computational power of the training model accordingly. The
classification by using the herd body temperature and the classifier can further limit the
overall noise of the perception system, to achieve accurate and stable herd flexible-group
behavior perception. At the same time, the attention mechanism in deep learning can better
extract the accuracy of scene segmentation. The model should be lightweight, and the
method of transfer learning is used to count the specific herds using the thermal infrared
images of herds.

For the perception of key individuals, such as leading sheep, wearing a special po-
sitioning sensor can obtain the most accurate position. Li et al. [52] used a 202 g satellite
positioning module to locate sheep. The sampling period was 3 min, randomly selected
10 representative sheep for tracking statistics, and statistically analyzed the relationship
between sheep behavior and walking speed during grazing. Among them, the accuracy of
satellite positioning module cannot ensure accurate positioning. The sampling frequency
is too low to achieve the goal of real-time grazing. Hu et al. [53] used radio frequency
identification (RFID) as an electronic tag to cooperate with the UAV to detect herds. The
UAV acts as a relay station to receive the data of the electronic tag and collect the return
information of the electronic tag according to the given trajectory to determine the indi-
vidual position. The above two researchers used the method of a communication module
for livestock positioning, which improved the stability in low-sampling frequency. For the
intelligent grazing of UAV formation, the frequency requirements in the grazing process are
high, and the tradeoff between stability and frequency should be considered in application.
The detection-based method mainly focuses on the individual semantic information, and
pays less attention to the individual’s position, speed and other motion information [54].
Without this part of information, it is impossible to attract or drive the head sheep or strag-
glers. Therefore, in the future development strategy, the method of target tracking is used
for key individual perception. Compared with the detection-based method, the tracking
method based on convolutional neural networks has the characteristics of high coupling of
adjacent periodic target motion information and strong anti-interference. It is suitable for
the tracking of key individuals. For straggling sheep, the single UAV spiral half-enclosure
technique is used to guide them into the group. Compared with the formation straggling
guiding, it effectively reduces the number of UAVs and improves efficiency.

Aiming at the path-planning problem of UAVs, according to the task requirements
and a certain planning algorithm, allows the optimal flight path to guide the UAVs to be
generated [55]. Among them, the task allocation and path planning of the UAV are the
most important requirements in its operation [56]. The task allocation problem is a complex
combinatorial optimization problem (NP hard). At present, the models established by
researchers according to task allocation generally include the traveling salesman model [57],
vehicle routing model [58] and the extension of these two models [59]. In application, if
there are priority constraints in the traveling salesman model, the problem will become a
more complex traveling salesman problem with priority constraints (TSP-PC), TSP-PC is
a special case included in a TSP problem, a TSP-PC problem also belongs to an NP hard
problem. Mingozzi et al. [60] added time window and related priority constraints when
studying the TSP problem and obtained a dynamic programming algorithm. When solving
the TSP-PC with a genetic algorithm, Moon et al. [61] proposed a prioritization method
and a new crossover operator method to increase the diversity of solutions. Appropriate
environment modeling can greatly enhance the path planning ability of the UAV. In envi-
ronmental modeling, the grid method is a high-efficiency method, which cuts the flight
environment of UAV into a series of grid areas of the same size and connected with each
other, and each grid area corresponds to the corresponding information. Yuan et al. [62]
proposed the improved A* algorithm to optimize the nodes of the path in the static envi-
ronment with obstacles of different sizes, and finally solve the optimal and safest trajectory
path. The Dijkstra algorithm is generally employed for solving in the static environment.
This algorithm has a large search area priority [63]. Yu et al. [64] proposed an improved
algorithm based on Dijkstra and realized global path planning in the static environment,
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but there was a problem of slow searches in the local path, so it was difficult to quickly solve
an optimal path without obstacles. Liu et al. [65] used the improved ant colony algorithm
to combine pheromone diffusion and geometric local optimization in the process of finding
the global optimal path, but a large amount of data should be stored in the search process.
Based on this, the future development strategy was devised, of intelligent grazing plans
to divide the grassland into different levels of playground areas, in which the grassland
area with the lowest level is set as an obstacle area, and UAVs are prohibited from driving
sheep in this area, so as to achieve the purpose of ecological restoration in the pastoral area.
According to the growth of grassland grass resources and the comprehensive analysis of
herding activities, the corresponding grazing path also changes with the change in date and
season. Therefore, after setting several grazing paths and giving corresponding different
constraints, the path is transformed into a multi-constraint optimal path control problem
in a static environment. Finally, the sparrow search algorithm is used to find the global
optimal path. Compared with other algorithms, it has very good abilities in global search
and local development, takes all factors in the population into account, can take all factors
in the population into account, it can make the sparrow in the population move to the
global optimal value and can quickly converge near the optimal value, which is suitable for
the path planning of pasture.

Next, we need to control the UAV formation to surround the herd and move according
to the preset path, which means the trajectory tracking problem. The problem of trajectory
tracking has a long history. Its core idea is to design a trajectory tracking controller to make
the agent track the preset trajectory. At present, PID [66], backstepping control [67,68],
sliding mode control [68–71] and model predictive control [72,73] are widely used. PID
control is stable and widely used, but the UAVs’ formation control requires high accuracy,
and there is a time-varying time delay in the system, which is difficult to be effectively con-
trolled. Although the robustness of the system is considered in sliding mode control, there
are many occasions requiring curve fitting on the whole sliding mode surface, resulting in
the complexity of the system. The control method based on model predictive control of
the system through multiple iterations takes the optimal control quantity in each iteration,
so that the system can have strong robustness and avoid the complexity of the algorithm.
Zhou et al. [74] studied the trajectory tracking of time invariant formation according to
the nonlinear model predictive controller and considered the collision avoidance problem
as one of the performance indices. Therefore, in the future intelligent grazing strategy,
a distributed consistency protocol is adopted for the control of formation. Based on the
tracking and guidance of herds, a practical problem that needs to be considered is the
time delay between formations, which will lead to communication obstruction and even
UAV collision and crash. In order to prove that the system can converge only when there
is time delay, it is necessary to construct an appropriate Lyapunov–Krasovskii function
and deal with it appropriately to obtain the necessary and sufficient conditions for system
stability [75]. Considering that the scale of herds is constantly changing, the corresponding
formation type also needs to change in real time. Mu et al. [76] used a multi-agent system to
consider time-varying delay and time-varying formation at the same time and completed
the encirclement of the target.

However, the above consistency protocol does not take into account the problem of
collision avoidance within the formation. The decentralized method is widely used in
UAV cluster collision avoidance and obstacle avoidance [77]. The decentralized method
means that there is neither a control center nor information interaction with surrounding
UAVs in a multi-UAV formation, and the formation is controlled only through the relative
relationship with specific points in the formation. The artificial potential field method is
a kind of decentralized method. By defining the equations of gravity and repulsion, the
robot can move away from other robots or obstacles and move towards the target point
at the same time. Liu et al. [78] proposed a UAV collision avoidance algorithm based
on reinforcement learning, to approach the global optimal obstacle avoidance path in an
unknown environment, to ensure that the UAV can quickly approach the target while
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avoiding obstacles. In the future intelligent grazing strategy, the speed collision avoidance
method is proposed to study the collision avoidance problem. The concept of a speed
obstacle is given in the speed plane of the robot. According to the speed of other robots,
an allowable speed half plane is deduced for each robot, and the optimal speed is selected
by linear planning to ensure collision avoidance. The height of the UAV is controlled by a
PID controller to realize three-dimensional collision avoidance, and the physical simulation
is carried out by using multiple four rotor UAVs to better solve the obstacle avoidance
problem inside the formation.

3. The Intelligent Grazing Development Strategy

The intelligent grazing development strategy will focus on improving the meat quality
of the livestock in animal husbandry and sustainable development of grassland ecosystems
as the main line of strategic research in the future. Aiming at the problems of the large and
wide area of natural grassland and fragile ecology in China, in the future, the intelligent
grazing development strategy will be implemented, and the automatic grazing manage-
ment mode with grazing robots as the core will become a new development direction
and a new model of integrated grazing and monitoring based on UAV formation will be
established. The intelligent closed-loop thinking frame of the grazing is shown in Figure 2.
According to the research ideas of “remote sensing of pastoral areas, herd perception and
guidance, health monitoring, periodic grazing track planning and control”, a new model of
integration of grazing and detection based on UAV formation will be established. Airborne
LiDAR data are fused with the multispectral images of radiometric correction. Based on
physiological and biochemical indices and the structural characteristics such as vegetation
canopy height, the grassland biomass in pastoral areas is inversed to evaluate the grass
grades. An autonomous learning model based on scarce samples is introduced to predict
pasture grades in rasterized grazing areas. Aiming at the herd perception and comprehen-
sive health monitoring, firstly, a sufficient quantity of herd behavior data are collected, that
is, the flexible herd behavior of herds under various influencing factors such as driving and
attraction. The data form is RGB three-channel high-resolution image data and multi-source
remote sensing data of herds, such as high-resolution thermal infrared image data. On this
basis, a scene segmentation algorithm driven by multi-source data is developed, focusing
on the movement change information of herds and the flexible boundary information of
herds. Secondly, wearable devices based on deep learning classification and recognition
are used for the sheep to sense and monitor individual behavior and the comprehensive
monitoring of body temperature is completed with infrared equipment. At the same time,
the hybrid-driven target-tracking algorithm is used to realize the perception of key indi-
viduals. And the hybrid driving guidance law is further designed to realize the tracking
of stragglers by redundant UAVs. Aiming at cycle grazing path planning, the grazing
area is divided into different comprehensive grades according to the richness of rasterized
pasture, density and linear distance to the sheepfold. Then, the sheep dynamic counting,
rational grazing capacity and other sensing monitoring are combined to determine the
periodic grazing program. The grazing environment model is designed according to dif-
ferent scales of herds, obstacles and water sources. After considering the single-day path
shortest constraint and the cycle path shortest constraint, the metaheuristic algorithm is
used to realize the optimal planning of the cycle grazing trajectory. At the same time, for the
areas with insufficient forage biomass detected by multi-source fusion data, UAVs are used
for herbicide spraying, mixed sowing of high-quality forage, no-tillage seeding of forage,
reseeding and restoring the degraded grassland, so as to solve the forage supply problem in
grazing areas. Finally, in order to reproduce the constrained grazing trajectories of the herd,
a stepping trajectory tracker of the herd is designed based on the periodic grazing track,
leader position, herd boundary and stragglers. At the same time, the Active Disturbance
Rejection Control based on indirect iterative learning is used to optimize the tracking
controller and improve the anti-interference ability. For the straggler individuals, the single
UAV spiral half-surrounded driving strategy is adopted to guide straggler individuals
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to regroup. Finally, a speed collision avoidance algorithm and time-varying formation
consistency protocol are introduced to improve the robustness of UAVs formation. For the
flight distance of UAVs, the intelligent grazing strategy proposed in this paper plans to use
UAVs with long endurance flight capability, such as fuel–electric hybrid UAVs, hydrogen
fuel cell UAVs, etc., to improve the flight distance and flight time of UAVs through energy
supplements (such as charging, refueling, replacing hydrogen storage tanks, etc.) during
flight. Based on the above method, the closed-loop intelligent grazing ecosystem strategy
is constructed and the natural grazing means by combining the sky and land is formed
to achieve the automatic monitoring, digital pen, intelligent grazing, perceived herd, the
control technology platform of the information feedback interactive grazing management
function, the enrichment of the application field of the UAV formation, improvement in the
level of animal husbandry intelligence and achieve the future healthy ecosystem grazing
requirements of intelligence and high quality.
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The proposed intelligent grazing strategy has potential advantages such as driving
the regional economy, protecting the grassland ecological environment, safeguarding peo-
ple’s livelihood in pastoral areas and can stimulate overcompensation growth of plants,
effectively improving grassland ecology. This strategy can help farmers manage large
grasslands or pastures, automatically monitor livestock movements, health status, dietary
status, etc., provide more accurate data and decision support, and improve grazing effi-
ciency and output. It can also reduce labor costs and labor demand. Traditional grazing
requires farmers to supervise livestock activities for a long time, and intelligent unmanned
grazing systems can replace heavy work, thus reducing labor burden. At the same time,
the proposed strategy helps to improve the sustainable use and protection of grasslands.
By precisely controlling the grazing range and time of livestock, combined with reasonable
rotational grazing management, overgrazing and destruction of grassland can be avoided,
which helps maintain the balance of nature of grassland, promote the recovery and growth
of vegetation and reduce the risk of water and soil loss and environmental pollution.

4. Key Technologies of the Intelligent Grazing
4.1. The Remote Sensing of the Feeding Area Using the Sensing UAV to Solve the Perception
Problem of Grazing Area and the Evaluation Technique of the Pasture Grade

In the process of obtaining remote sensing images by UAVs, external factors will
inevitably cause image distortion, resulting in sample difference in different periods of
pasture grade evaluation. Therefore, based on airborne multispectral data, the multispectral
image is used for radiation correction to obtain the radiation correction model to eliminate
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the impact caused by solar radiation. In order to improve the accuracy of the inversion
model, the vegetation canopy structure information is introduced through airborne LiDAR
data, and the point cloud segmentation is realized by integrating the abundance and the
three-dimensional index model is constructed. The inversion model is established by
combining with the fusion of airborne remote sensing image, and the inversion model of
grassland biomass and chlorophyll content is established to invert the grassland biomass
and chlorophyll content of the whole pastoral area, and the comprehensive evaluation of
the two is carried out to determine the pasture grade in the rasterization area. On this basis,
the autonomous learning model of pasture grade evaluation is established to characterize
the characteristics of pasture grade in pastoral areas. At the same time, in view of the
characteristic areas with low grade distribution, UAVs carry out seeding herbicide and
mixed sowing of high-quality forage grass, and no-tillage sowing of forage grass and
restoration of degraded grassland to solve the forage supply problem in grazing areas.

4.1.1. The Inversion Model of the Vegetation Biomass and the Chlorophyll Content in the
Pastoral Area

For the remote sensing fine inversion, radiometric correction of airborne multispectral
images is required before using the inversion strategy of fusion of airborne LiDAR data
and airborne hyperspectral data. Airborne remote sensing images of UAVs are generally
obtained by oblique rays of the sun at different angles, and radiation correction is mainly
divided into solar height angle correction and azimuth correction, both of which have the
same correction method. Solar azimuth has little influence on the spectral characteristics
of remote sensing images, so the error is generally ignored. Therefore, the sun height
angle correction is mainly used, and remote sensing images with the sun angle of 0◦ can be
obtained by correcting the average pixel value of the image.

The vegetation biomass of the pastoral area refers to the total amount of plants con-
tained in the grassland per unit area, which can directly reflect the grassland biomass of
a certain area. The chlorophyll content represents the growth status of vegetation which
is related to the photosynthesis and nutrition status of herbage. The biomass and chloro-
phyll content of herbage are of great significance to guide the equivalence classification of
herbage. For the remote sensing inversion, a fusion inversion scheme of airborne LiDAR
data and airborne hyperspectral data can be used to establish a high-precision inversion
model. The process of establishing the inversion model of the vegetation biomass and
chlorophyll content of herbage is consistent, and the inversion model is established with
the vegetation biomass as the model.

The 3D reconstruction technique of the laser radar can directly obtain the distance
information of the target object surface by non-contact scanning mode, and then obtain the
3D point cloud data of the object surface. The complete 3D information of the target object
can be obtained by rotation and movement [79]. The LiDAR consists of target transmitter
and receiver, which can obtain accurate 3D information by measuring the time of the light
pulse from transmitting to returning to receiver to obtain the spatial position of target
object. The LiDAR is pretreated by mathematical morphological filtering, including open
and closed operations. The two algorithms are composed of expansion and corrosion
operations and are widely used in image processing. In the process of point cloud data,
the ground point cloud is extracted by open operation, that is, the ground point cloud is
removed. Then, the digital elevation model (DEM) and the digital surface model (DSM)
obtained by point cloud classification are used to convert the canopy height model (CHM).

The grassland in pastoral areas is mainly distributed by herbage, but there are some
shrubs, soil, wildflowers and other different ground object types. For example, shrubs
such as Amygdalus mongolica, Ammopiptanthus mongolicus and Nitraria tangutorum
are common in the grasslands of Inner Mongolia, China [80]. There are many different
ground object types in the instantaneous field of view corresponding to the pixels in the
multi-spectral remote sensing detection of grassland, resulting in the spectral information
composed of grassland, soil, water, low shrubs and other types, thus forming the phe-



Drones 2023, 7, 542 12 of 29

nomenon of mixed pixels. Therefore, in order to obtain the purity of grassland spectral
information, it is necessary to establish a reasonable decomposition model for the mixed
pixel phenomenon. First, the number of endmembers is confirmed, including pasture, soil,
low shrubs such as nitraria tangutorum, amygdalus mongolica and other endmembers.
By judging whether the extracted endmembers are sufficient to contain most of the infor-
mation of the image, the extracted endmembers and the abundance of the inversion are
usually used to remix the images. Then, the difference degree of anti-mixing images is
the evaluation of the completeness degree of endmembers and the abundance inversion
results. The metaheuristic optimization algorithm is used to transform the problem into an
optimization problem by taking the mean square error of the antimixing image and the
original image as the objective function, and, then, the optimal set of endmembers can be
obtained. The obtained abundance data are segmented into valid ground object points to
solve the point cloud segmentation problem.

For the remote sensing images after radiometric correction and super-resolution
reconstruction, different vegetation index features need to be obtained through linear
combination between different bands. The obtained canopy height model is combined
with different vegetation index features for the fusion inversion. Firstly, near-infrared
indices such as DVI, EVI, NDVI, and SR, red edge indices such as CIG-RE1, CIG-RE2,
NDVIre1 and MSRren, and short-wave infrared indices such as MDI1 and MDI2, are used
as the vegetation indices. LiDAR is used to extract height indices such as tree height,
canopy width and canopy diameter and canopy volume indices which include canopy
coverage, leaf area density index and canopy thickness index. The linear regression model
of vegetation biomass is established based on the vegetation index and LiDAR index. The
biomass estimation is obtained by solving the linear multiple regression model. Then, the
linear estimation problem is transformed into a fuzzy problem because the estimation of
biomass is combined with abundance information and the fuzzy strategy is used to build
the nonlinear inversion model of vegetation biomass. Finally, the exact value of vegetation
biomass is obtained.

4.1.2. The Grazing Grade Assessment and the Autonomous Learning Assessment Model
under the Scarce Samples

Because the factors affecting the grade of the grazing area include many factors, such
as the biomass, growth status of herbage, etc. However, it is mainly used to set different
grade weight coefficients by vegetation biomass and chlorophyll content, so that the joint
evaluation can realize the determination of the forage grade in the grid area. Before training
the self-learning model, labels should be divided for the grid pastoral areas according to
the inversion biomass, and labels for pasture grades of the grid pastoral areas should be
established according to the grazing situation of the pasture. Due to the lack of sample
datasets in pasture remote sensing images, the biological information and chlorophyll
content of the pasture can be inverted through airborne imaging equipment, and, then,
the grade label evaluation is performed to obtain the label value of the grid area. The
engineering is complicated, so the problem of sample scarcity is very likely to exist. In view
of such problems, the intelligent grazing development strategy adopts the MAML model
to solve the problem of remote sensing qualitative analysis under the few-shot learning.
Because the MAML model has rapid adaptation in solving few-shot learning problems, it
does not limit the model architecture or expand the number of learning parameters and
can be used in different kinds of loss functions. It also has excellent performance in finding
the optimal initial parameters and can be applied to almost any network model. Therefore,
it can be seen from Figure 3 that MAML is applied to supervised learning algorithms for
fusion and the optimal initial parameters are found to speed up the training speed, increase
the generalization of the model and achieve a good classification effect based on scarce
samples when dealing with the new remote sensing image classification task. After the
training of the model, the fine tuning of a small number of samples is needed to achieve a
good classification effect each time for the new grid pastoral area classification. According
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to the predicted classification results of the model, the pasture grade of the pastoral area
can be divided, and ecological compensation optimization and sustainable utilization of
the pastoral area can be realized.
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4.2. The Comprehensive Monitoring Technology of the Sensing UAV for the Herds

As typical flexible groups, the changes in the groups are irregular in the grazing
process, so it is impossible to describe the overall group information by modeling at the
present stage. Therefore, the intelligent grazing development strategy plans to design a
set of comprehensive monitoring system based on UAV. In view of the problem of the
perception of flexible herd behavior, the method based on deep learning is proposed to be
used to perceive it.

4.2.1. The Group Scene Segmentation and Dynamic Counting Based on Multi-Source Data

The data acquisition of intelligent grazing intends to adopt the herd flexible sensing
algorithm as the scene segmentation algorithm based on a multi-source data-driven algo-
rithm, while the data-driven algorithm and training dataset largely determine the stability
and accuracy of the algorithm. Based on the multi-source data-driven method, we can learn
from each other fundamentally and integrate the advantages of multi-sensors. As the lead
UAV needs to obtain the vision of the global field of the herd, when the herd scale reaches
1000 heads, the resolution of the RGB three-channel high-resolution image dataset and
high-resolution thermal infrared image data of the herd is initially set at 1080P. The moving
speed of the herd is relatively slow, so the sampling frequency of the sensor is temporarily
set at 30 Hz. According to the number of herds, large herds, medium herds and small herds
each sample more than 1000 groups of datasets with no less than 100 frames in each group.
The duration of data collection should be normally distributed as far as possible. The
accuracy and stability of scene segmentation algorithm are ensured through accurate and
large datasets. Figure 4a is the dataset of the first part, which is the high-resolution image
set of the RGB three-channel of the herd. Figure 4b is the dataset of the second part, which
is the high-resolution thermal infrared image data of the herd. The sheep temperature
obtained from the survey can be used to set the temperature range to preliminarily screen
out the position of the herd.
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Figure 4. The technology road map of the integrated herd monitoring: (a) The dataset of the RGB
three-channel high-resolution image of the herds; (b) the high-resolution thermal infrared image data
of the herds.

At the present stage, the main direction of scene segmentation algorithm is based on
the FCN network, and the segmentation weight of the original image is reasonably planned
to avoid network training falling into local optimal. The scene segmentation algorithm that
is shown in Figure 5 adopted by the intelligent grazing strategy introduced high-resolution
thermal infrared images of the herd to suppress the noise and prevent the model from
falling into local optimum with the idea of multi-source sensor fusion. Meanwhile, the
attention mechanism is added to improve the accuracy.
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First of all, the RGB image data of the three-channel of the herd and thermal infrared
image data are high-resolution image data, when the size of the convolution kernel is fixed,
if the feature weights are equally distributed, because most of the information shown in the
figure is non-herd information, the feature weights of herds are diluted by a large number
of other features. In the deconvolution process, the neural network cannot pay attention
to more details of the target, resulting in a poor herd segmentation effect. Therefore, the
attention mechanism is used to redistribute the feature weights to train the attention model
and give more weight to the related features of the herds and retain more herd information
in the deconvolution process.

The input of thermal infrared herd images is another way to improve the noise
processing of scene segmentation algorithm based on convolutional neural networks. In
case of misidentification in areas with no flocks or single sheep, the thermal infrared can
be identified from the area of temperature by using the sheep temperature for screening,
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coupled with the detection method based on classifier screening, which further limits the
overall noise of the perception system, so as to achieve accurate and stable herd flexible
group behavior perception.

The working module of herd dynamic counting is the herd dynamic detection model,
which has two functions. Firstly, it is responsible for the herd dynamic counting with the
calculation of dynamic carrying-capacity of pastoral areas; secondly, it is responsible for
eliminating non-herd biological segmentation data from herd thermal infrared images.
Considering the occupation of intelligent computing force, the herd dynamic detection
module tries to meet the requirements of model lightweight under the condition of meeting
the requirements of accuracy. The YOLOv4 lightweight model is designed and the transfer
learning method is adopted. The RGB three-channel high-resolution image dataset with
different number scales of each herd is used as the training set to obtain the dynamic
counter, which is assisted with visual rules and temperature measurement to determine
the effective count, so as to improve the accuracy of the group dynamic counting [81].

4.2.2. The Wearable Monitoring System of Herd Health and Individual Behavior

In the grazing process, individual behaviors in the herd mainly consist of grazing
behavior and stress responses, of which grazing behavior includes feeding, rumination
and other behaviors, and stress responses include heat stress, noise stress and other stress
behaviors. Grazing behavior can further predict the physical condition of livestock and
pasture conditions, while stress responses can affect or even destroy herd behavior. In the
intelligent grazing strategy, it is planned to build low-cost wearable devices based on a
combination of cameras and microphones, with eye-catching color features such as straps
and other markers, to record sheep’s first-view video data and sheep’s voice data. The
wearable device is fastened between the horns of the sheep’s head by means of fasteners
such as straps with special color markings. The special color marker is designed to identify
the RGB three-channel herd image data from the top view of the UAV and a spatial position
connection is established with the UAV. The position information of sheep with wearable
devices is also obtained in the top view. Taking the effective sound collection range of
the microphone module and the acquisition range of the first-view camera image as the
boundary, the individual behavior of sheep in this area can be effectively monitored and
identified. The schematic diagram of the wearable device is shown in Figure 6.
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“The herd effect” is the conformity that is a very important characteristic of individual
sheep in herds. The first perspective of sheep is usually towards the herd or towards the
direction of more sheep, which means, “grouping” in group behavior. It can provide rich
information for individual behavior identification and cognition of sheep. The field of view
from the first perspective has a certain monitoring effect on the herd, and with special
markers, the position of the sheep with markers can be easily deduced from the image
data of the herd. In addition, the first-view video can identify the behavior of some sheep
without wearable devices, so as to partially recognize the individual behavior of other
sheep in the herd, as shown in Figure 7a. In addition, when the sheep perform grazing
behaviors, according to the different behaviors, the change in perspective brought about by
the raising and lowering of the sheep’s heads can be used as an important feature of image
recognition, as shown in Figure 7b.
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of the sheep without wearing wearable devices; (b) the feeding behavior of the sheep wearing
wearable devices.

For the behavior recognition in the intelligent grazing development strategy, the
behavior recognition can be based on video clips or each frame of a picture. It is necessary
to recognize the behavior of the sheep based on the few-shot technique, such as the few-
shot action recognition framework proposed in [82], which enhances class-specific feature
discriminability. The image classification method is used to recognize the behavior of sheep
wearing monitoring devices. The image detection method is used to recognize the behavior
of sheep without wearable devices and within the field of vision. The above two tasks,
which are the image classification and image detection, are hot research issues in the field of
computer vision. In addition, existing technologies such as Alexnet, GoogLenet and other
deep learning based on image classification technologies, as well as deep learning based
on image detection technologies represented by YOLO, can be trained with large-scale
datasets, and the efficiency and accuracy are far superior to manual work. And for the
above technologies, there is in-depth research on the lightweight of computing power,
which can meet the needs of low computing power occupancy. In view of this problem,
under the condition that the grazing time is sufficient, the data scale can fully meet the
above methods based on deep learning, and there are a few categories of grazing behaviors
with obvious characteristics. It is not difficult to complete efficient and accurate recognition
and cognition based on the above methods, which is reliable high performance, thus, the
above technology will not be repeated here.

4.2.3. The Key Individual Perception and the Tracking Technique

For the perception tracking of key individuals, the SiamFC [83] is adopted as the
tracker. The SiamFC is a typical tracker based on convolutional neural network. Through
training with a large amount of data, a data-driven tracker can be obtained. By importing
large amounts of data for training, you can obtain data-driven trackers. In order to avoid
the UAV falling into the state of mechanical tracking, the tracker is used to predict the
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bounding box of the next sampling period, and the UAV is guided to flight according to
the prediction results. The design idea is shown in Figure 8:
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Figure 8. The data-driven method for obtaining the current and predicted location of the target.

As shown in Figure 8, in the first stage, the training set needs to be prepared. The
production of the training set requires two sets of truth values for training. The sampling
period that is called P is set as the prediction step, and the minimum unit is a camera
refresh cycle. When making the correspondence of the truth value, the target template
at the moment should correspond to the truth value of the next sampling period and the
moment is called the T. That is, when training the tracker, the corresponding time truth
value which is the T+P moment makes the neural network learn to predict the location of
the target in the next sampling period. In the design of the Siamese network, AlexNet [84]
is used as the feature extraction kernel, and the 2D convolution is used to obtain the
predicted value of the relevant position. The Siamese network obtains two outputs, one
is the predicted position and the other is the current position. And the output traditional
bounding box should be converted to the 3D bounding box. The output of the current
position is used to stably track the leader, and the output of the predicted position is used
to cooperate with the design of the guidance law to guide the redundant UAV to catch up
with the stragglers in time.

4.3. The Cycle Grazing Path Planning Using the UAV

In the UAV path planning, in order to reduce the length of the path, the point-to-
point and area-to-area linear path planning are often adopted, without considering other
conditions in the intermediate area. In practice, there are grassland degradation areas
between the two parts of grassland, so before the path planning of the UAV, the grassland
is divided into different levels of grassland areas, among which the grassland area of the
lowest quality level is set as an obstacle area, and the UAVs are prohibited to herd in this
area, so as to achieve the purpose of ecological restoration in the pastoral area. The activities
of sheep flocks will strongly affect grassland ecosystems in pastoral areas, including the
changes in vegetation composition and species diversity. Taking into account the long-term
sustainable development of grassland ecology, the method of grazing in rotation is adopted
to change the current situation of grazing on the slopes in the past, so as to protect the
grassland and enhance the regeneration capacity of grassland ecological grass resources.

According to the actual experience and the change in date and season in the actual
scene, a cycle path grazing design is designed based on the carrying capacity, light intensity
and precipitation of date change. Different grazing paths are set in each cycle, and inde-
pendent target pastures are set in each path. The meadows of different grazing paths are
not repeated. After grazing for a cycle length, the UAV traverses all target pastures in the
region. The yield of edible herbage in a certain area is obtained by obtaining parameters
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such as the yield of the per unit area and forage regeneration rate in the first full grass
stage, and it is converted into a standard edible hay amount in pastoral areas. By obtaining
the daily food intake of the sheep and the grazing days of the herdsmen, the reasonable
stocking capacity of the pastoral grassland in a certain area can be obtained. The grazing
cycle plan is conceived as a mathematical description based on light intensity, reasonable
stocking capacity in a certain area, and precipitation in the entire pastoral area on a certain
date to obtain the periodic grazing plan on a certain date.

For the large, medium and small sheep size, the number of sheep is set as N, and the
grazing area of the whole grazing area is set as V. According to the grazing area of each
sheep which is set as S, the whole grazing area is divided into the area that is set as NS.
Grid pastoral areas are graded according to the inversion biomass of grid pastoral areas,
and the whole pastoral area can be divided into multiple grid pastoral areas with different
labels, as shown in Figure 9.
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Figure 9. The grid pastoral area of the grade classification.

In Figure 9, the green area of the pastoral area represents the area with sufficient
pasture biomass and the best grade; the yellow area represents the medium area with
average pasture abundance; and the blue area represents the forbidden area of the lowest
grade area with scarce pasture biomass. The path planning of UAVs was regarded as a
particle moving on a two-dimensional plane. In the two-dimensional plane, the area with
the worst grade of grassland was set as no-fly zone, and other grids were regarded as
accessible and barrier-free zone. In Figure 9, the green area in the pastoral area represents
the area of the best grade with sufficient grassland biomass, the yellow area in the pastoral
area represents the area of the middle grade with average forage abundance, and the blue
area in the pastoral area represents the banning grazing area of the lowest grade with scarce
grassland biomass. The path planning of the UAV is regarded as a particle moving on a
two-dimensional plane. In the two-dimensional plane, the area with the lowest grade is set
as the banning grazing area, and other grids are regarded as a passable barrier-free area.

The path planning of UAVs requires that a UAV must stay in each grassy area for a
certain amount of time, which means the grazing time of sheep. The time is related to
the size of sheep, grade of the pastoral area and the area of grid grassland. Based on the
grade of the grassland in the region, the distance that is traversing all the grid grazing
areas and returning to the sheep pen is added to conduct comprehensive description grade
evaluation. According to the grade evaluation results of the model, the existing grazing
areas can be divided into different grazing grades, so as to obtain grazing grades and
realize the establishment of grazing environment model.
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The goal of path optimization is to find the shortest and optimal path to meet the
movement conditions of the UAV. First, the grid of all edible grazing areas in the grazing
area are passed just once and the sheep stay there for a while during the course of a week.
Second, it is set that higher priority grid pasture areas within a pastoral area must be visited
and stayed in before lower priority grid pasture areas. That is, before visiting the pasture
grid area with a lower priority in the pastoral area, it is necessary to ensure that other task
grid areas with a higher priority have been accessed. A mathematical description of the
path optimization problem of the UAV can be obtained. This means that the two-layer
optimization objective function requires the shortest path length in the whole cycle and the
shortest path length in each day of the cycle [85]. Therefore, the objective function can be
established according to the task area of the pastoral area carried out by the UAV. For the
selection of path optimization algorithm, there are some meta-heuristic algorithms such as
sparrow search algorithm (SSA) [86], condor optimization algorithm [87], bat optimization
algorithm [88] and so on.

4.4. The Tracking and Encircling Control of the UAV Formation

When the UAV formation is used to control and track the preset trajectory, the tech-
nology road map shown in Figure 10 is used. Firstly, a stepping herd trajectory tracking
strategy based on the predictive control of the nonlinear model is designed and the active
disturbance rejection control (ADRC) based on the indirect iterative learning is used to op-
timize the trajectory tracking controller. Secondly, the design that considers the consistency
protocol including time-varying and time delay is proposed to control the UAV to maintain
the boundary of the herd so as to form the enclosure of the herd. At the same time, the
speed avoidance collision algorithm is adopted to prevent collisions between the UAVs.
Finally, a single-machine spiral half-encircling guidance strategy is designed to guide the
stragglers into the group.
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The UAV is generally regarded as a second-order integral dynamic system, but this
system only simply considers the constant course motion of UAV in a two-dimensional
plane, and the final result makes the position and speed information of UAV tend to be
consistent. The actual UAVs movement in three-dimensional space is much more complex,
including the change in course and altitude. And the convergence of the position to the
same value will cause the UAV to crash, which is a very serious accident. Therefore, a more
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accurate UAV model is needed. The intelligent grazing development strategy often adopts
the UAV model based on autopilot, which decoupled the UAV into horizontal, lateral and
longitudinal movements. And the formation should be clearly described before designing
the control law. The edge–edge method proposed by Desai is widely used to describe
the formation at present. The formation is described by the relative distance between the
position of the UAV and the reference point in the formation.

4.4.1. The Trajectory Tracking Control of the Herd Based on the Active Disturbance
Rejection Control and Indirect Iterative Learning

When the tracking strategy of the herd track is designed, if there is a leader in the herd,
the UAV is assigned to attract the leader to track the planned path, so that the orientation
of the herd is clear, and the rest of the UAVs are located at the left, right and tail of the herd.
If there is not a leader in the herd, the herd is surrounded with the UAVs in the front, back,
left and right directions. The algorithm of the Nonlinear Model Predictive Control (NMPC)
is used to make the UAV formation move according to the preset trajectory and surround
the herd at all times during the movement process, so that the herd also moves according
to the preset trajectory. As shown in Figure 11, the yellow rectangle border represents the
boundary of the herd. Since the UAVs are too close to the herd, the herd will be disturbed,
so a certain threshold value that is set as d should be set. The boundary formed by the UAV
formation during the flight should not be smaller than the black dotted line. The UAV is on
the blue real line at time t, the center of the UAV formation is in the position ξ(t). According
to the prediction of trajectory tracking controller, the center of the UAV formation is located
at position ξ(t + 1) at time t + 1.
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Figure 11. The schematic diagram of the stepping trajectory tracking.

When a UAV is guided to move quickly and attract key individuals, salt blocks and
other attractions should be hung below to guide the key individuals. At the same time,
there is a lot of northwest wind in the grassland of Inner Mongolia of China, and the wind
level can reach level 3–6. The wind speed is high in spring and winter, and the average
wind speed is 4.5 m/s. The wind speed is relatively low in autumn and summer, and the
average wind speed is 3.3 m/s. In addition, the wind speed increases with the increase in
terrain height, and the flying altitude of the UAVs is 3–4 m. Therefore, the unmeasured
characteristics such as wind disturbance, which combines with the irregular swing of the
suspension load, may cause the UAVs to deviate from the course or fall unsteadily. In order
to ensure that the UAVs can be guided to fly stably in accordance with the established route
under different disturbances, the guidance control law based on the ADRC and indirect
iterative learning is proposed to control the UAVs to guide the key individuals to move to
a given region under the compound disturbance.
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As shown in Figure 12, when a UAV hangs an attractor such as a salt block, it may
deviate from the course or fall due to the influence of irregular suspension load disturbance,
wind speed, etc. In addition, it is difficult to establish an accurate model for irregular
suspension load disturbance, so it is planned to conduct disturbance rejection design as
unknown disturbance.
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Figure 12. The disturbance schematic diagram of the irregular suspension load.

As shown in Figure 12, the UAV of the quadrotor has four propellers, which are
symmetrically distributed in a cross type. The power obtained by the UAV is generated
by the rotation of the four propellers, and the flight state is controlled by the lift difference
generated by the four rotors. The schematic diagram of the cross-type quadrotor is shown
in Figure 13. The origin of coordinates is the UAV center of gravity, X-axis is the UAV center
of gravity pointing to the direction of the nose, Y-axis is the UAV center of gravity pointing
to the left, Z-axis is the UAV center of gravity pointing to the top of the UAV according to
the right-hand rule. When the lift is generated, the speed of four rotors is increased at the
same time to achieve going up or falling down. Differential is used to change the speeds
of 1, 3 and 2, 4 to produce reverse torque and achieve the yaw about the Z axis. At the
same time, the differential is used to change the speeds of 2, 3 and 1, 4 to make the body
roll about the X-axis and move along the Y-axis to achieve the rolling motion. When the
differential is used to change the speeds of 1,2 and 3,4, the body is made to roll about the
Y-axis and move along the X-axis to achieve the pitch motion.
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Among them, ϕ, θ, φ are the roll angle, pitch angle, and yaw angle, respectively.
The attitude loop control of the UAV is taken as an example. The design points of the
anti-disturbance control law of ADRC are based on indirect iterative learning, the unknown
internal disturbance of the system and the wind disturbance and load disturbance outside
the system is added to the control channels ϕ, θ, φ, respectively.
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In the ADRC control, the tracking differentiator (TD) is used to realize the arrangement
of the system transition process and obtain the tracking signal and a series of differential
signals of the control signal, which play the role of filtering and reducing the initial error.
The extended state observer (ESO) estimates the system disturbances, the state variables of
the feedback system and the disturbance observations. The nonlinear state error feedback
(NLSEF) adopts the idea of eliminating errors based on the errors and constructs nonlinear
error feedback law with high efficiency. In addition, the larger the bandwidth of ADRC is,
the stronger the ability of the output of the system to follow the input command is, and the
better is the dynamic performance of the system. The larger the bandwidth is, the greater
the compensation to the control quantity is, that is, the larger is the compensation estimate
of the control quantity, which is called the high-gain state observer. However, when the
external disturbance is small, using too large a bandwidth will cause the chattering output
of the control quantity to be very large. It is necessary to construct adaptive ADRC by
selecting the appropriate bandwidth. Under conditions of large error and disturbance,
the large bandwidth should be selected. Under small error and disturbance, the small
bandwidth should be selected. The iterative control is proposed to update the ADRC
bandwidth in real time according to the error. The ADRC real-time adaptive attitude
control under the different disturbances is realized.

The iterative learning control is a new learning control technology combining artificial
intelligence and the automatic control. The iterative learning control has the learning
process and characteristics of personification, and the method of step by step and learning
by doing is simulated by humans, which is widely applicable to the uncertain and uncertain
nonlinear complex system. The flow diagram of iterative learning control algorithm is
shown in Figure 14.
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In the process of the iterative learning algorithm, Uk(t) is the current control quantity.
ek(t) is the current output error. The output yk(t) is a vector function of the state vector.
K, K−1, and K+1 represent the current phase, the previous phase, and the next phase,
respectively. The current control quantity Uk(t) and output error ek(t) constitute the
learning law, and the control quantity Uk+1(t) in the next iteration is generated. Because
the disturbance rejection control of quadrotor UAV requires short adjustment time, the PD
learning law is adopted.

At present, iterative learning control mainly discusses the control effect by changing
the input, and the parameters of the controller are not modified, which is also known as
static controller. In other words, the parameters of the controller will not change during
the control process. Indirect iterative learning control means that the system has a basic
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feedback controller, and the learning control is used to update and optimize the parameters
of the local controller, it is also called dynamic controller, that is, the controller will change
with the change in iteration.

The indirect iterative control achieves an optimal performance index through online
automatic adjustment of the controller when the control object is subject to unknown or
unpredictable input. Indirect iterative learning control realizes the adaptive construction
of ADRC by online adjusting the bandwidth ω0 of the extended state observer in ADRC.
The pitching channel control system is shown in Figure 15. In the figure, the adaptive
ADRC is divided into ADRC and indirect ILC controller. The input is the expected pitching
angle, assuming that the hovering pitching angle is 0 degrees, and the output is the control
quantity for the UAV’s pitching channel. The actual pitching angle of the feedback of the
UAV is fed to the ADRC and indirect ILC controller. The indirect ILC controller is based on
the pitching angle error ek−1(t) at k−1 time of the previous stage and the output control
quantity Uk−1 at the previous stage. The control quantity Uk outputted via the PD learning
law is the bandwidth ω0 of the ADRC expansion state observation at this time. The ADRC
controller combined with ILC outputs the bandwidth, according to the pitching angle error,
the UAV pitching channel control quantity U3 is outputted. Therefore, the adaptive ADRC
control law of pitching channel constructed via adjusting ADRC bandwidth using indirect
iterative learning is U3. At this point, the anti-disturbance control law of the ADRC based
on indirect iterative learning control of pitching channel is designed [89]. Similarly, the
design method can be extended to the UAV position loop and attitude loop to control other
state quantities.

Drones 2023, 7, x 24 of 31 
 

phase, respectively. The current control quantity U ( )k t  and output error ( )ke t  consti-

tute the learning law, and the control quantity 1U ( )k t+  in the next iteration is generated. 

Because the disturbance rejection control of quadrotor UAV requires short adjustment 

time, the PD learning law is adopted. 

At present, iterative learning control mainly discusses the control effect by changing 

the input, and the parameters of the controller are not modified, which is also known as 

static controller. In other words, the parameters of the controller will not change during 

the control process. Indirect iterative learning control means that the system has a basic 

feedback controller, and the learning control is used to update and optimize the parame-

ters of the local controller, it is also called dynamic controller, that is, the controller will 

change with the change in iteration. 

The indirect iterative control achieves an optimal performance index through online 

automatic adjustment of the controller when the control object is subject to unknown or 

unpredictable input. Indirect iterative learning control realizes the adaptive construction 

of ADRC by online adjusting the bandwidth 0  of the extended state observer in ADRC. 

The pitching channel control system is shown in Figure 15. In the figure, the adaptive 

ADRC is divided into ADRC and indirect ILC controller. The input is the expected pitch-

ing angle, assuming that the hovering pitching angle is 0 degrees, and the output is the 

control quantity for the UAV’s pitching channel. The actual pitching angle of the feedback 

of the UAV is fed to the ADRC and indirect ILC controller. The indirect ILC controller is 

based on the pitching angle error 1( )ke t−  at k-1 time of the previous stage and the output 

control quantity 1kU −  at the previous stage. The control quantity kU  outputted via the 

PD learning law is the bandwidth 0  of the ADRC expansion state observation at this 

time. The ADRC controller combined with ILC outputs the bandwidth, according to the 

pitching angle error, the UAV pitching channel control quantity 3U  is outputted. There-

fore, the adaptive ADRC control law of pitching channel constructed via adjusting ADRC 

bandwidth using indirect iterative learning is 3U . At this point, the anti-disturbance con-

trol law of the ADRC based on indirect iterative learning control of pitching channel is 

designed [89]. Similarly, the design method can be extended to the UAV position loop and 

attitude loop to control other state quantities. 

 

Figure 15. The ADRC attitude controller based on the indirect iterative learning control for the pitch-

ing channel. 

  

Figure 15. The ADRC attitude controller based on the indirect iterative learning control for the
pitching channel.

4.4.2. The Consensus Protocol of the Time-Varying Formation and the Obstacle Avoidance
Algorithm Design for the Multi-Machine Cooperative Formation

The intelligent grazing development strategy uses a distributed consensus protocol
to control the speed, heading and climbing height of the UAVs to ensure that the UAV
formation surrounds the herd at all times. According to the model and control quantity
in Section 4.4.1, a set of consistent comprehensive protocols is designed, and the UAVs’
formation is determined according to the herd boundary. However, when the formation
surrounds the herd, the system will inevitably have time-varying and time delay due to the
change in formation scale and internal delay. Therefore, considering the time-varying and
time delay in the system into the protocol, three directions of the UAVs can be designed.
The three direction controllers are used to control the speed, heading and climbing speed
of the UAVs, and a consistent control protocol with time delay is obtained. The speed
collision avoidance algorithm is used to solve the obstacle avoidance problem between
UAVs in multi-aircraft cooperative formation. In the speed collision avoidance algorithm,
each UAV works independently and does not connect with other UAVs, which reduces
the communication difficulty. It is supposed that two drones A and B obtain their position
and the radius of the drone, respectively. And a speed obstacle algorithm is designed to
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represent the speed set of all the collisions between A and B in a certain time t. The velocity
obstacle avoidance is a truncated circular cone, and the amount of truncation depends
on the value of t. That means that after t seconds, UAV A will be in the same position as
UAV B. Therefore, all speeds in the speed obstacle avoidance zone will result in a collision
after t seconds when the distance between UAV A and UAV B is less than their common
radius. In order to avoid collision, the relative velocity must be added with the change
vector U, so that the added relative velocity is outside the speed obstacle area. At this point,
the end point of U is divided into two situations, as shown in Figure 16. One is that the
closest point to the relative velocity is on the support foot of the truncated cone, and the
other is on the arc of the truncated circular cone.
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Because the UAVs all use the same obstacle avoidance algorithm, the velocity barrier
area of A with respect to B and B with respect to A is symmetric about the origin. Therefore,
the speed increments assigned to UAV A and UAV B should be equal and opposite. When
half of the velocity increment U is added to UAV A’s current velocity, a line is drawn
perpendicular to U at this time. Now, the allowed velocity is defined as the half-plane of
velocity on one side of the line in the positive direction U. The UAV B’s speed increment
is added in a similar way. This speed increment region is defined as the optimal collision
avoidance region. When there are multiple UAVs, UAV A plans a speed increment region
for each UAV B and finds out its intersection, then this intersection is the speed set that
UAV A can choose to avoid collision with other UAVs. The linear programming algorithm
is used to find the velocity vector and it is set as the new velocity. If there is no speed zone,
a collision is inevitable, so the speed that is most likely to be safe is selected, even if there is
the least chance of collision damage. In the geometry, the new velocity can be interpreted
as moving all half planes at the same speed until a valid velocity is found. Similarly, linear
programming algorithms can be used to calculate the speed of the updated UAVs.

4.4.3. The Regrouping Strategy of the Stragglers

After the redundant UAV uses the guidance law method to find the straggling individ-
ual, the leader UAV gives the coordinates of the straggling individual and the redundant
UAV coordinates. In general, at least three UAVs are required to surround the stragglers
and guide them back to the group. That is, the UAVs are distributed on the left and
right wings and tail of the stragglers to drive them close to the herd. This method will
undoubtedly increase the cost of herdsmen and increase the failure rate, so it is not practical.
Inspired by the solitary shepherd dog, a UAV is used to guide the straggling individuals
into the group by using a spiral semi-encircling guidance strategy to achieve the effect of
multiple UAVs driving together. First, the position of the redundant UAV is obtained in
real time by using the leader UAV. As shown in Figure 17, the position of the stragglers at
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time t is ps(t), the herd boundary is a yellow box and the virtual center ξ(t) of the UAV
formation is a red dot in the yellow box. The position of the virtual center point of the
formation at the next moment predicted by the trajectory tracking controller is ξ(t + 1).
This point is connected to the straggler and the redundant drone is driven to an extension
line Pb from the straggler. The surrounding points (brown solid circles in Figure 17) behind
the stragglers are formed, and these points are constantly refreshed to interact with the
stragglers, so that the stragglers can correct their traveling direction, and finally they are
driven into the group. Since individuals are cognitively capable of the group, they are
driven closer to the herd to ensure that the individual is automatically integrated into the
group. When the leader UAV detects that the straggling individual has entered the herd
boundary, the redundant UAV will no longer drive it away, and forms a communication
topology with neighboring UAVs to join the UAV formation.
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5. Conclusions

“Remote sensing, herd perception, guidance and control” is the main pipeline of the
intelligent grazing strategy. Firstly, the pasture remote sensing provides the information
of the grade of pasture in a pastoral area based on the height of the canopy and spectral
characteristics of the vegetation, and the training set is obtained for biomass information,
the grade of pasture in pastoral area is provided by few-shot model. Secondly, the re-
mote sensing information of herds, the multi-source data-driven scene segmentation and
hybrid-driven target-tracking algorithm are used to realize the detection of flexible herds’
boundaries, stragglers and leaders’ positions, and the hybrid-driven guidance law is used
to guide the redundant UAV to track the leader sheep and the stragglers quickly. At the
same time, wearable equipment is used for individual behavior recognition and infrared
health monitoring based on the deep learning method for a single individual sheep. Thirdly,
combined with the perceptual monitoring of the dynamic counting of sheep and the ap-
propriate grazing capacity, the periodic grazing scheme is determined, and the optimal
periodic grazing path is obtained by using the environment model, the path constraint
model and the heuristic search algorithm (sparrow search algorithm). Finally, according
to the periodic grazing trajectory, leader position and herd boundary position, the step-
by-step herd trajectory tracking strategy is adopted. At the same time, the ADRC-based
indirect iterative learning is used to optimize the trajectory tracking control, to prevent
the disturbance from becoming too large and crashing the aircraft. Finally, the unmanned
aircraft constrains the herd to travel along the trajectory; at the same time, redundant
unmanned aerial vehicles are used to realize the control strategy of single machine spiral
half encirclement guidance for stragglers, to guide stragglers to group, thus forming a
complete closed-loop intelligent grazing system. To sum up, the proposed intelligent UAV
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formation grazing is the first in China and abroad. UAV formation grazing not only realizes
efficient grazing, improves the intelligent level of animal husbandry, and saves human
and material costs, but also can be extended to the grazing of geese, ducks, cattle and
other different populations in different scales, helping the development of national animal
husbandry and improving China’s agricultural economic benefits.
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