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Abstract: Forest fires have significant implications for the Earth’s ecological balance, causing
widespread devastation and posing formidable challenges for containment once they propagate. The
development of computer vision methods holds promise in facilitating the timely identification of
forest fire risks, thereby preventing potential economic losses. In our study conducted in various
regions in British Columbia, we utilized image data captured by unmanned aerial vehicles (UAVs)
and computer vision methods to detect various types of trees, including alive trees, debris (logs on
the ground), beetle- and fire-impacted trees, and dead trees that pose a risk of a forest fire. We then
designed and implemented a novel sliding window technique to process large forest areas as geo-
referenced orthogonal maps. The model demonstrates proficiency in identifying various tree types,
excelling in detecting healthy trees with precision and recall scores of 0.904 and 0.848, respectively.
Its effectiveness in recognizing trees killed by beetles is somewhat limited, likely due to the smaller
number of examples available in the dataset. After the tree types are detected, we generate color
maps, indicating different fire risks to provide a new tool for fire managers to assess and implement
prevention strategies. This study stands out for its integration of UAV technology and computer
vision in forest fire risk assessment, marking a significant step forward in ecological protection and
sustainable forest management.

Keywords: computer vision; UAV; RPAS; forest fires; data visualization

1. Introduction

Forests are vital for Earth’s ecology and provide habitat for wildlife. They keep our
planet cool by absorbing carbon dioxide, helping to make it rain and preventing floods,
among other vital roles. Nearly half of the Earth’s known species live in forests. Humans
depend upon forests for survival. Not only do they provide us with the oxygen we breathe,
but they also supply us with the essential resource of wood used to construct our homes
and shelters.

Forests hold significant importance in Canada, providing various economic, social
and environmental benefits. The forest sector is a key contributor to the country’s economy,
supporting local communities and the gross domestic product (GDP). According to Natural
Resources Canada [1], the forest sector generates income for workers in 2400 communi-
ties, contributes CAD 25.2 billion to the nominal GDP, supports over 300 forest-reliant
communities and employs more than 184,000 Canadians. Furthermore, forests serve as
critical biodiversity habitats and offer goods and services that drive sustainable growth
and combat climate change. Notably, in British Columbia (BC), the forest sector plays a
significant role, with approximately 43,000 individuals employed in the industry in 2020,
accounting for 29% of the province’s total commodity export value, amounting to CAD
11.5 billion [2].
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However, forest fires pose a severe threat to these valuable ecosystems. Forest fires
result in the destruction of natural resources, loss of wildlife and their habitats, disruption of
ecosystems, and environmental pollution [3,4]. Moreover, they spread rapidly and present
significant challenges for containment. In 2022 alone, the BC Wildfire Service reported
1758 wildfires, which burned approximately 133,437 hectares of land [5].

One effective strategy for mitigating forest fires is through early detection and preven-
tion. Existing methods for assessing forest fires can be categorized into ground, aerial and
spaceborne detection systems. The ground-based approach involves deploying Peripheral
Observation System (POS) units strategically across sites, which are then interconnected
to a Command and Control Center (CCC) via radio or wire connections. Each POS unit
comprises a well-stabilized structure housing a horizontal 360◦ scanning platform equipped
with an infrared detector or high-resolution thermal camera, and TV camera. It also in-
cludes a command and control unit, a meteorological data acquisition unit, a transmission
unit and a power supply. While the ground system provides reliable data, establishing
and operating can be costly and time-consuming. Aerial detection systems employ small
planes or helicopters to swiftly collect and transmit observation data. However, these aerial
systems tend to be expensive.

Additionally, spaceborne detection systems rely on satellites positioned in close orbits
to detect fires [3]. Nevertheless, they are susceptible to weather conditions. Furthermore,
all of these approaches primarily detect fires that have already started. To address these
limitations, our objective is to develop an integrated system capable of proactively assessing
forests and their associated fire risks before they occur.

Unmanned aerial vehicles (UAVs) have significantly improved. They are cheaper
to manufacture, and easier to fly autonomously or non-autonomously [6]. Computer
vision can be integrated into UAVs, making detecting objects in any environment more
accessible and cheaper. Object detection algorithms can detect different types of trees for
early evaluation of forest fire risks based on the forest fuel types. The following are the
main contributions of this paper.

• Approach: We thoroughly research and analyze various object detection algorithms.
We aim to utilize these advanced algorithms to detect and classify four specific classes
within forested areas: alive trees, beetle- and fire-impacted trees, dead trees, and debris.
These classes play a significant role in assessing the potential risks and determining
the likelihood of forest fires. We then calculate various fire risks based on the Canadian
flammability index for forest fuels ([7]). Finally, we apply the Convex Hull method
on georeferenced orthogonal images to create a visualization of forest fire risks. By
employing all these techniques, we can better understand the factors leading to forest
fires in specific areas and implement targeted strategies to minimize the risk of these
devastating events.

• Experimentation: We collect aerial image footage from various regions in British
Columbia, Canada for training and testing purposes using various enterprise- and
consumer-grade DJI drones.

• Evaluation: We evaluate our approach’s accuracy by measuring whether fire risks
are correctly detected or not. We consider mean average precision to determine the
overall accuracy of tree species detection. Moreover, we evaluate the accuracy of forest
fire risks mapping by comparing the size of computer-vision-detected areas with the
actual forest fuel types.
The paper is structured as follows. Section 2 examines current methods in fire de-
tection and forest fuel type detection, pinpointing existing research gaps. Section 3
articulates the objective to devise an encompassing framework for fire risk detection.
In Section 4, a method for categorizing tree species based on fire risk is presented.
Section 5 elaborates on employing the YOLO algorithm for object detection. The slid-
ing window technique for processing extensive UAV imagery is explained in Section 6.
Section 7 delves into the visualization algorithms utilized, including bounding box
merging, DBSCAN, Convex Hull and color mapping strategies. Section 8 details the
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methodology encompassing data collection, image preparation, annotation and the
training of the model. The paper culminates with Sections 9 and 10, which present the
results and conclusions of the study, respectively.

2. Related Works
2.1. Forest Fire Detection

Researchers have studied different approaches to building forest fire detection models.
Among these, a forest fire detection method employing spiking neural networks stands
out, as detailed in [8]. This approach harnesses data derived from controlled experiments,
utilizing it as training samples to forge a detection model. This model takes into account
a comprehensive array of factors including temperature, humidity and concentrations
of carbon monoxide, as well as wind speed and direction. The spiking neural network
offers a detection accuracy of approximately 91%. On another front, the authors of [9]
have proposed a conceptual model aimed at reducing forest fire risks. This model is
underpinned by the use of self-adaptive and autonomous unmanned aerial vehicles (UAVs).
The effectiveness of this dispatching methodology for steering UAVs, along with the model
itself, was validated using a small yet realistic scenario. Looking ahead, the integration
of this model with state-of-the-art information technologies could pave the way for the
creation of a sophisticated digital twin system.

Forest-fire-related models can also be built and trained based on a smaller dataset
with the help of transfer learning. A forest fire assessment approach utilizing the ResNet-18
transfer learning is showcased in [10]. This process commenced with the application of
advanced image pre-processing techniques to augment the dataset, followed by the fine-
tuning of the pre-trained ResNet-18 model using a targeted training set. The modified
ResNet-18 model emerged as a useful tool, demonstrating its ability to accurately identify
fire or smoke in images, achieving an accuracy rate of 94.33% on the test set. Adding to
the repertoire of techniques is a deep-learning methodology, intertwining YOLOv4 tiny
with LiDAR to forge a mixed-learning model, as presented by [11]. When deployed on an
onboard UAV, this model not only achieved classification times of 1.24 s but also maintained
a high accuracy of 91% and an F1 score of 0.91.

The You Only Look Once (YOLO) algorithm has seen extensive implementation across
a range of computer vision projects, demonstrating its efficacy and precision in various
applications, including forest fire assessment [12–14]. In particular, the YOLO-V3 detection
model has been augmented through integration with the Efficient-Net method, enhancing
its capabilities in fire detection [15]. This modified model, referred to as Fire-YOLO,
leverages Efficient-Net for feature extraction from input images, consequently boosting
the model’s feature learning capacity and overall network performance. Comparative
experimental evaluations reveal that Fire-YOLO outperforms both the YOLO-V3 model
and the Faster R-CNN, showcasing its ability to detect fire targets in real-time scenarios.

YOLO algorithms also form the foundation of another technique for pinpointing
forest or jungle fires [16]. This particular deep learning model operates on a Raspberry Pi,
with nerve rods attached to a UAV facilitating fire detection. Furthermore, an enhanced
version of YOLOv3, termed SRN-YOLO, is introduced in [17], aiming for superior accuracy
and a more streamlined network architecture tailored for forest fire assessment. The
introduction of a sparse residual network (SRN) addresses overfitting issues by altering
skip connections to sparse connections. Within this framework, sparse residual modules
supplant the residual units in YOLOv3 and improvements are made to the Darknet-53
backbone network, culminating in the SRN-YOLO network. When subjected to comparative
experiments against other YOLO-based networks such as YOLO-LITE and Tinier-YOLO,
SRN-YOLO demonstrates its effectiveness and lightweight nature, achieving heightened
accuracy in forest fire assessment tasks.

The YOLOv4 algorithm has gained traction as an efficient choice for constructing
detection models, as evidenced by the development of a lightweight YOLO forest fire
assessment model [18]. The model adopts YOLOv4 as its foundational framework, but
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introduces MobileNetV3 as a lightweight replacement for the original backbone network.
The training process involves images featuring flames and smoke, while images resembling
fire are utilized as negative samples to enhance model robustness. Comparative analysis
reveals a 62.78% reduction in the number of parameters and a threefold increase in inference
speed relative to the original YOLOv4, with the proposed model achieving a detection
accuracy measured at 0.666 mAP.

Explorations into deep learning have continued to refine the precision and efficiency
of forest fire detection models. A spatial convolutional neural network based on YOLOv3
for high-speed, real-time fire detection was introduced in [19]. This system, implemented
on a Banana Pi M3 board, employs cameras for real-time fire detection. In a parallel
development, ref. [20] proposed a deep learning fire detection algorithm, incorporating a
large-scale YOLOv3 network to enhance accuracy. This algorithm is integrated into the
UAV Forest Fire Detection (UAV-FFD) platform, enabling real-time image transmission
from the UAV to the ground station. Testing results indicate a 91% recognition rate and
a frame rate of up to 30 FPS. Another noteworthy model, FFireNet [21], utilizes the pre-
trained convolutional base of MobileNetV2 to classify fire and no-fire images, achieving an
accuracy of 98.42%.

The aforementioned studies concentrate on the detection of existing forest fires. To
provide a comprehensive evaluation, the subsequent subsection will delve into the current
state of the art in relation to fuel type detection, ensuring a thorough comparison of the
innovative solutions presented.

2.2. Forest Fuel Type Detection

Many studies have investigated individual tree detection (ITD) in forest settings using
UAV images and deep learning methods. Kunyong Yu [22] compared classical computer
vision methods and Mask R-CNN for individual tree detection in a young plantation forest
using UAV images. The study found that the Mask R-CNN algorithm with a multi-band
combination provided the highest accuracy for individual tree detection, followed by the
local maxima (LM) and marker-controlled watershed segmentation (MCWS) algorithms
when the canopy height model (CHM) was used as the test image. The study also high-
lighted the trade-offs between accuracy and algorithm complexity, processing requirements
and data availability for different individual tree detection algorithms. Researchers have
gained significant improvements using the multi-scale approach to do the detection; Jiang,
Xiangtao, et al. [23] proposed detection in visible light images by using deep learning
techniques and an improved faster R-CNN framework. The proposed method utilized the
Swin-Transformer as the backbone network for feature extraction, allowing for effective
global information extraction. Besides the model selections, studies have also explored
the use of UAV-based ortho imagery to assess canopy health in a specific-tree-type for-
est. Harris, Ryley C., et al. [24] describes the process of generating a mosaic for point
cloud reconstruction and ortho imagery using photogrammetric Structure from Motion
software (Pix4Dmapper) with UAV-collected imagery. Another study [25] was conducted
in an urban forest setting. It proposed an improved, Faster Region-based Convolutional
Neural Network (Faster R-CNN) with the Swin-Transformer method for individual tree
detection. This method achieved higher performance than other Faster R-CNN models.
Xuewen Wang [26] focused on detecting dead trees in a remote forest and proposed a
novel lightweight architecture for small object detection based on the YOLO framework,
LDS-YOLO. The LDS-YOLO architecture performs well compared to state-of-the-art mod-
els, with an average precision (AP) of 89.11% and a parameter size of 7.6 MB. Instead of
detecting dead trees, Dmitry Kislov’s research [27] investigated detecting forest damage
caused by windthrows and bark beetles. A U-Net-like CNN algorithm was proposed to
detect forest damage.

Assessment of forest fire risk is essential for forest fire management and decision-
making. A study has developed a novel framework to assess forest fire risks and policy
decisions on forest fire management in China [28]. The framework integrated deep learning



Drones 2024, 8, 39 5 of 19

algorithms, geographic information and multi-source data, which results in high accuracy
prediction of fire risks (accuracy 87.4%, positive predictive value 87.1%, sensitivity 88.9%,
area under curve (AUC) 94.1%).

2.3. Research Gap

This research project addresses significant gaps in the existing literature, and tools for
fire risk detection and mapping. To the best of our knowledge, this is the first production-
ready tool that allows forestry managers to explore the fire risk of the forests in their
area, simulate various strategies to mitigate the fire risk and validate their efficacy before
implementing them in real-life scenarios. Our end-to-end system is designed explicitly
for fire risk assessment rather than detecting existing, challenging and costly to manage
fires. While some studies have focused on aspects of fire risk assessment, there needs to
be a comprehensive tool that integrates various technologies and techniques to provide
a holistic solution. Our research project combines computer-vision-based detection from
UAV (unmanned aerial vehicle) images with innovative mapping strategies to generate
an intuitive and user-friendly color mapping of large forest areas with varying fire risks.
We can process large georeferenced orthogonal images thanks to the newly designed and
improved sliding window technique.

Overall, the proposed research project provides a practical and comprehensive tool to
assess, simulate and mitigate fire risks effectively, addressing the research gaps and offering
valuable insights for sustainable forest management.

3. Problem Description

The primary goal of this research project was to create a comprehensive framework
that enables forestry experts, government agencies and firefighter crews to detect areas
with high flammability potential and take action to reduce the risk of forest fires. This
framework will serve as a vital tool for mitigating the devastating effects of forest fires on
the environment and communities. In particular, our project focuses on certain regions of
British Columbia, Canada, where the risk of forest fires is exceptionally high due to the
region’s dry climate and history of forest fires. To solve the overall problem, we divide our
project into four subproblems:

1. Create a forest fire risk ranking based on forest fire fuel sources’ flammability rankings.
2. Implement an object detection algorithm to identify specific tree types and associate

them with various risks of forest fires.
3. Design an approach to process large, georeferenced orthogonal images and merge

areas of similar fire risk areas for more straightforward evaluation.
4. Develop a user-friendly visualization solution based on color mapping to allow easy

access and interpretation of the data provided by the framework.

The entire methodology steps are shown in the flowchart below (see Figure 1). We
then discuss the details of chosen solutions to each subproblem in the following sections.
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Figure 1. Methodology flowchart.

4. Fire Risk/Flammability Ranking

To further refine the accuracy of our predictive model, we cataloged each tree species
within the designated study area. This comprehensive classification was essential for
assigning accurate fire risk levels, which were determined by the distinct flammability of
each species. Our initial compilation, drawn from Natural Resources Canada’s Fuel Type
Information [7], identified a diverse array of 15 tree species. This included pine, fir, spruce,
birch, cedar and aspen, each with unique characteristics that contribute to fire propagation.

The flammability index we developed for our tree inventory ranged from 40 to 80.
On this scale, a score of 0 would indicate no fire risk. In contrast, a score of 100 represents
an absolute certainty of forest fire given an ignition source near the tree, whether from
natural causes or anthropogenic activities. To facilitate a practical application for forestry
management, we delineated four distinct fire risk categories: minimal, low, moderate and
high. The flammability rankings directly informed these categories, ensuring that our
classification system was scientifically robust and operationally actionable.

Our UAV image samples contained only trees with moderate fire risk rankings. Based
on discussion with forestry experts, we then analyzed additional factors for fire risks:

1. If there is debris around the trees, the risk of a forest fire is slightly higher.
2. If the tree is dead (previous fire, dried or any other reason), the risk becomes signifi-

cantly higher for the area.
3. If the tree is affected by Japanese beetle, the risk becomes extreme, as the tree still has

flammable leaves but water is no longer taken in, making it highly combustible.

Based on this information, we established four types of trees, each representing a
different level of fire risk, as shown in Table 1. The image examples are shown in Figure 2.

Table 1. Tree type and risk level.

Category Risk Level

Alive Tree Low
Debris Moderate

Dead Tree High
Beetle–Fire Tree Extreme
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Figure 2. From left to right: alive tree, debris, dead tree and beetle–fire tree.

5. Sliding Window Technique

The next part of our research is processing large, geotagged, orthogonal images. The
first step is to collect images of a forest using a UAV. Before the UAV takes off, a flight
plan needs to be established. This plan considers the area to be covered, flight altitude,
speed and the path the UAV will follow to ensure comprehensive image capture. Once
the UAV is airborne, it autonomously follows the pre-determined flight plan, navigating
through the forest area to capture RGB images. It employs DJI-based path planning and
GPS to maintain stability and precise flight paths. The UAV’s onboard sensors and software
help ensure obstacle avoidance and safe navigation in complex forest environments. The
collected images of the entire scanned area form a shape of mosaic, as seen in Figure 3.

Figure 3. An unmanned aerial vehicle (UAV) collects images of the forest area.

As a next step, the images are stitched together using X, Y, Z coordinates, as seen
in Figure 4. We first assign X, Y, Z coordinates to each captured image based on their
position in real-world space. The X and Y coordinates represent the horizontal and vertical
positions, respectively, while the Z coordinate denotes the altitude of each image. We then
align images and follow an automatic stitching process using external software (this not
being a focus of our study). After stitching the images together, we apply additional post-
processing techniques to ensure smooth transitions between the individual images. This
may involve blending the overlapping regions, correcting exposure and color variations,
and removing any artifacts or distortions caused by the stitching process.

Finally, we employ a sliding window technique with geotagging, which allows us to
scan large images with computer vision techniques, perform object detection and associate
the areas with actual geocoordinates. The process is visualized in Figure 5.

We begin iterating over the large orthogonal image using the sliding window technique
at the image’s top-left corner and move the window horizontally and vertically based on
the specified stride. Each time the window moves to a new position, it captures a subregion
of the image within its boundaries. For each sliced image, we run our object detection
methods. We then collect and aggregate the results obtained from the processing of each
subregion, and assign specific labels and georeferences.
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Figure 4. Stitching of the images.

Figure 5. Sliding window technique.

6. Object Detection Algorithm

Among the most important computer vision applications are object detection algo-
rithms. These techniques allow computers to locate objects of interest in images or videos.
At the moment, the best object detection algorithms involve image processing operations
and deep learning architectures.

Object detection algorithms can be categorized into two main groups: two-stage
detectors and single-stage detectors. Two-stage detectors [29] generate a set of region
proposals that are likely to contain objects (first stage). These regions are then classified to
get the final object detection results (second stage). Single-stage detectors predict object
bounding boxes and class labels without using a region proposal step. When compared to
their two-stage counterparts, single-stage detectors are usually faster but less accurate.

One of the criteria to build a system for forest fire mitigation was the quick exe-
cution/detection time. Because of this, we decided to choose a single-stage detection
algorithm. We opted for the YOLO family of algorithms [30] because our preliminary
experiments showed that, for our application, these algorithms offer a high detection speed
with great accuracy. We are going to discuss the YOLO algorithm in subsections below.

6.1. YOLO

YOLO (You Only Look Once) represents a paradigm shift in computer vision, ap-
proaching object detection as a singular regression task, diverging from traditional clas-
sification methodologies [30]. It employs a single convolutional network to concurrently
forecast numerous bounding boxes and the associated class probabilities for these boxes, as
depicted in Figure 6. Throughout both training and testing phases, YOLO subjects the full
image to analysis, inherently capturing and integrating contextual details regarding class
attributes and visual characteristics.
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Figure 6. A quick glance at YOLO object detection used to locate trees.

6.1.1. Detection

The detection process is systematically illustrated in Figure 7. An input image un-
dergoes division into an S × S grid, assigning the detection responsibility to a specific
grid cell if an object’s center resides within its boundaries. Each grid cell concurrently
generates predictions for bounding boxes and computes confidence scores for these boxes.
The confidence is formulated as Pr(Object) × IOU(truth, pred), equating to zero in the
absence of an object within the cell, and otherwise reflecting the Intersection Over Union
(IOU) between the predicted and ground truth boxes.

The structure of each bounding box encompasses five predictions: x, y, w, h and confi-
dence. Here, (x, y) denotes the center of the box, normalized to the dimensions of the grid
cell, while (w, h) signifies the box’s width and height, predicted in relation to the entire
image’s dimensions.

Figure 7. Object detection using YOLO.

In addition, each grid cell outputs C conditional class probabilities Pr(Classi|Object)
specific to scenarios where the cell encompasses an object. Irrespective of the number
of boxes, a singular set of class probabilities is generated per grid cell. During testing,
these conditional class probabilities are integrated with individual box confidences through
multiplication, as formalized in the following equation:

Pr(Classi|Object)× Pr(Object)× IOUtruth
pred = Pr(Classi)× IOUtruth

pred (1)

6.1.2. Architecture

The YOLO model operates as a convolutional neural network, employing initial convo-
lutional layers for image feature extraction and fully connected layers for output probability
and coordinate prediction. The network’s architecture encompasses 24 convolution layers
and two fully connected convolution layers. It integrates alternating 1× 1 convolution
layers to diminish the feature space of preceding layers. This network configuration is
visually represented in Figure 8.
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Figure 8. Architecture of YOLO [30].

6.1.3. Activation and Loss Function

The model’s final layer undertakes the dual task of class probability and bounding
box coordinate prediction, subsequently normalizing the coordinates between 0 and 1. For
the final layer, a linear activation function is employed, while all preceding layers utilize a
leaky rectified linear activation defined as follows:

ϕ(x) =
{

x, if x > 0
0.1x, otherwise

}
. (2)

The optimization of the network involves minimizing the sum-square error through
the loss function, as articulated in Equation (3).

λcoord

S2

∑
i=0

B

∑
j=0

1obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]
+

λcoord

S2

∑
i=0

B

∑
j=0

1obj
ij

[(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

+
S2

∑
i=0

B

∑
j=0

1obj
ij

(
Ci − Ĉi

)2
+

λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
ij

(
Ci − Ĉi

)2
+

S2

∑
i=0

1obj
i ∑

c∈classes
(pi(c)− p̂i(c))

2

(3)

In this equation, S2 represents the S × S grid utilized by YOLO for detection, B
indicates a bounding box, 1obj

i identifies whether an object is present in cell i and 1obj
ij

signifies whether the jth bounding box is responsible for predicting the object in cell i, while
λcoord and λnoobj are regularization parameters to maintain balance in the loss function. The
terms xi, yi, wi, hi, Ci and pi(c) denote the bounding box’s center location, width, height,
confidence score and classification loss, respectively.

6.2. YOLOv8

Ultralytics, who had developed a previous version of YOLO, released YOLOv8 [31] in
January 2023. While there is no official paper on YOLOv8 at the time of writing, we can
gain insights into its architectural decisions compared to previous YOLO versions. Similar
to the current trend, YOLOv8 adopts an anchor-free approach, reducing the number of
box predictions and improving the speed of Non-Maximum Suppression (NMS). During
training, YOLOv8 utilizes mosaic augmentation. However, it has been discovered that
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using this augmentation throughout the entire training process can have negative effects,
so it is disabled for the last ten epochs.

In terms of scalability, YOLOv8 introduces five scaled versions: YOLOv8n (nano),
YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large) and YOLOv8x (extra large).
These different versions cater to various requirements and allow users to choose the one
that best suits their specific needs.

7. Visualization Algorithm
7.1. Merging Bounding Box Algorithm

Too many points of interest in an image can overwhelm the visual effect after detection,
making it harder to identify detected targets. To rectify this problem, we have created
Algorithm 1 to merge adjacent bounding boxes of similar classes and display them as
a single bounding polygon. This process reduces visual clutter and provides a clearer
representation, as demonstrated in Figure 9. Each component of the algorithm is discussed
in the subsections below.

Algorithm 1: Algorithm to Group and Merge Bounding Boxes
Data: coordinates of all bounding boxes: all_boxes
Result: coordinates of all merged bounding polygons: list_o f _polygons

1 eps← DISTANCE_THRESHOLD;
2 list_o f _polygons← emptyList[];

3 Function Distance(box1, box2):
4 relative_direction← box1 compares with box2;
5 dist← calculated distance based on relative_direction;
6 return dist;

7 foreach boxes_ f or_each_image ∈ all_boxes do
8 foreach boxes_ f or_each_class ∈ boxes_ f or_each_image do

// Group all boxes based on assigned distance threshold
9 DBSCAN (eps, min_samples, Distance()).fit(boxes_ f or_each_class);

// Create a polygon per group of boxes
10 foreach group ∈ all_groups_o f _boxes do
11 generate coordinates of 4 corners for all boxes;
12 coordinates_per_polygon← ConvexHull(all generated coordinates);
13 append to list_o f _polygons;
14 end
15 end
16 end

Figure 9. Left to right: original prediction, group bounding boxes with DBSCAN algorithm, merge
bounding boxes with Convex Hull algorithm.
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7.2. DBSCAN Algorithm

The process of grouping bounding boxes based on their proximity to each other
is crucial for effective bounding box merging. To achieve this, we adapt the DBSCAN
algorithm (as shown in Algorithm 2), introduced by Schubert et al. [32]. This approach
allows us to group bounding boxes in the same class within an image. In this context,
distance is measured as the number of pixels between one bounding box and another.

Algorithm 2: Abstract DBSCAN Algorithm

Input: Coordinates of all bounding boxes (D), epsilon distance (ε), minimum
points (MinPts)

Output: Coordinates of grouped bounding boxes (C)
1 Initialize an empty set C;
2 Initialize an empty set visited;
3 foreach bounding box p ∈ D do
4 if p is not visited then
5 Mark p as visited;
6 Neighborhood← getNeighbors(p, ε);
7 if |Neighborhood| < MinPts then
8 Mark p as noise;
9 end

10 else
11 Create a new cluster Cnew;
12 Expand cluster C by adding the area from Cnew;
13 end
14 end
15 end

16 return C;

7.3. Convex Hull Algorithm

After merging bounding boxes using the DBSCAN algorithm, we employ the Convex
Hull algorithm to connect boxes within the same group. The Convex Hull algorithm
identifies a set of points on a plane and determines the smallest set of points that form a
convex polygon encompassing all the points. Several Convex Hull algorithms have been
proposed, each with different time and space requirements. In our case, we have selected
the QuickHull algorithm [33] due to its fast execution speed and efficient memory usage.
We present the implementation details in Algorithm 3.

7.4. Coloring Algorithm

As a final step, we apply color masks to detected areas. It allows us to provide a
user-friendly visualization of forest fire risks associated with specific forest areas. An
example result showcasing the color-coded objects can be seen in Figure 10 and is based on
color coding from Table 2.

Table 2. Fire risk color scheme.

Tree Types Risk Level Color

Alive Tree Low Green
Debris Moderate Brown

Dead Tree High Yellow
Beetle–Fire Tree Extreme Red
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Algorithm 3: Convex Hull (Quickhull) Algorithm
Data: Set of points P, representing the collection of all current coordinates of all

the bounding boxes
Result: Convex Hull of P, representing the minimum collections of the

coordinates that can form an outer boundary that wraps around a set of
coordinates, forming a convex shape with no indentations or concave
sections

1 Function QuickHull(P):
2 if |P| ≤ 3 then
3 return P;
4 end
5 minX ← point with minimum x-coordinate in P;
6 maxX ← point with maximum x-coordinate in P;

7 le f tSet← empty set;
8 rightSet← empty set;
9 foreach point p in P do

10 if p is on the left side of the line minX → maxX then
11 Add p to le f tSet;
12 end
13 else
14 Add p to rightSet;
15 end
16 end

17 return FindHull(minX, maxX, le f tSet) ∪ FindHull(maxX, minX, rightSet);

18 Function FindHull(p1, p2, P):
19 if P is empty then
20 return {p1, p2};
21 end
22 p← point in P with maximum distance from the line p1 → p2;
23 le f tSet← set of points on the left side of the line p1 → p;
24 rightSet← set of points on the left side of the line p→ p2;

25 return FindHull(p1, p, le f tSet) ∪ {p} ∪ FindHull(p, p2, rightSet);



Drones 2024, 8, 39 14 of 19

Figure 10. Original image, prediction result and post-processed visualization result.

8. Methodology

The data for our model was collected by UAVs in various regions in British Columbia.
RGB images of size 4 k were captured at the height of 75–100 m above the ground
level. To prepare the data for training, we pre-processed the images and annotated key
points of interest using RoboFlow. The model was then trained using the Northeastern
Discovery Cluster.

8.1. Annotation

To ensure consistency in the annotation process across our team, we utilized a series
of annotation guides when labeling our dataset with the four defined classes. These guides
were designed to provide clear instructions for team members to follow. Here are some
examples of the guidelines we used, visualized in Figure 11:
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1. Annotate trees together if they are very close to each other and in the same type;
annotate trees separately if they are not close to each other or not in the same type.

2. Draw a tight bounding box with no offset space from the tree.
3. Annotate complete trees instead of part of the tree.
4. Avoid bounding boxes overlapping each other.

Figure 11. Example of annotation guide: tight bounding box.

8.2. Pre-Processing

A model yields greater accuracy when it is given training data in a suitable format.
To achieve this objective, we conducted pre-processing on the dataset, which ultimately
led to improved levels of accuracy. The following steps were performed as a part of the
pre-processing stage:

Resize: We resized all the images to 1024 × 1024 pixels. This size ensures the model is able
to capture a large number of small trees without losing details.

Augmentation: We augmented the training samples with random saturation (between
−25% and +25%), brightness (between −15% and +15%) and noise (up to 5% of
pixels), as seen in Figure 12.

Figure 12. Example of augmented images.

The finalized dataset contained 8000 samples. As for the distribution, we allocated
70% of the images for training, 20% for validation and 10% for testing.

8.3. Training Process

To train the data using YOLOv8, we specify an image size of 1024 and a batch size of
8, and train for 2000 epochs. In all cases, the training process involved feeding the training
data to the YOLO model, computing the loss function and updating the model’s parameters
through backpropagation.
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9. Results

The mAP (mean average precision) is a widely used metric for evaluating object
detection performance, particularly the mAP@0.5, which sets the Intersection over Union
(IOU) threshold to 0.5 for determining true positive predictions. However, when it comes
to detecting areas of trees, using 0.5 as the IOU threshold may not be ideal due to variations
in the tree sizes and debris size. To address this issue and ensure a more reliable evaluation
of our model, we have averaged the AP over all object classes and 15 IoU thresholds from
0.2 to 0.95 with a step size of 0.05. The results are summarized in Table 3. Final visualizations
with a different distance parameter used in merging are shown in Figure 13.

Table 3. Object detection results.

Class Instances Precision Recall mAP

All 2747 0.71 0.707 0.665
Alive Tree 1900 0.904 0.848 0.806
Beetle–Fire Tree 196 0.601 0.797 0.636
Dead Tree 393 0.737 0.582 0.633
Debris 258 0.7 0.599 0.586

Figure 13. Comparison of different merging thresholds. The colors indicate different risks of wildfire:
green means low, brown moderate, yellow high, and red extreme.

Future Work and Limitations

1. Computer vision algorithm selection: While YOLO models offer rapid detection speed
and real-time capabilities, R-CNN models may demonstrate superior detection rates
and precision, especially for small objects such as forest trees. Therefore, it would be
valuable to explore different deep learning methods and compare their performance
to determine the most suitable approach for our specific application.

2. Currently, the merging distance threshold is manually determined. To improve
the efficiency and automation of our approach, we should develop a method that
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automatically calculates the merging threshold based on the UAV’s height. This
would eliminate the need for manual selection and ensure consistent and accurate
merging of detected objects in the aerial imagery.

3. Finally, we conducted a study and validated our proof of concept in the British
Columbia region. The natural next step would be to expand the dataset collection
to other provinces/parts of the world to include other tree types and flammability
rankings, as well as additional factors in the calculation.

10. Conclusions

In conclusion, this paper presents a successful approach for the detection of various
forest fire fuels, providing valuable support for early risk detection and prevention of
forest fires.

To enhance the efficiency of our approach, we employed the Convex Hull algorithm to
group similar types of trees that were in close proximity to each other. This step facilitates
a more comprehensive understanding of the overall fire risk in the forest by considering
the collective characteristics of neighboring trees.

Furthermore, we proposed a novel visualization method that effectively represents fire
risk information through the use of intuitive color-coded areas. This visualization technique
enhances the interpretability of the fire risk map, allowing stakeholders and forest manage-
ment authorities to assess the severity and distribution of fire-prone
regions quickly.

Overall, this research contributes to the field of forest fire prevention by providing
a robust framework for the detection and visualization of fire fuels. The combination
of advanced object detection algorithms, group analysis, and informative visualization
empowers decision-makers with the necessary tools to implement proactive measures for
forest fire management and mitigation.
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