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Abstract: The increasing number of applications involving the use of UAVs has motivated the
research for design considerations that increase the safety, endurance, range, and payload capability
of these vehicles. In this article, the dynamics of a flexible flapping wing is investigated, focused on
designing bio-inspired UAVs. A dynamic model of the Flapping-Wing UAV is proposed by using 2D
beam elements defined in the absolute nodal coordinate formulation, and the flapping is imposed
through constraint equations coupled to the equation of motion using Lagrange multipliers. The
nodal coordinate trajectories are obtained by integrating the equation of motion using the Runge–
Kutta algorithm. The imposed flapping is modulated using a proposed smooth function to reduce
transient vibrations at the start of the motion. The results shows that wing flexibility yields significant
differences compared to rigid-wing models, depending on the flapping frequency. Limited amplitude
of oscillation is obtained when considering a non-resonant flapping strategy, whereas in resonance,
the energy levels efficiently increase. The results also demonstrate the influence of different flapping
strategies on the energy dissipation, which are relevant to increasing the time of flight. The proposed
approach is an interesting alternative for designing flexible, bio-inspired, flapping-wing UAVs.

Keywords: FWUAV; dynamics; ANCF; flexible wing; vibrations; flapping

1. Introduction

The growing demand from individuals and companies for the use of unmanned aerial
vehicles (UAVs) in civil and military applications is motivating research into design consid-
erations that increase the safety, endurance, range, and payload capability of these vehicles.
In contrast with conventional configurations (e.g., fixed-wing, helicopter, and multi-rotor),
the bio-inspired Flapping-Wing Unmanned Aerial Vehicle (FWUAV) is inspired by bird
flight and is a promising candidate for improving these requirements by mechanically
flapping artificial wings to generate lift and thrust. Research on FWUAVs is motivated
by the outstanding performance observed in birds, such as migrating species [1], which
inspires understanding of the fundamentals of flapping flight to propose efficient solutions
for the design of UAVs. Di Luca et al. [2] demonstrate that folding the wing reduces
drag during cruise and, with asymmetric folding, it functions as an aileron. Pesavento
and Wang [3] optimize the flapping kinematics of an insect wing model and discuss how
flapping flight is 27% more efficient than a conventional steady wing by taking advantage
of unsteady aerodynamic effects from the interaction of the wing with its own wake during
wing reversal. In addition to that, an FWUAV configuration is safer for urban operation
due to the lack of fast-rotating parts [4], which is a characteristic that suits this type of
vehicle for applications that involve human–machine interaction.

The flapping motion in an FWUAV is usually achieved using mechanical links that
connect the wing to a four-bar mechanism [5]. However, as Gerdes et al. [6] point out,
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once the linkages are assembled, the input amplitude of the flapping is fixed, and only
the frequency remains to be controlled [7]. On the other hand, birds adapt their flapping
pattern depending on the flight phase. Cochran et al. [8] provide data that migratory species
(Catharus ustulatus, Catharus fuscescens, and Hylocichla mustelina) use a higher amplitude and
higher frequency continuous flapping during climbing and intermittent flapping consisting
of periods of continuously flapping followed by periods of gliding during the cruise phase.
Therefore, the design of an FWUAV capable of controlling both the flapping frequency and
the amplitude is desired.

Typical FWUAV models usually assume a rigid wing [9], whereas flexibility can be
used to design efficient vehicles. Flapping flight is a very complex phenomenon, and the
rigid-wing model may not capture important aerodynamic features, such as the aeroelastic
opening of the primaries during upstroke [10]. Heathcote et al. [11] show that a limited
amount of flexibility also benefits the propulsive efficiency of the flapping wing. Therefore,
modeling the flexibility of the wing during the flapping motion is an important step toward
a better understanding of the fundamentals of flapping flight.

The advantage of modeling the wing while neglecting the flexibility is that the ve-
locities along the wing span are obtained solely from the wing kinematics. However, as
applications scale in range, payload, and other requirements, the need to design efficient
flyers requires reducing the weight of the components, also including the structure. This
implies selecting materials and optimizing their geometry so that the structure is light and,
consequently, flexible. In addition to that, increasing the wing-span also has a significant
effect on the structure’s flexibility, which renders this type of analysis relevant for flapping
wings with a high aspect ratio. On the other hand, if flexibility is not fully considered when
designing an FW-based UAV, the resulting aerial vehicle is not an efficient flyer due to the
effect of local vibrating modes.

Vanella et al. [12] present a model composed of two rigid links coupled with a lumped
torsional spring representing the chord-wise flexibility. The flapping motion is prescribed
by the position and pitch of the section, and an exponential smooth function is used to
avoid transient vibrations. Yin and Luo [13] impose harmonic translation and rotation
motion on a model of a flexible wing section and discuss the increase in the lift-to-drag
ratio when considering its flexibility. Tian et al. [14] present the model for insect wings
considering chord-wise deformation. The flapping input is applied by considering a
harmonic function with a phase difference between the flapping and pitching. The model
developed by each of these authors is mainly concerned with characterizing the influence
of chord-wise flexibility. On the other hand, this article evaluates the effect of span-wise
flexibility on the response of the structure during the flapping motion. The structural-based
force magnitudes are significantly more influential compared to aerodynamic forces [15],
and this is a typical strategy for FWUAV design [16], mainly focused on low airspeed flight.
The results demonstrate that span-wise flexibility has a significant effect on the motion of
each section depending on the flapping frequency and can be conveniently considered to
design efficient flapping-wing-based UAVs. In this sense, this present article presents the
effects of flexibility for various flapping parameters.

This paper presents an approach to demonstrate the influence of flexibility on the
dynamics of a flapping wing. Note that nature has developed flying animals over many
evolutionary years, and they exhibit efficient flight, mainly in terms of energy consumption,
maneuver envelope, and static and dynamic stability. However, in terms of bio-inspired
UAV design, the approaches in the literature involve flapping-wing-based formulations,
and they usually consider rigid structures. On the other hand, flexibility is an important
characteristic in the efficiency of birds, and it is inherent to the materials employed to
manufacture aerial vehicles, mainly because they need to be light. To this end, a model of
an FWUAV with flexible wings is proposed. The wing structure is discretized using absolute
coordinates, which is an adequate formulation for computing the response of the structure
subject to the large expected flapping amplitude of motion. The equation of motion of the
wing performing a flapping motion is obtained with a multi-body system approach, where
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the motion constraints are embedded into the equations through Lagrange multipliers. The
results demonstrate how the flexibility can be considered for designing an efficient flapping
wing focused on bio-inspired UAVs. The remainder of this article is organized as follows.
Section 2 presents the nomenclature and parameters of the proposed flexible flapping-wing
model. Section 3 presents the modeling methodology and the equation of motion of the
FWUAV using the absolute nodal coordinate formulation (ANCF). Section 4 presents the
results of different flapping strategies applied to the model. Section 5 presents the final
conclusions and suggestions for future research.

2. Methodology

The dynamic model consists of a flapping joint at O, which defines the origin of the
wing coordinate system. The wing is modeled by two portions: an inner and rigid wing of
length Li attached to the flapping joint, and a flexible outer wing with non-deformed length
Lo attached to the other end of the rigid wing. The rigid wing attached to the flapping joint
defines a time-dependent flapping angle θ(t) with respect to the x-direction. This angle
is directly controlled, and it prescribes the motion of the wing by considering different
flapping strategies. A typical bird and the bio-inspired mechanical model of the FWUAV
wing are presented in Figure 1a,b, respectively, where the points of interest of the model
are associated with their counterparts on the bird wing.

O

A
T

(a)

O
x

y

θ(t)

Li

A
Q1

Q2 Q3 Q4 T

(b)
Figure 1. (a) Picture of a common bird in Brazil (Ara ararauna) and the model representing the wing
structure overlapped. (b) Flexible, bio-inspired, flapping-wing model. The points A, Q1, Q2, Q3, Q4,
and T define points of interest in the flexible wing.

Different points along the flexible wing are labeled; the rigid-flexible interface by A,
the tip of the wing by T, and intermediate points located at 20%, 40%, 60%, and 80% of the
flexible wing length as Q1, Q2, Q3, and Q4, respectively. The positions of these last ones are
chosen arbitrarily.

Rigid Wing Motion

The rigid wing flapping pattern is obtained from the wing kinematics. The position of
an arbitrary point in the rigid wing is computed by:

rRW(t) =
{

xRW(t)
yRW(t)

}
=

{
l cos θ(t)
l sin θ(t)

}
(1)

where 0 ≤ l ≤ Li defines the position of the interest point along the wingspan. The velocity
is obtained by differentiating Equation (1) with respect to time:

ṙRW(t) =
{

ẋRW(t)
ẏRW(t)

}
=

{−lθ̇(t) sin θ(t)
lθ̇(t) cos θ(t)

}
. (2)

3. Flexible Wing Dynamics

The Absolute Nodal Coordinate Formulation (ANCF) is used to obtain the equation
of motion from the elastic wing. This method describes the dynamics of structures and
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multibody systems using absolute coordinates and slopes as nodal coordinates [17]. Since
infinitesimal rotations are not used, the equations of motion are valid for the analysis of
structures subjected to large deflections and deformations [18]. Furthermore, the mass
matrix is constant, while the Coriolis and centrifugal forces are identically equal to zero [19].
On the other hand, a non-linear expression for the elastic forces is obtained. Yoo et al. [20]
obtained accurate trajectories of a thin cantilevered beam with an attached rigid body
under free vibrations obtained using the ANCF and a high-speed image acquisition system.
The results were extended by considering vertical vibrations forced through the base
motion [21].

The position of an arbitrary particle from the beam is represented using the ANCF,
such as

r(t) = S(ξ)e(t), (3)

where S(ξ) and e(t) are the shape function and the nodal coordinates, respectively. The
shape function of the 2D beam element using the ANCF is defined by:

S(ξ) =
[
s1 I s2 I s3 I s4 I

]
, (4)

with ξ denoting the normalized length of the element, i.e., ξ = x/l, where l is the length
of the element. I is an identity matrix with 2 rows and 2 columns, and s1 = 1− 3ξ2 + 2ξ3,
s2 = l

(
ξ − 2ξ2 + ξ3), s3 = 3ξ2 − 2ξ3, and s4 = l

(
ξ3 − ξ2) are the polynomial interpolation

coefficients of the shape function [22].
The nodal coordinates of the two-dimensional ANCF beam element are the position

of its end points with respect to the absolute coordinate system and the slope from the
beam center line with respect to the coordinate system. Denoting by the subscripts (·)A
and (·)B the end nodes of the element, the nodal coordinate vector of the 2D beam element
is defined by:

e(t) =
{

rA(t)>
∂rA(t)

∂x

>
rB(t)>

∂rB(t)
∂x

>}>
, (5)

and the velocity and acceleration of an arbitrary particle in the element are obtained by,
respectively,

ṙ(t) = Sė(t) (6)

r̈(t) = Së(t), (7)

which allows one to compute the kinetic energy of the element by considering the follow-
ing equation:

T =
1
2

ė(t)>
[∫

V
ρS>SdV

]
ė(t), (8)

where ρ is the specific mass of the material, V = Al is the volume of the element, and A is
the cross section area of the element. The integral in Equation (8) results in the constant
mass matrix M, which is reproduced below for convenience [17]:
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M = m



13
35

0
11l
210

0
9

70
0 − 13l

420
0

13
35

0
11l
210

0
9

70
0 − 13l

420
l2

105
0

13l
420

0 − l2

140
0

l2

105
0

13l
420

0 − l2

140
13
35

0 − 11l
210

0

symm.
13
35

0 − 11l
210

l2

105
0

l2

105



(9)

where m = ρV is the mass of the element. The potential energy resulting from the flexibility
of the wing is given by [22]

U = Ul +Ut =
1
2

∫ l

0
EAε2ds +

1
2

∫ l

0
EIκ2ds, (10)

where Ul and Ut are the potential energies due to the longitudinal and flexural defor-
mations, respectively. This term is cumbersome to compute since both the longitudinal
deformation ε and the curvature κ are functions of the nodal coordinates, leading to highly
nonlinear terms for the elastic forces. Different assumptions for these parameters result
in different models for the elastic forces. If the longitudinal deformation can be assumed
constant along the element, models L1 and L3 may be employed [23].

The mechanical energy of the system is computed by:

E = T +U . (11)

Note that the longitudinal stiffness matrix is a function of the nodal coordinates,
since it depends on the value of the assumed constant longitudinal deformation across

the element ε̄l =

√
(e5−e1)2+(e6−e2)2

l − 1, with ei representing the components from e. The
elastic force due to the longitudinal strain is

Ql = Kle, (12)

such that

Kl(e) =
EA

l
ε̄l



6
5

0
l

10
0

−6
5

0
l

10
0

6
5

0
l

10
0

−6
5

0
l

10
2l2

15
0

−l
10

0
−l2

30
0

2l2

15
0

−l
10

0
−l2

30
symm.

6
5

0
−l
10

0
6
5

0
−l
10

2l2

15
0

2l2

15



. (13)
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The elastic force due to transverse deformation is

Qt = Kte, (14)

such that

Kt =
EI
l3



12 0 6l 0 −12 0 6l 0
12 0 6l 0 −12 0 6l

4l2 0 −6l 0 2l2 0
4l2 0 −6l 0 2l2

12 0 −6l 0
symm. 12 0 −6l

4l2 0
4l2


. (15)

Then, the elastic force term is represented by the following force vector:

f = −(Kl(e) + Kt)e. (16)

3.1. Flapping Motion Constraints

The flapping motion is imposed using constraint equations that are written in terms of
the time t and the nodal coordinates e(t). The constraint consists of prescribing the position
and slope at the joint A from Figure 1 through the following constraint vector Φ:

Φ(t, e) =

 eA − dA(t)
deA
dx
− θA(t)

, (17)

where dA(t) and θA(t) are the imposed position and slope of the joint, respectively, and
where the subscript (·)A indicates point A of the model. Equation (17) represents a set of
rheonomic constraints that must be satisfied for all instants of time [24]. Differentiating
Equation (17) two times with respect to time, the following equation is obtained:

Φ̈(t, e, ė) =



ëAx + Li θ̈(t) sin θ(t) + Li θ̇
2(t) cos θ(t)

ëAy − Li θ̈(t) cos θ(t) + Li θ̇
2(t) sin θ(t)

¨∂eA
∂x

+ θ̈(t) sin θ(t) + θ̇2(t) cos θ(t)
¨∂eA

∂y
− θ̈(t) cos θ(t) + θ̇2(t) sin θ(t)


, (18)

from which the following expression is obtained:

Aë(t) = b(t), (19)

by considering the the vector b(t) and the matrix A given by, respectively:

b(t) =


−Li θ̈(t) sin θ(t)− Li θ̇

2(t) cos θ(t)
Li θ̈(t) cos θ(t)− Li θ̇

2(t) sin θ(t)
−θ̈(t) sin θ(t)− θ̇2(t) cos θ(t)
+θ̈(t) cos θ(t)− θ̇2(t) sin θ(t)

, (20)

A =
[
I4×4 04×4

]
, (21)

where I and 0 indicate the identity and zero matrices, respectively. The subscript indicates
the dimension of the matrix.
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3.2. Equation of Motion

The dynamic model of the constrained mechanical system representing the flexible
flapping wing is represented by the following system of differential and algebraic equations
(DAE):

Më + A>Λ = f (22)

Φ(t, e) = 0, (23)

where Λ is the Lagrange multiplier vector and f is the vector containing the elastic forces.
However, the solution is not easily obtained from the DAE system, and a convenient
approach consists of reducing the index of the problem [25] by differentiating the constraint
equation to obtain an equivalent model in the form of ordinary differential equations
(ODE) [26,27]; see Equation (19).

Më + A>Λ = f (24)

Aë = b. (25)

The solution to Equation (25) is also a solution to the original system, and it is ob-
tained with a standard algorithm for solving the ODE system, such as the Runge–Kutta
algorithm [28]. However, the resulting Equation (23) is mildly numerically unstable, and
its solution may require the use of constraint-stabilizing parameters if the trajectories are
solved for a long period of time [26]. In this case, the following equivalent constraint
equations are considered instead [29]:

Aë + 2αbgΦ̇ + β2
bgΦ = b, (26)

where αbg > 0 and βbg are the two stabilizing parameters that modify the constraint-
associated hypersurface into an attractor such that the solution trajectory, that is, e(t),
approximately satisfies the constraint equations. The following system represents the
dynamic of the FWUAV subjected to the flapping motion constraints:

ë = M−1
(

f − A>Λ
)

, (27)

AM−1
(

f − A>Λ
)
= b− 2αbgΦ̇− β2

bgΦ (28)

Λ =
(

AM−1 A>
)−1(

−b + 2αbgΦ̇ + β2
bgΦ + M−1 f

)
. (29)

Since the term
(

AM−1 A>
)

is constant over time, it is computed only once during the
simulation. Then, the acceleration of the system is obtained by substituting the Lagrange
multiplier back into Equation (27), resulting in the following expression:

ë = M−1
(

f − A>
(

AM−1 A>
)−1(

−b + 2αbgΦ̇ + β2
bgΦ + M−1 f

))
. (30)

Note that the solution to Equation (30) requires us to define a set of initial conditions com-
patible with the system constraints, i.e., e(0), such that both Φ(0, e(0)) = 0 and Φ̇(0, e(0)) = 0.
This ensures that the system configuration starts on the constraint hypersurface.

The advantage of the presented FWUAV model is its versatility. In addition to the
advantages associated with the ANCF, including the accuracy of analyzing the system
response to large amplitude of motions, the possibility of directly including the constraint
equations allows for different configurations of FWUAVs to be rapidly modeled, speeding
up the development process. Note that the accuracy of ANFC-based approaches have
been presented by different authors in the literature, such as Yoo et al. [20], Yoo et al. [21],
Farokhi et al. [30], and others.
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Note that the equation of motion neglects the aerodynamic forces. This is a typical
strategy for small vehicles, mainly when a low-speed flight is evaluated. Otherwise,
aerodynamic effects combined with structural dynamics can generate static and dynamic
phenomena, such as aeroelastic divergence and flutter. However, at low speeds in a cruise
phase of flight, the structural forces are significantly more influential than aerodynamic
forces are [16].

3.3. Modal Parameters

The elastic forces are linearized with respect to the equilibrium configuration to obtain
the modal parameters of the flexible wing modeled using the ANCF. Then, the modal
parameters from the wing considering a clamped-free boundary condition are obtained
from the generalized eigenvalue problem:

det
(

∂ f
∂e
|e=ẽ −ω2

n M
)
= 0 (31)

with ẽ denoting the equilibrium configuration from the elastic wing.

3.4. An Efficient Way to Start the Flapping Motion

An efficient approach to starting the flapping motion is to consider an incremental
amplitude from zero to the desired amplitude of motion. This behavior can be achieved by
using a modulation function (MF). This strategy is relevant to reduce the influence of the
higher-order vibration modes in relation to the first bending mode on the wing response
due to the control input. In practice, in an abrupt motion, i.e., performing the first cycle
of motion considering the desired flapping amplitude, higher-order vibration modes are
sufficiently energized to contribute to the motion. On the other hand, in performing the
first cycles while considering an amplitude that increases until achieving the flapping
amplitude, the energy from the input is more concentrated in the frequency range of the
first bending mode, and the flapping motion is more efficient in terms of energy usage. In
this sense, the higher-order vibration modes represent undesired vibrations, in terms of
efficiency of flapping.

There are different strategies for defining an input of increasing amplitude. In par-
ticular, if an exponential MF is used (cf. [12]), an asymptotic convergence to the flapping
amplitude can be verified. However, in terms of a practical implementation, this leads to a
computational burden for an embedded system with limited resources, since a modulation
value and its time derivative need to be computed for all instants during the flight. On
the other hand, an alternative approach is introduced in this article based on a proposed
modulating function that converges to the flapping amplitude in a finite interval. The
proposed MF is parameter-dependent, and the values can be conveniently defined to obtain
different strategies to start the flapping motion.

The modulation strategy in this paper consists of defining a smooth transition between
rest and motion, which is denoted by Smooth Harmonic Flapping (SHF). Modulation
improves the quality of the flapping by reducing the excitation of higher frequencies and
undesired vibrations. The smooth function s(t) is defined as:

s
(

t− a
b− a

)
=


0, if t ≤ a

3
(

t−a
b−a

)2
− 2
(

t−a
b−a

)3
, if a < t < b

1, otherwise

, (32)

where a and b are constant parameters that modulate the starting and end points of the
transition. Figure 2 illustrates the envelope defined by Equation (32).
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Figure 2. Illustration of the proposed smooth function.

The particular harmonic flapping (HF) strategy, i.e., θ(t) = aF sin (ωFt), is obtained if
the modulating parameters chosen are a = −1 and b = 0. Then, the flapping angle, angular
velocity, and angular acceleration with respect to the time are defined by, respectively:

θ(t) = s(t)aF sin (ωFt), (33)

θ̇(t) = ṡ(t)aF sin(ωFt) + s(t)aFωF cos (ωFt), (34)

θ̈(t) = s̈(t)aF sin(ωFt) + ṡ(t)aFωF cos (ωFt)− s(t)aFω2
F sin (ωFt). (35)

The inverted smooth function s̃(t) = 1 − s(t) is used for the transition between
flapping and non-flapping. Combining the s(t) and s̃(t) functions, a smooth step is ob-
tained, used to define the intermittent Resonant Flapping (RF) strategy for Model R, i.e.,
θ(t) = s(t)s̃(t)aF sin (ωFt).

The position and velocity in the y− direction are normalized with respect to the
flapping parameters by considering the following equations:

ỹ =
y

(Li + Lo) sin (aF)
, (36)

˙̃y =
ẏ

(Li + Lo)ωFaF cos (aF)
, (37)

where the denominator in Equation (36) corresponds to the vertical position of the tip of an
equivalent rigid wing.

4. Results and Discussion

The proposed approach is demonstrated for a flapping-wing model considering the
physical and geometric parameters shown in Table 1. The Young modulus E and the
material density ρ are considered to match the properties of an aluminum 7075-T6 alloy,
which is a material widely used in the aerospace industry.

Although flying feathers usually have a varying geometry along their axis [31], which
changes the modal properties of the structure, it is assumed that the cross section in the
model has a constant shape of area A and inertia I throughout the span to keep the analysis
concise. However, the ANCF can also be applied to model tapered and twisted structures
such as wind turbines [32].
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Table 1. Flapping-wing model parameters.

Parameter Value Unit

Li 0.55 m
Lo 1.25 m
A 9.6× 10−5 m2

I 5.12× 10−10 m4

ρ 2810 kg/m3

E 71.7× 109 N/m2

The first three vibration modes are considered, and their corresponding frequencies are
obtained by solving the generalized eigenvalue problem, Equation (31), which correspond
to f1 = 5.222 Hz, f2 = 32.728 Hz, and f3 = 91.650 Hz, respectively. They numerically
correspond to the analytical values found in Table 2 of [33], p. 103. The flapping frequency
is normalized with respect to the frequency of the first mode for convenience, such that
f̃F = fF

f1
, where fF = 2πωF is the flapping frequency converted to hertz. The normalized

time is defined as t̃ = f̃Ft.
Table 2 presents a summary for different flapping-wing models. The sixth-order Runge–

Kutta (RK6) algorithm is used to integrate the equation of motion [34]. The second column
of the table indicates the flapping strategy. The third and fourth columns indicate the
smooth function modulating parameters. Columns 5 and 6 present the flapping amplitude
and normalized flapping frequency, respectively. The parameters to discretize the elastic
wing using the ANCF and the time step for the RK6 algorithm to integrate Equation (30)
are presented in columns 7 and 8, respectively. The HF, SHF, and R flapping strategies are
defined in the following.

Table 2. Summary of the parameters for each flapping-wing model.

Model Strategy a b aF f̃F ne ∆t

0 HF −1 0 25◦ 0.2 5 10−6

1 SHF 0 1 25◦ 0.2 5 10−6

2 SHF 0 2 25◦ 0.6 5 10−6

R RF 1 [0, 0.4] [1, 1.4] 5◦ 1 5 10−6

3 SHF 0 3 15◦ 1.8 12 10−6

1 The first and second values of the intervals refer to a and b for the smooth and inverted functions, respectively.

Model 0 consists of the harmonic flapping (HF) strategy. The system is initially at rest,
and the harmonic flapping input defined in Equation (33) is applied, considering a = −1
and b = 0. The normalized vertical position and velocity of each point of interest in Model
0 are presented in terms of the normalized time t̃ in Figure 3a,b, respectively. A variation of
one unit from the normalized time corresponds to one flapping cycle. The trajectory from
point A, represented by the red line, is prescribed from the flapping kinematics; thus, it
represents the input applied to the model. On the other hand, the points Qi, i = 1, . . . , 4,
and T are obtained by solving the equations of motion.
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Figure 3. Trajectories of the flapping wing considering the HF and SHF flapping strategies. The
normalized vertical position (a) and velocity (b) of Model 0. The normalized vertical position (c) and
velocity (d) of Model 1.

Model 1 (see Table 2) is identical to Model 0 except that the input is modulated.
Variations in the normalized vertical position and normalized velocity from points of
interest with respect to normalized time t̃ = fFt are presented in Figure 3c,d, respectively.
Note that Model 1 does not show the higher frequency oscillations of Model 0 shown in
Figure 3a due to the input modulation. The period in which the flapping is modulated by
s(t) is represented in Figures 3c,d in the highlighted region. Thus, if the wing is initially at
rest, such as during gliding, a smooth transition is required to avoid the vibrations shown
by the trajectories of Model 0.

Alternatively, the trajectories of the wing are presented in the phase portrait as illus-
trated in Figure 4a,c,e. Each orbit illustrates the trajectory of the points of interest after
the modulation period. The orbits outlined using dashed lines correspond to the posi-
tion and velocity of an equivalent point in a rigid wing, computed through kinematics
(Equations (1) and (2)). The points illustrated in the phase portrait are intersections of the
trajectories with Poincaré sections defined at multiples of the flapping period. The points
in these sections represent the mode shape of the wing during the flapping motion.

Figure 4b,d,f illustrate the trajectory of the points of interest in the xy plane. The
deflection of the elastic wing at two snapshots that occurs when the tip has its maximum
and minimum deflections is presented by the red curve. These snapshots contrast with
the configuration from an equivalent rigid wing computed through the wing kinematics
shown by the straight gray line.

The solution for Model 2 is obtained considering the duration of the smooth flapping
as (b− a) = 2 s, as only one second was insufficient to reduce the influence of the transition.
The trajectories in the phase portrait are presented in Figure 4c, and the corresponding
flapping pattern is shown in Figure 4d.
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ỹ - [-]

˜̇ y
-[

-]

A Q1 Q2 Q3 Q4 T

(c)

0.0 0.5 1.0 1.5 2.0

−1.0

0.0

1.0 t = 2.31s

t = 4.06s

x - [m]

y
-[

m
]

A Q1 Q2 Q3 Q4 T

(d)

−1.0 0.0 1.0

−2.0

0.0

2.0
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Figure 4. Trajectories of the system for various flapping parameters. (a) Phase portrait and
(b) flapping pattern in the xy plane of Model 1. (c) Phase portrait and (d) flapping pattern in
the xy plane of Model 2. (e) Phase portrait and (f) flapping pattern in the xy plane of Model 3.

The position and velocity from Models 1 and 2 are increased in comparison with
the rigid wing, which is illustrated by the larger orbits from all points of the elastic wing
when compared with the orbits of the corresponding points in the rigid wing operating
at the same flapping conditions. In practice, the effect of flexibility is to increase both the
amplitude and velocity of oscillation of points in the flexible wing in comparison with the
rigid-wing dynamics.

When comparing the pattern in the xy plane between Models 1 and 2, the increase in
the flapping frequency yields additional bending, significantly increasing the amplitude
of oscillation for the points of interest. Specifically, for the snapshots in Figure 4b,d, the
maximum vertical position of the tip increases from 0.804 m in Model 1 to 1.163 m in
Model 2, a relative increase of 44.65%. In contrast to the maximum displacement of the
rigid wing, 0.760 m, the increases in Models 1 and 2 are 5.69% and 52.88%, respectively.

Model 3 corresponds to the dynamics for a flapping frequency above the first natural
frequency. The trajectories depicted in Figure 4e demonstrate that the outer points of



Drones 2024, 8, 56 13 of 17

interest Q3, Q4, and T have a phase difference with respect to the inner points A, Q1,
and Q2, such that, while the inner sections are in the upstroke phase, the outer sections
are partially executing the downstroke phase. In addition, the orbits of these points are
reduced in comparison with the point of an equivalent rigid wing. Figure 4f illustrates two
snapshots of the wing deflection.

The RF strategy (Table 2) consists of actuating the flapping joint in resonance with the
first bending mode until sufficient energy is introduced into the system. Then, the flapping
input stops, and the motion from the elastic wing persists due to its free dynamics. Figure 5a
shows the phase portrait of the wing during resonant flapping. The orbit of A collapses
to a point in the phase portrait due to the stopping of the flapping input. Unlike Model 3,
all points perform at the same upstroke or downstroke phase. However, the positions
where they intersect the Poincaré sections are slightly different from the computed resonant
frequency. The flapping pattern in the xy plane is presented in Figure 5b.

−5.0 0.0 5.0

−10.0

−5.0

0.0

5.0

10.0
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Figure 5. Model R trajectories in the (a) phase portrait and (b) xy plane.

During non-resonant flapping, the mechanical energy of the system is limited and
continuously oscillates, as shown in Figure 6a, while the flapping input is applied. This
result shows the inefficiency of this flapping strategy, since the energy transmitted through
the imposed motion is used to reduce the mechanical energy of the system and is not likely
to be converted back to battery capacity. Thus, for a fixed flapping frequency, the only
possibility to increase the mechanical energy of the wing is to increase the amplitude of the
flapping input.
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Figure 6. Mechanical energy of (a) Model 2 and (b) Model R.

Unlike the non-resonant flapping strategy, the mechanical energy of the wing of Model
R continuously increases while in resonance, as shown in Figure 6b. Then, after the flapping
stops, the mechanical energy is conserved, since there is no dissipation included in this
bio-inspired wing model. This distinguishing feature allows for a low-amplitude input
flapping result at arbitrary amplitudes of oscillations in the flexible wings. This benefits,
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for instance, the inclusion of solar panels in the rigid sections of the wing to generate
electric energy and increase the flight time, since the low flapping amplitude allows them
to operate under better conditions of light incidence.

The resonance-based strategy, Model R, consists of using intermittent flapping with
a frequency equal to the first bending mode of the flexible wing. The results indicate
that, even with a small flapping input amplitude, it is possible to continuously increase
the energy stored in the flexible wing to obtain large amplitude oscillations. Then, when
sufficient mechanical energy is stored, the flapping input is stopped, and the flexible wing
remains flapping through its free dynamic. Intermittent resonant flapping is a promising
strategy for increasing the endurance of the FWUAV, since energy is efficiently converted to
mechanical energy in the form of the desired flapping motion. However, there are different
mechanisms of energy dissipation in a physical mechanical system, as well as in biological
species [35] (e.g., viscoelastic damping, aerodynamic friction, and induced drag), such that,
after some period of time, the deflection amplitude of the flexible wing decreases.

Analysis of the effect of damping requires modeling mechanisms of energy dissipation,
including viscoelastic damping in the ANCF model of Equation (30) as in [36], using
complementary information obtained using system identification techniques to estimate
the damping ratios [20]. Furthermore, in the presence of energy dissipation, the flapping
amplitude in resonance is also limited by the damping ratio. Therefore, in the presence of
energy dissipation, resonant flapping is applied until a desired amplitude of oscillation is
obtained; then, the amplitude from the flapping input motion is reduced to provide the
energy loss from dissipation during each flapping cycle. This flapping strategy encourages
the implementation of a driving mechanism where both the amplitude and frequency from
the flapping can be controlled, such as by using a servo-motor for accurate control of the
position and speed. This is an interesting topic for further investigations using the approach
of designing flapping-wing-based UAVs proposed herein.

The results of the proposed approach consider a flapping motion assuming deflection
in the xy plane. In addition to that, avians also rotate their entire wing in the shoulder
joint and the outermost feathers through the wrist joint in a combination that tends to
be optimal. Försching and Hennings [10] discuss that the biological wing has its elastic
center located ahead of the aerodynamic center to assist the actuated joints in rotating the
wing, thus reducing the input torque required to drive the wing. Inclusion of the torsional
degree of freedom requires us to consider a wing model in a three-dimensional space,
which increases the modeling complexity.

Note that this proposed modeling includes only the bending motion. On the other
hand, the inclusion of torsional dynamics can change the efficiency of the flapping wing at
non-resonant frequencies, whereas it does not affect the efficiency at the resonant frequency
once the modes are uncoupled from each other. At non-resonant frequencies, a combined
bending/torsion flapping response is observed, instead of a pure bending motion. The
stiffer mode (i.e., bending or torsion) introduces a small contribution to the resulting motion
in relation to the more flexible mode because the focus of this proposed approach is to
consider the frequency range until the first mode. Then, if the torsional mode corresponds
to a higher resonant frequency in relation to the bending mode, the influence of the torsion
is small.

5. Conclusions

This work presents the modeling of an FWUAV with a flexible wing using the ANCF.
The constraint equations required to define the flapping motion of a bio-inspired FWUAV
are obtained. A technique of index reduction is used to obtain the equation of motion as a
system of ODEs. The trajectories of the different models are evaluated by integrating the
equation of motion using the Runge–Kutta algorithm. A comparison of the trajectories
from Models 0 and 1 reveals that modulating the flapping input motion with a smooth
function is an effective way to reduce transient vibrations caused by the flexible wing.
In addition to that, combining the modulation parameters conveniently defines different
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flapping strategies, i.e., HF, SHF, and RF. Then, the flapping frequency is varied to analyze
the effects of flexibility on the flapping pattern. Considering the wing flexibility, Models 1
and 2 show an increase in the amplitude of deflection of all points of interest in comparison
with the trajectories of these points in an equivalent rigid wing. In particular, the tip
deflection increases by 5.69% and 52.88% when flapping at 20% and 60% of the first
natural frequency, respectively. Increasing the flapping frequency beyond the first natural
frequency, i.e., Model 3, yields reduced orbits in comparison with the rigid-wing model. In
addition to that, the flexible wing vibrates similarly to the second mode shape, with part
of the wing in the upstroke and the remaining performing the downstroke. Flapping in
resonance results in significant deflections, and it requires intermittent flapping to limit
the oscillation amplitude after the structure is sufficiently energized. This article has
shown that limited mechanical energy is stored by the wing with a non-resonant flapping
strategy. Thus, the only parameter remaining to obtain a larger oscillation from the elastic
wing is to increase the amplitude of the imposed flapping angle, which depends on the
mechanical construction of the FWUAV, so this is not always possible. On the other hand,
the intermittent flapping strategy can be applied in resonance until the desired amplitude
of motion is obtained. Then, the flapping input is interrupted, and the flexible wing remains
flapping due to its free dynamics.
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