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Abstract: Forest fires often pose serious hazards, and the timely monitoring and extinguishing of
residual forest fires using unmanned aerial vehicles (UAVs) can prevent re-ignition and mitigate the
damage caused. Due to the urgency of forest fires, drones need to respond quickly during firefighting
operations, while traditional drone formation deployment requires a significant amount of time. This
paper proposes a pure azimuth passive positioning strategy for circular UAV formations and utilizes
the Deep Q-Network (DQN) algorithm to effectively adjust the formation within a short timeframe.
Initially, a passive positioning model for UAVs based on the relationships between the sides and
angles of a triangle is established, with the closest point to the ideal position being selected as the
position for the UAV to be located. Subsequently, a multi-target optimization model is developed,
considering 10 UAVs as an example, with the objective of minimizing the number of adjustments
while minimizing the deviation between the ideal and adjusted UAV positions. The DQN algorithm is
employed to solve and design experiments for validation, demonstrating that the deviation between
the UAV positions and the ideal positions, as well as the number of adjustments, are within acceptable
ranges. In comparison to genetic algorithms, it saves approximately 120 s.

Keywords: pure azimuth passive positioning; Deep Q-Network; multi-target optimization; forest
fire monitoring

1. Introduction

Forest fires are natural disasters that pose serious hazards [1–3], characterized by rapid
spread, difficult control, and strong destructive power. Once a forest fire occurs, it can cause
damage to the ecological environment [4], reduce biodiversity [5,6], and cause economic
losses and casualties [7].

Currently, widely used methods for monitoring residual fires in forests mainly
include ground patrols, lookout tower surveillance, aerial patrols, and satellite remote
sensing [8–10]. Reliance on human-powered ground patrols and lookout tower surveil-
lance methods not only incurs high personnel and equipment costs but is also heavily
influenced by terrain. Additionally, there are significant limitations in monitoring pro-
cesses due to visual blind spots. Aerial patrol methods involve using aircraft to patrol
forests. However, these patrols are constrained by flight routes and timing. Moreover,
the fixed cost of aircraft patrol is USD 300 per hour, making it expensive and impractical
for large-scale use [11]. Satellite remote sensing utilizes satellites to monitor forest fires.
However, limitations in operational cycles and the resolution of digital data prevent
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real-time monitoring. Compared to the aforementioned forest fire monitoring methods,
small unmanned aerial vehicles (UAVs) have the advantages of longer flight times,
higher speeds, and lower costs [12,13]. They offer high real-time monitoring capabilities
and are not constrained by terrain during patrols, with wide-ranging visibility.

Compared to the aforementioned methods for forest fire monitoring, small UAVs have
the advantages of longer flight times, higher speeds, and lower costs [14]. They offer high
real-time monitoring capabilities and are not constrained by terrain during patrols, with
wide-ranging visibility [15]. In comparison to traditional aerial forest patrols, UAVs are
mainly suitable for low-altitude patrols in small areas. In mountainous canyon forest areas,
significant variations in microclimates, vegetation, and fire risk levels exist across different
regions [16]. Fire behavior can change unpredictably over time and space. When a fire
occurs, UAVs can be utilized to monitor fire behavior in real-time, providing reference and
basis for fire prevention, thereby making firefighting more purposeful and targeted. In
areas with steep cliffs and other complex terrains that firefighting personnel have difficulty
accessing, UAVs can be used due to their high hover accuracy [17]. They can be equipped
with suitable firefighting projectiles to extinguish fires. Currently, residual fire clearance
primarily relies on firefighting personnel or patrols by the public. However, with this
approach, residual fires can only be discovered when they have spread to a certain extent or
produce visible flames [18]. Often, by the time flames are spotted, a forest fire has already
reignited. By using UAVs equipped with infrared monitoring or sensor systems, fires can
be monitored from the air based on their characteristics. Analyzing temperature or light
data overlaid with topographic maps of the fire scene can visually indicate the distribution
of heat in the fire area, marking out areas more prone to reignition and providing direction
for residual fire clearance.

It is impossible to completely prevent residual fires from reigniting. However, in
areas with good signal coverage and easier detection [19], such as high mountain canyons
and cliffs, the use of drones can effectively enhance the efficiency of residual fire clear-
ance, reduce the rate of residual fire reignition, and alleviate the difficulty of residual fire
clearance [20]. Drones are widely used in the field of forest firefighting, covering various
aspects of wildfire prevention. In addition to monitoring residual fires, they play important
roles in forest fire early warning monitoring, assisting in firefighting during fire outbreaks,
and post-disaster loss assessment. There is also a certain correlation between monitoring
residual fires and other outdoor fire detections. The monitoring scope should include
both the burning area of the fire and the surrounding potential spread areas of fire points.
Depending on the size and severity of the fire, adjustments can be made to the formation
range and the number of drones deployed [21].

Considering the urgency and real-time nature of fire incidents, it is crucial to adjust the
formation of drone teams for post-fire monitoring [22]. Therefore, performing formation-
only passive localization is of great importance [23,24]. Passive localization for UAVs refers
to a technique that utilizes sensors and equipment carried by the UAVs themselves to
receive signals from external sources, enabling the determination of the drone’s position
and location [25–27]. Passive localization, compared to active localization, does not require
actively transmitting signals, thus conserving energy and extending the drone’s flight time
and endurance [28]. This allows UAVs to have longer working hours for monitoring and
extinguishing fire remnants. Passive localization exhibits certain resistance to interference
and blockage from external signal sources, which can be mitigated through signal pro-
cessing and filtering, making it suitable for mountainous and forest environments [29]. In
contrast, active localization is more susceptible to interference and commonly relies on
satellite systems like GPS for outdoor positioning. In summary, timely adjustments of UAV
formations based on passive localization technology can improve the efficiency and safety
of monitoring and firefighting operations [30].

Traditional methods for adjusting formations include branch and bound [31], branch and
price [32], and interior point methods [33]. Branch and bound divides the formation adjust-
ment problem into a series of subproblems and defines an objective function or evaluation
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criterion for each subproblem. It then searches the solution space and gradually eliminates
branches that do not satisfy the criterion, ultimately finding the optimal formation adjustment
solution [34]. Branch and price generates constraints and variables gradually during the search
process to find the optimal solution that satisfies the constraints. It expands the search space
by dynamically generating constraints and variables [35]. Interior point methods can directly
search the interior of the feasible domain without considering the boundaries, quickly finding
the optimal path [36]. These methods can achieve precise optimal solutions. However, when
the number of formations is large, the computational time becomes lengthy, making it infeasi-
ble to find the optimal solution within a reasonable time. This is not suitable for the urgent
scenarios of forest firefighting. Evolutionary algorithms are commonly employed for solving
such problems, including genetic algorithms, particle swarm optimization, and ant colony
optimization [37–39]. Genetic algorithms possess strong global search capabilities, enabling
them to identify relatively optimal solutions within the search space. Through crossover and
mutation operations, they maintain population diversity, facilitating the exploration of the so-
lution space. Nevertheless, genetic algorithms are computationally expensive, particularly for
complex problem domains. The iterative nature of the algorithm, involving numerous genetic
operations and fitness evaluations, results in slow convergence and performance that heavily
relies on parameter settings [40]. Particle swarm optimization, on the other hand, exhibits
faster convergence, enabling it to find solutions near the optimal solution in shorter durations.
However, in complex high-dimensional problems, it may encounter challenges associated with
local optima, as particle movement is influenced by historical best positions [41]. Ant colony
optimization demonstrates adaptability and robustness, enabling it to adjust path selection
strategies dynamically by adjusting pheromone levels in response to varying circumstances
and requirements. However, similar to other methods, it also faces limitations in escaping local
optima when tackling complex problems and requires longer computation times [42]. The
development of artificial intelligence has introduced deep reinforcement learning techniques.
Deep reinforcement learning can autonomously learn optimal formation adjustment strategies
through interaction with the environment [43]. It can extract features from raw input data and
optimize based on feedback from reward signals, gradually improving the performance of
formation adjustment. Once the model learns effective formation adjustment strategies in one
environment, it can typically generalize to similar environments and produce good results.
By using deep neural networks as function approximators, it can handle large amounts of
input data and high-dimensional state spaces, enabling more complex formation adjustment
strategies [44].

Considering the need for rapid response and real-time decision-making in forest fire
monitoring and firefighting, traditional evolutionary algorithms, which require extensive
testing time, are no longer suitable for such scenarios. Therefore, this work proposes a fleet
adjustment strategy based on the Deep Q Network (DQN). As a form of deep reinforcement
learning, DQN can quickly obtain specific strategies within a short time after training the
model and can formulate online policies [45–47]. In this work, the fleet’s passive localization
must satisfy two criteria: minimizing the number of adjustments required and minimizing
the positional error between each unmanned aerial vehicle’s adjusted position and the
ideal position. Given that unmanned aerial vehicles need to generate specific adjustment
strategies (selection of unmanned aerial vehicles that emit signals) in real time, the strategy
formulation time in this work should be as short as possible (minimizing the execution
time of the program).

2. System Model
2.1. Pure Azimuth Passive Localization

The pure azimuth passive localization scheme for UAVs primarily involves one UAV
in the fleet transmitting signals while other UAVs receive them. The receiving UAVs mainly
receive the angle between any two transmitting UAVs, as illustrated in Figure 1. UAV01,
UAV02, and UAV03 are the transmitting UAVs, while UAV04 is the receiving UAV. UAV04
can receive the angles between UAV02 and UAV03, UAV01 and UAV02, and UAV01 and



Drones 2024, 8, 201 4 of 18

UAV03, denoted as α1, α2 and α3, respectively. Pure azimuth passive localization utilizes
this angle information to determine the position of the receiving UAV.
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2.2. Passive Localization Model of UAV Based on Relationships among Triangle Sides and Angles

To achieve the goal of quickly and in real-time adjusting the UAV formation through
passive localization technology for forest fire monitoring and suppression, it is necessary to
establish a passive localization model for the receiving UAV. Based on this relationship, it is
possible to solve for the distances between the three transmitting UAVs and the receiving
UAV. This is achieved by considering the geometric properties of the triangle formed
by the transmitting UAVs and the receiving UAVs. Before establishing the localization
model, some basic assumptions are made to ensure the rationality of the subsequent
model construction:

(a) The passive receiving UAV knows which signal comes from which transmitting UAV.
(b) The relative positions of the UAVs remain unchanged during the operation.
(c) The positions of the transmitting UAVs have no bias.
(d) The transmitting UAVs cannot receive signals simultaneously.
(e) The transmitted signals are accurate and unaffected by external factors.
(f) The UAVs are not affected by external interference during their flight.

Assuming that the three transmitting UAVs are labeled as UAV, UAV-1, and UAV-2,
and the last two UAVs are any two UAVs selected from UAV01 to UAV09. Since the passive
receiving UAV knows the specific labels of the transmitting UAVs, assume that the angle
between UAV00 and UAV-1 is α1, the angle between UAV00 and UAV-2 is α2, and the angle
between UAV-1 and UAV-2 is α3. The geometric relationship between the passive receiving
UAV and the three transmitting UAVs can be divided into the following two cases. (In
practice, the positions of the four UAVs are unknown, and this analysis is conducted to
derive a general localization model).

Case 1 : α1 + α2 = α3

The positions of the four UAVs in case 1 can be specifically classified into the two
scenarios shown in the following Figure 2.

Where UAV represents the unmanned aerial vehicle to be positioned, t0 represents the
distance between UAV and UAV00, t1 represents the distance between UAV and UAV-1,
t2 represents the distance between UAV and UAV-2, d represents the distance between
UAV-1 and UAV-2, and since the specific identifiers to the drones are known, this distance
is determined, r represents the radius of the circular formation.
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Figure 2. Two scenarios of case 1: (a) UAV with two non-central emitting UAVs on the same side;
(b) UAV with two non-central emitting UAVs not on the same side.

Figure 2a shows a UAV with two non-central emitting UAVs on the same side. Figure 2b
shows UAV with two non-central emitting UAVs not on the same side. Both positioning
scenarios have the same positioning model. The four UAVs form triangle UAV00, UAV-1,
UAV, triangle UAV00, UAV-2, UAV, and triangle UAV00, UAV-1, UAV-2. These three triangles
have one known angle, so the relationship model between the sides can be represented as:

r2 = t2
0 + t2

1 − 2t0t1 cos α1 (1)

r2 = t2
0 + t2

2 − 2t0t2 cos α2 (2)

d2 = t2
1 + t2

2 − 2t1t2 cos α3 (3)

These three models can be applied to both Figure 2a,b.

Case 2 : α1 − α2 = α3 or α2 − α1 = α3

Case 2 can be divided into two specific scenarios, as shown in Figure 3. Figure 3a
represents α1 − α2 = α3. Figure 3b represents α2 − α1 = α3.
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The two positioning scenarios mentioned above also share the same localization model,
formed by four UAVs composing the triangle UAV00, UAV-1, UAV, triangle UAV00, UAV-2,



Drones 2024, 8, 201 6 of 18

UAV, and triangle UAV00, UAV-1, UAV-2. These three triangles have one known angle
each, allowing the relationship model between the sides to be represented as follows:

r2 = t2
0 + t2

1 − 2t0t1 cos α1 (4)

r2 = t2
0 + t2

2 − 2t0t2 cos α2 (5)

d2 = t2
1 + t2

2 − 2t1t2 cos α3 (6)

The same three models can also apply to both scenarios depicted in Figure 3a,b.
In summary, considering the four relationships formed by the four drones in Case 1

and Case 2, the distance models between the passive receiving signal drone (UAV) and the
three transmitting signal drones can be represented as follows:

r2 = t2
0 + t2

1 − 2t0t1 cos α1 (7)

r2 = t2
0 + t2

2 − 2t0t2 cos α2 (8)

d2 = t2
1 + t2

2 − 2t1t2 cos α3 (9)

The model is a system of three quadratic equations, and there are three equations in
total, which can solve for the variables t0, t1, and t2 (the distances). In the case of quadratic
equations, there may be more than one solution, and the analysis for such cases will be
provided in the following text.

Based on the distances between the receiving drone and the three transmitting drones,
the specific position of the receiving drone can be calculated. The Cartesian coordinates of
the receiving drone’s position are denoted as (x, y). The coordinates of UAV00, UAV-1, and
UAV-2 are denoted as (x0, y0), (x1, y1), and (x2, y2), respectively. Therefore, the positioning
model for the passive receiving signal drone can be represented as follows:

(x − x0)
2 + (y − y0)

2 = t2
0 (10)

(x − x1)
2 + (y − y1)

2 = t2
1 (11)

(x − x2)
2 + (y − y2)

2 = t2
2 (12)

The model can be considered as three circles with the receiving drone as the center and
the distances between the receiving drone and each transmitter drone as the radius. The
position of the receiving drone corresponds to the intersection points of these three circles.

When solving the system of three quadratic equations, multiple real solutions can
arise. Moreover, accounting for slight positional deviations in the drones, the solution
for the positioning model can be determined by selecting the point that is closest to the
circular formation.

2.3. Simulation Verification of Circular Formation

To validate the accuracy of the positioning model for the passive receiving drone,
simulations are conducted. In this work, a circular formation was utilized, as shown
in Figure 4. The circular formation offers more uniform coverage, ensuring effective
monitoring and suppression of the entire fire area while reducing monitoring gaps and
blind spots. The communication paths between the UAVs are relatively short, enabling
quick transmission of information and instructions, and facilitating better coordination
among the UAVs. This is particularly crucial for forest fire suppression tasks where UAVs
need to share fire-related information and coordinate their suppression actions. The circular
formation, with its symmetry and even distribution, promotes stability throughout the
formation, minimizing the risk of flight instability or disintegration of the formation due to
individual UAV anomalies.
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The parameters for the simulation experiment are set as follows: a formation consisting
of 10 UAVs is created to form a circular formation, as shown in Figure 4. Among them,
nine UAVs (UAV01–UAV09) are evenly distributed along a circular path, while another
UAV (UAV00) is positioned at the center of the circle. The fire points in Figure 4 refer
to lingering forest fire points. Lingering forest fire points are those burning spots or hot
spots that persist within a forest area after a forest fire has been controlled or extinguished.
Their intensity can vary from low residual heat to sustained high burning temperatures.
Within the fire area, these hot spots may be widely distributed and unevenly dense, with
some exhibiting noticeable smoke or flames while others may only represent concealed
underground burning. They are typically not single points but rather a small burning
area. The UAVs maintain a constant altitude based on their own height perception. The
radius of the circular formation is set to 100 m. Due to the known identification of the
transmitting UAVs, and the selection of the two transmitting drones not affecting the
experimental results, UAV00, UAV01, and UAV02 are chosen as the transmitting drones.
Random positions are generated around the remaining seven standard positions. By using
the coordinates of these seven points, the angles between UAV00, UAV01, and UAV02
are calculated. Based on these angles, the inferred coordinates of these points are derived
using the established positioning model mentioned above. The accuracy of the positioning
model is validated by comparing the inferred coordinates with the actual coordinates. In
the experiment, the actual coordinates of UAV03-UAV09 and the computed coordinates
based on the positioning model are presented in Table 1 and shown in Figure 5. It can be
observed that the computed coordinates from the positioning model are identical to the
actual coordinates up to three decimal places, indicating a high level of accuracy in the
positioning model.

Table 1. Comparison of real coordinates and estimated coordinates in the simulation.

Number Actual Coordinates Estimated Coordinates

UAV 03 (8.637, 96.572) (8.637, 96.572)
UAV 04 (−51.033, 83.919) (−51.033, 83.919)
UAV 05 (−88.699, 36.76) (−88.699, 36.76)
UAV 06 (−88.53, −25.545) (−88.53, −25.545)
UAV 07 (−40.545, −92.762) (−40.545, −92.762)
UAV 08 (10.142, −94.555) (10.142, −94.555)
UAV 09 (68.481, −63.771) (68.481, −63.771)
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3. Problem Formulation

For the solution in Chapter 2, the positioning of other UAVs can be achieved with only
three known drone positions. Assuming negligible adjustment time for the UAV positions,
it is assumed that UAV00 and the other two drones are set as the transmitting drones each
time. The initial position of No. 1 UAV is always located on the circumference of a circle
with a radius of 100 m and with No. 0 UAV as the center. Therefore, No. 0 and No. 1 UAVs
are selected as the launch signal drones each time.

Each UAV is unaware of the positions of the other drones, so when a receiving drone
receives a signal, it assumes the transmitting UAV is in an ideal position for positioning
adjustments. However, since only two drones are in ideal positions, it is difficult to adjust
each UAV to the exact ideal position within a limited number of iterations. Therefore, the
adjustment plan represents a multi-objective optimization challenge. Specifically, within a
finite number of adjustment cycles, the goal is to bring the 10 UAVs as close as possible to
their ideal positions.

A single-step adjustment for a receiving UAV can be defined as follows: assum-
ing the three transmitting drones are in ideal positions→calculating the adjusted angle
information→adjusting the receiving UAV based on the target angle information→calculating
the coordinates of the receiving UAV based on the actual positions of the transmitting
UAVs. To address this adjustment process, the following mathematical programming
model is established.

The decision variables are defined as follows:
u: The number of adjustments;
pij: Whether the i-th UAV serves as the transmitting drone in the j-th adjustment.

pij =

{
1, serve as the transmitting UAV
0, otherwise

The objective functions are defined as follows:
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Objective function 1: minimize the deviation of the 10 UAVs from their ideal positions
over u adjustments, which can be expressed as

min f1 = ∑9
i=2 (xiu − Xi)

2 + (yiu − Xi)
2 (13)

where xij represents the horizontal coordinate of the i-th UAV after the j-th adjustment, yij
represents the vertical coordinate of the i-th UAV after the j-th adjustment, u represents the
finite number of adjustments, (Xi, Yi) represents the ideal position of the i-th UAV. Objective
function 2: minimize the number of adjustments, which can be expressed as follows:

min f2 = u (14)

Subject to:
pij = 1 i = 0, 1 j = 1, · · · , u (15)

9

∑
i=1

pij ≤ 2, j = 1, · · · , u (16)

i = s, if(ps = 1), i = 2, · · · , 9 (17)

α1ij =

{
π
2 − (i−1)π

9 , i < 6
(i−1)π

9 , i ≥ 6
, i = 2, · · · , s − 1, s + 1, · · · , 9, j = 1, · · · , u (18)

α2ij =

{
π
2 − |i−s|π

9 , |i − s| < 5
|i−s|π

9 , |i − s| ≥ 5
, i = 2, · · · , s − 1, s + 1, · · · , 9, j = 1, · · · , u (19)

α3ij = arccos
(X1 − Xi)

2 + (Y1 − Yi)
2 + (Xs − Xi)

2 + (Ys − Yi)
2 − (X1 − Xs)

2 − (Y1 − Ys)
2

2
√
(X1 − Xi)

2 + (Y1 − Yi)
2
√
(Xs − Xi)

2 + (Ys − Yi)
2

(20)


r2 = t2

0 + t2
1 − 2t0t1 cos α1ij

x2
sj + y2

sj = t2
0 + t2

2 − 2t0t2 cos α2ij(
xsj − x1j

)2
+

(
ysj − y1j

)2
= t2

1 + t2
2 − 2t1t2 cos α3ij

, i = 2, · · · , s − 1, s + 1, 9 j = 1, · · · , u (21)


(

xij − x0j
)2

+
(
yij − y0j

)2
= t2

0(
xij − x1j

)2
+

(
yij − y1j

)2
= t2

1(
xij − xsj

)2
+

(
yij − ysj

)2
= t2

2

, i = 2, · · · , s − 1, s + 1, 9 j = 1, · · · , u (22)

The constraint (15) ensures that the UAVs with the numbers 0 and 1 always act as
emitting drones. The constraint (16) ensures that the number of emitting UAVs selected for
adjustment on each occasion does not exceed 3, and since the adjustment time is negligible,
three emitting UAVs are sufficient to locate one receiving UAV. Therefore, the constraint is
that the number of emitting UAVs selected for adjustment on each occasion does not exceed
2 from those positioned on the circumference. Constraint (17) ensures that the emitting
UAVs are defined for ease of representation in the model. Apart from UAV 0 and UAV 1,
the s is used to represent the other emitting drone. Constraints (18), (19), and (20) denote
that the receiving UAV assumes that the three emitting drones are in their ideal positions
and adjusts its own position based on the received signal direction. Constraints (21) and
(22) ensure that the passive receiving drone adjusts its position according to the perceived
correct angles. The adjusted angles for each UAV satisfy the equation α1, α2, and α3, so the
adjusted coordinates are known. First, the distances between the adjusted position and the
three emitting UAVs are calculated based on these angles, and then the adjusted position is
determined using these three distances.

In summary, the mathematical programming model for achieving the closest proximity
to the ideal positions for the 10 UAVs within a limited number of adjustment rounds can
be stated as follows:

min f =
9

∑
i=2

(xiu − Xi)
2 + (yiu − Xi)

2 (23)
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4. Algorithm
4.1. The Mechanism of the DQN Algorithm

The DQN algorithm is a deep learning method used for reinforcement learning,
initially proposed by DeepMind in 2013. It is a technique that combines deep neural
networks with Q-learning, aiming to train agents to learn optimal strategies from the
environment. The DQN algorithm is an improvement over the Q-learning algorithm,
specifically by using a neural network to approximate the value function for different state–
action pairs. It allows for accurate prediction of the value function for unseen state–action
pairs. In Q-learning, the agent takes an action in the current state, and the resulting impact
on future outcomes is represented by the Q-value. The Q-value is updated through the
continuous interaction between the agent and the environment. Once the Q-values are
updated, the agent selects actions based on the maximum Q-value. The calculation formula
for the Q-value is as follows:

Qπ(s, a) = Eπ [Rt | St = s, At = a] (25)

where R represents the reward function, measuring the subsequent effects of action a
performed under state s. R is the sum of future reward functions. The specific calculation
process is as follows:

Rt+1 = rt+1 + γRt (26)

where γ represents the discount factor of the reward function. The purpose of introducing
this parameter is to make rewards that are further in the future have a smaller impact on
the current return function.

For DQN, it incorporates neural networks into reinforcement learning, where the
Q-values are computed by the parameters of the neural network. The training of the Deep
Q-network involves converting the Q-value table into training the deep network model,
which is achieved by:

Q(s, a, θ) ≈ Q∗(s, a) (27)

The network structure of the DQN algorithm is shown in Figure 6. The parameter
settings of the DQN algorithm are shown in Table 2.

Table 2. The parameter settings for the DQN algorithm.

Parameter Parameter Configuration

Learning rate 0.001
Batch size 512
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Table 2. Cont.

Parameter Parameter Configuration

Discount factor 0.95
Maximum capacity of the experience replay 10,000

Exploration factor Exploration factor
Optimizer Adam
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In DQN, two important mechanisms are included: the target network and experience
replay. The target network aims to copy the Q-values and its parameters are updated at a
lower frequency to preserve the recent optimal Q-values. It serves as the target values for
the Q-value network to compute the loss function.

Lθ = E
[(

y − Q(s, a, θ))2
]

(28)

y = r + ymaxaQtarget
(
s′, a, θtarget

)
(29)

where Lθ represents the loss function, and Qtarget represents the parameters of the
target network.

The experience replay mechanism defines a replay buffer that serves as a dataset for
training the Q-values. This buffer stores the experiences and outcomes of the interactions
between the agent and the environment, such as states, actions, rewards, etc. During each
training iteration, a subset of data is sampled from the replay buffer to calculate the loss
function and update the parameters.

4.2. Algorithm Framework

In the problem of pure azimuth passive localization of drones, the objective is to
achieve the ideal formation of drones with as few adjustment steps as possible. In rein-
forcement learning, this problem is modeled as a Markov decision process. That is, given
the current state, the Q-network is used to select the most suitable action (which drone
to choose as the emitting drone), and then the state is updated, and a reward is obtained.
The structure diagram for using DQN to adjust drone formation is shown in Figure 7.
The algorithm consists of two main components: the reinforcement learning part and the
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deep learning part, which work together. The reinforcement learning part is primarily
responsible for interacting with the environment to obtain data for deep learning. The rein-
forcement learning part is mainly to interact with the environment to obtain data for deep
learning, while the deep learning part mainly uses the experience replay mechanism and
target network to train the Q network and perfect the strategy parameters θ for adjusting
the formation of drone formation.
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According to the above description, the pseudo-code for the DQN algorithm of f-
solving is shown in Algorithm 1.

Algorithm 1: Deep Q-learning (DQN)

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Qˆ with weights θˆ- = θ

for episode = 1, M do
Initialize sequence s_1 = {x_1} and preprocessed sequence φ_1 = φ(s_1)
for t = 1, u do

With probability ε select a random action a_t (The action refers to selecting which UAV to
be the signal-emitting UAV.)

otherwise select a_t = argmax_a Q(φ(s_t), a; θ)
Execute action a_t in emulator and observe reward r_t (The reward, denoted as r_t,

represents the discrepancy between the adjusted position and the ideal position. Since the goal of
DRL is to maximize the reward, the objective of this task is to minimize the discrepancy.
Therefore, the reward is defined as the negative value of the discrepancy: reward = -discrepancy
and image x_(t + 1)

Set s_(t + 1) = s_t, a_t, x_(t + 1) and preprocess φ_(t+1) = φ(s_(t + 1))
Store transition (φ_t, a_t, r_t, φ_(t + 1)) in D
Sample random minibatch of transitions (φ_j, a_j, r_j, φ_(j+1)) from D
Set y_j = r_j for terminal φ_(j+1)

r_j + γ * max_a′ Qˆ(φ_(j + 1), a′; θˆ-) for non-terminal φ_(j + 1)
Perform a gradient descent step on (y_j - Q(φ_j, a_j; θ))ˆ2 according to equation with

respect to the network parameters θ
Every C steps reset Qˆ = Q

end for
end for
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5. Experiment
5.1. Experimental Background and Environment

The initial positions of the drones are shown in Algorithm 1. According to the forma-
tion requirements, one drone is located at the center, and the other nine UAVs are evenly
distributed on a circular path with a radius of 100 m. When the initial positions of the
drones have slight deviations, multiple adjustments are made. In each adjustment, the
UAV with the identifier UAV00 and up to three drones on the circular path are selected
to transmit signals. The remaining UAVs adjust their positions based on the received
directional information, aiming to achieve the ideal formation where all nine UAVs are
evenly distributed on a circular path. Table 3 presents the polar coordinate data of the
UAVs. The ideal positions are uniformly distributed around a circle with a radius of 100 m,
as shown in Table 4.

Table 3. The initial positions of the drones.

The Number of UAVs The Initial Position is in
Polar Coordinates (m,◦)

0 (0, 0)
1 (100, 0)
2 (98, 40.10)
3 (112, 80.21)
4 (105, 119.75)
5 (98, 159.86)
6 (112, 119.96)
7 (105, 240.07)
8 (98, 280.17)
9 (112, 320.28)

Table 4. The ideal positions of the drones.

The Number of UAVs The Ideal Position is in
Polar Coordinates (m,◦)

0 (0, 0)
1 (100, 0)
2 (76.6, 64.2)
3 (17.3, 98.4)
4 (−50, 86.6)
5 (−93.9, 34.2)
6 (−93.9, −34.2)
7 (−50, −86.6)
8 (17.3, −98.4)
9 (76.6, −64.2)

5.2. Setting of Environmental Parameters

Table 3 shows the settings of software and hardware parameters in this work, while
Table 5 details the parameter settings for the DQN algorithm.

Table 5. The settings of software and hardware parameters.

Experimental Environment Parameter Configuration

Cpu Intel core i7 12700k
Gpu Nvidia GeForce RTX3060
RAM 32 G

Hard disk 1 TB
Programming environment Python 3.9

Version of Torch 1.11.0
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5.3. Experimental Result Analysis

The strategy for launching drones during drone formation adjustments is developed
using the DQN algorithm. Under different numbers of adjustments, the average difference
between the adjusted coordinates of all drones and the ideal drone formation coordinates
can be obtained, and the Pareto frontier curve between the number of adjustments in
DQN and the actual difference can be obtained. As shown in Figure 8, as the number
of adjustments increases, the actual positions of the drones become closer to the ideal
positions. It is observed that after five adjustments, the difference between the actual and
ideal positions of the drones is within an acceptable range, and the number of adjustments
is also acceptable.
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In this work, the runtime comparison between the DQN algorithm and the GA is
presented in Table 6. The DQN algorithm took 2.7 s to complete the testing on the market,
while the genetic algorithm required 127.9 s for the same testing. It can be observed that
DQN significantly saves time compared to GA in terms of testing duration. Additionally,
DQN demonstrates the ability to converge quickly on new datasets.

Table 6. The comparison of time used.

Types of Algorithms CPU Time

DQN 2.7 s
GA 127.9 s

According to Figure 9, it can be observed that during the 5 adjustment iterations, there
is a noticeable trend between the reward function and the number of iterations. It is found
that the model tends to stabilize around 20 iterations, and the DQN algorithm also shows
fast convergence.
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The specific adjustment strategies are shown in Table 7.

Table 7. The adjustment plan when the number of adjustment rounds is set to 5.

Adjustment Round 1 2 3 4 5

Transmitting drones [0, 1, 2] [0, 1, 3] [0, 1, 5] [0, 1, 8] [0, 1, 6]
Adjusted position of item 1. (100, 0) (100, 0) (100, 0) (100, 0) (100, 0)
Adjusted position of item 2. (74.9, 63.1) (74.9, 63.1) (76.4, 64.3) (76.4, 64.3) (76.6, 64.2)
Adjusted position of item 3. (12.9, 95.6) (12.9, 95.6) (17.1, 98.3) (17.1, 98.3) (17.3, 98.4)
Adjusted position of item 4. (−49.9, 82.5) (−49.9, 83.3) (−49.9, 86.2) (−49.9, 86.7) (−50, 86.6)
Adjusted position of item 5. (−92.0, 33.7) (−93.6, 34.0) (−93.6, 34.0) (−94.0, 34.2) (−93.9, 34.2)
Adjusted position of item 6. (−93.5, −33.9) (−93.5, −33.9) (−93.7, −34.0) (−93.9, −34.2) (−93.9, −34.2)
Adjusted position of item 7. (−52.3, −90.9) (−49.8, −91.7) (−49.9, −86.3) (−50, −86.5) (−50, −86.6)
Adjusted position of item 8. (17.3, −96.4) (17.3, −96.4) (17.2, −98.4) (17.2, −98.4) (17.3, −98.4)
Adjusted position of item 9. (86.1, −71.5) (86.1, −71.5) (76.6, −64.2) (76.6, −64.2) (76.6, −64.2)

6. Conclusions

This paper proposes a multi-objective optimization model based on the DQN algo-
rithm, which is suitable for the formation adjustment strategy of drones in monitoring
and extinguishing forest residual fires. The following conclusions can be drawn from the
mathematical model and experimental results:

(a) Based on the equivalence relationship between the three sides and angles, the distances
between the three emitting UAVs and the receiving UAVs can be solved. Then, using
each of the three emitting UAVs as the center, circles are drawn with the distance to
the receiving UAV as the radius. The intersection points of the three circles are the
positions of the receiving UAVs to be located. Since the system of three quadratic
equations has multiple suitable real number solutions, the point closest to the ideal
position is selected as the position of the receiving UAV to be located.

(b) If it is required to evenly arrange UAVs 1–9 on the circumference with a radius of
100 and centered at UAV 0, due to only UAV 1 having an unbiased position, it is not
possible to position all UAVs in an exact unbiased position within a limited number
of adjustments. Therefore, the optimization goal is to minimize the deviation from
the ideal position and minimize the number of adjustments. Thus, a mathematical
programming model is established with the decision variables being the emitting
UAVs selected for each adjustment, aiming to minimize the sum of squared errors
between the final adjusted UAV coordinates and the ideal position coordinates, as
well as the number of adjustments.



Drones 2024, 8, 201 16 of 18

(c) Due to environmental constraints and other factors, all experiments conducted in
this study are simulated experiments. Therefore, the influence of external factors on
drones is not considered.

(d) The process of the DQN algorithm first involves generating many instances to train
the DQN algorithm. After obtaining a well-trained DQN model, this model is then
used to test given examples. This demonstrates the effectiveness of the algorithm and
the model. For the same example, the results of the DQN algorithm are consistent.

(e) In the 5th adjustment round, the DQN algorithm yielded a sum of squared errors
between the actual and ideal positions of 9.985 × 10−8, indicating no deviation
between the actual and ideal positions at this stage.

(f) The testing time of the DQN algorithm is 2.7 s, while that of the genetic algorithm is
127.9 s. The DQN algorithm has a significantly lower testing time than the genetic
algorithm, making it more responsive to the rapid nature of drone operations in
monitoring and extinguishing forest residual fires.

(g) In the 5th adjustment round, the DQN algorithm’s model tended to stabilize after the
20th iteration, indicating convergence of results.
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