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Abstract: The estimation of Unmanned Aerial Vehicle (UAV) poses using visual information is essen-
tial in Global Navigation Satellite System (GNSS)-denied environments. In this paper, we propose a
UAV visual navigation algorithm based on visual-geography Bundle Adjustment (BA) to address
the challenge of missing geolocation information in monocular visual navigation. This algorithm
presents an effective approach to UAV navigation and positioning. Initially, Visual Odometry (VO)
was employed for tracking the UAV’s motion and extracting keyframes. Subsequently, a geolocation
method based on heterogeneous image matching was utilized to calculate the geographic pose of
the UAV. Additionally, we introduce a tightly coupled information fusion method based on visual-
geography optimization, which provides a geographic initializer and enables real-time estimation of
the UAV’s geographical pose. Finally, the algorithm dynamically adjusts the weight of geographic
information to improve optimization accuracy. The proposed method is extensively evaluated in both
simulated and real-world environments, and the results demonstrate that our proposed approach can
accurately and in real-time estimate the geographic pose of the UAV in a GNSS-denied environment.
Specifically, our proposed approach achieves a root-mean-square error (RMSE) and mean positioning
accuracy of less than 13 m.

Keywords: visual odometry; image matching; UAV geolocation; nonlinear optimization

1. Introduction

In recent years, UAVs have been extensively utilized in various domains, including
military operations, search and rescue missions, and terrain exploration [1-5]. While
GNSS technology can provide precise geolocation information for UAVs, it is susceptible to
signal blockage and interference from adversarial sources [6]. Therefore, it is imperative to
develop methodologies for UAV localization in GNSS-denied environments [7]. In such
challenging scenarios, UAVs must rely solely on their onboard camera to infer their pose
without any external infrastructure. Hence, developing robust techniques for accurate and
independent UAV positioning becomes paramount.

In GNSS-denied environments, UAVs can rely on visual sensors for precise pose
estimation [8], enabling autonomous navigation and positioning. Visual sensors play a
crucial role in environmental perception by capturing image information that provides
UAVs with abundant contextual data. The technologies for UAV visual navigation and
positioning can be primarily categorized into two approaches: VO, which operates without
a map, and geolocation based on image matching, which utilizes an existing map.

The UAV can estimate its relative pose using VO, which solely relies on a cost-effective
and lightweight vision sensor to accurately determine the local pose of the UAV in real-
time. Depending on different approaches for associating features between frames, it can be
categorized into feature-based, direct, and hybrid methods. The feature-based method is
employed to extract features from the image for matching, while camera pose estimation
is achieved by minimizing the reprojection error. PTAM [9] and ORB-SLAM [10] are both
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classical SLAM systems that utilize the feature-based approach. Among them, ORB-SLAM
leverages ORB [11] features in matching, tracking, relocation, and loop closing processes,
thereby enhancing information interaction efficiency across different threads. Subsequently,
ORB-SLAM2 [12] and ORB-SLAMS3 [13] also employ ORB features. On the other hand,
direct methods directly use the pixel intensities in the images and estimate motion by
minimizing a photometric error. DSO [14] and VINS-Mono [15] are advanced SLAM
systems that employ the direct method. SVO [16] is a hybrid VO approach that initially
extracts FAST features but uses a direct method to track features and any pixel with a
nonzero intensity gradient from frame to frame.

Currently, state-of-the-art VO algorithms employ keyframe-based techniques [17],
which provide higher accuracy compared to filtering methods at the same computational
cost [18]. Keyframe-based techniques utilize a multi-threaded approach for tracking the
robot’s motion, comprising a tracking thread responsible for the UAV’s motion tracking
and keyframe selection and a mapping thread that performs computationally expensive
yet more accurate BA optimization at the keyframe rate. This enables the VO system to
achieve real-time performance while enhancing its localization accuracy. Although VO has
demonstrated reliable precision in short-term operations, it tends to accumulate drift over
long-term operations. Moreover, VO fails to provide a more comprehensive geographic
pose, which limits its applicability in aerial scenarios. Therefore, it is crucial to incorporate
supplementary techniques to address these challenges.

With the continuous advancement of image-matching technology, sophisticated image-
matching networks can effectively address the challenges posed by significant variations
in seasons, lighting conditions, and other factors between satellite images and aerial im-
ages [19,20]. Consequently, these networks facilitate establishing correspondences between
aerial and satellite images to accurately determine the geographic pose of the UAV. Various
methods [21] have been developed for image matching and localization in GNSS-denied
environments. Goforth et al. [22] employed a deep convolutional neural network (CNN)
with an iterative closest landmark keypoints (ICLK) layer to align aerial images and satellite
images. Chen et al. [23] proposed an image-based geolocation method that is adaptable to
a downward-tilted camera, which necessitates prior offline dataset preparation.

However, a drawback of geolocation methods based on image matching is their signif-
icant computational cost, leading to substantial delays and rendering them unsuitable for
meeting the real-time positioning requirements of UAVs [24]. To enhance the positioning
performance of visual navigation algorithms, certain studies have focused on integrating
VO with image-matching methods. Kinnari et al. [25] orthorectified UAV images based on
VIO and planarity assumptions, which is also applicable to a downward-tilted camera con-
figuration. The ortho-projected image is utilized for matching with the satellite images, and
the geolocation results are combined with the pose estimation from VIO in a particle filter
framework. Hao et al. [26] proposed a geolocation method that utilizes global pose graph
optimization to integrate RVIO measurements and image registration. Zhang et al. [27]
proposed an iterative trajectory fusion pipeline that integrates vVSLAM measurements and
image matching through solving a scaled pose graph problem.

The aforementioned studies employ a trajectory fusion method to integrate the mea-
surements from VO and image matching, treating them as two relatively independent mod-
ules. While this design simplifies the system architecture, it also results in a disconnection
between VO and image matching, impeding the immediate feedback of image-matching
results in the VO estimation process. This limitation may potentially impact the overall
accuracy and robustness of the system.

To fulfill the aforementioned requirements and address existing concerns, we have de-
veloped a tightly coupled visual navigation algorithm for UAVs based on visual-geography
optimization. As depicted in Figure 1, the algorithm is structured into three concurrent
threads inspired by the SLAM multi-threading concept: tracking thread, mapping thread,
and image-matching thread. The tracking thread enhances real-time performance by moni-
toring the UAV’s movement, while the mapping thread optimizes the VO map through
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the fusion of visual information from VO and geographic positioning data obtained via
image matching. Additionally, the image-matching thread provides globally unbiased
geographic positioning information. The image-matching thread incorporates the existing
coarse-to-fine image-matching method [23], while also introducing a prior-based approach.
The prior-based image-matching method not only reduces computational costs but also
enhances positioning accuracy, which holds significant implications for the fusion algo-
rithm with VO. In the mapping thread, we have developed a robust geographic initializer
and map fusion algorithm. The geographic initializer accurately estimates initialization
parameters to align the VO world coordinate system with the geographic coordinate sys-
tem. The map fusion algorithm utilizes geographical positioning information obtained
from image matching for real-time optimization of the VO map. In summary, our al-
gorithm enables real-time and precise estimation of a UAV’s geographic pose through
visual-geography optimization.

Airoraft Camera Feature Deteptmg New K.e§.'frame
and Tracking Decision
v
Keyframe
v
rior Geographical Pose < res Croiiopnle <
Ly £ r Initialization?
l v No
Fine Matching <— Satellite Image —» e T
l i Image Matching
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y v
Local Visual-geography BA Geographic Initialization —

Figure 1. Pipeline of the proposed localization method. Aerial image refers to real-time images
captured by a UAV, while satellite images need to be pre-stored in the UAV’s onboard computer
before the mission. The algorithm operates in real-time for tracking the movement of the UAV using
aerial images and selects a subset of aerial images for matching with satellite images, facilitating
geographic initialization and visual-geography BA.

This work makes the following contributions:

e  We propose a UAV visual navigation algorithm that combines the merits of VO and
image matching.

e  Weintroduce a geolocation method based on heterogeneous image matching, which
employs the coarse-to-fine and prior-based image-matching methods to enhance the ac-
curacy of geolocation. This method effectively leverages the operational characteristics
of VO to provide precise geolocation information.

e  We present a tightly coupled information fusion method based on visual-geography op-
timization that jointly optimizes the visual and geolocation information of keyframes
to facilitate tightly coupled geolocation in algorithms. Compared with the existing
trajectory fusion method, our method achieves higher positioning accuracy.

The remaining sections of this paper are organized as follows. Section 2 presents a
detailed explanation of the visual navigation algorithm for the UAVs proposed in this study.
In Section 3, we discuss our real-world experiments conducted to validate our approach.
Concluding remarks are provided in Section 4. Finally, an extensive discussion is presented
in Section 5.
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2. Method

The proposed visual navigation algorithm for the UAV is detailed in this section. This
paper presents a visual-geography optimization method for integrating visual information
(VO map consists of the UAV’s poses and map points) and geographic information (the
geographical poses of the UAV are determined through image matching), enabling geo-
graphic initializer and real-time pose estimation. More details are shown in Algorithm 1.
The following section introduces the fusion of visual and geographic information with tight
coupling as well as geolocation based on heterogeneous image matching.

Algorithm 1 UAYV visual navigator algorithm

Input: UAV images I;; and satellite map tiles.
Output: Estimated UAV trajectory.

1 for all UAV images do
2 Extract ORB features.
3 VO initialization.
4. Track UAV movement.
5: if keyframe then
6: if 1Sgr then
7 Visual BA optimization.
8: Ty = CtoF_Image_Matching(T{I) + Sec.2.2.1
9: Calculate the initial value of S¢; by Sec. 2.1.2(2)
10: Reliability check of S qw
11: else if !Geolnitialized then
12: Visual BA optimization.
13: Ty = Prior_lmage_Matching(T{l, Twi> < Sec.2.22
14: Geographic initialization. < Sec. 2.1.2(3)
15: else
16: Ty = Prior_Image_Matching (T&, Twi) & Sec.2.1.1
17: Visual-geography BA optimization.
18: end if
19: end if
20: end for

2.1. Tightly Coupled Visual and Geographic Information Fusion

This paper proposes a tightly coupled visual-geographic fusion method based on
visual-geography optimization, aiming to enhance the algorithm’s navigation and posi-
tioning performance by effectively utilizing both visual and geolocation information from
keyframes. The section of the code is available at https://github.com/XuWeibo-code/
UAV_Visual_Navigation.git (accessed on 4 June 2024).

2.1.1. Visual-Geography Optimization
The visual-geography optimization proposed in this paper is essentially a nonlinear opti-
mization, enabling the joint optimization of visual information and geographic information.
The 3D transformation involved in the UAV’s motion primarily consists of the pose
transformation matrix T and the similarity transformation matrix S, where T € SE(3) and
its tangent vector ¢ € se(3). Similarly, S € Sim(3) and its tangent vector w € sim(3). The
specific form of this transformation is as follows:

T = llg i] €SEGB); 0= |w U}T € se(3)

, 1)
s [SR
0

€ Sim(3); e= {w v /\}T € sim(3)
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where R is the 3 x 3 rotation matrix, t is the 3 x 1 translation vector, and s represents the
scale. The components in the tangent space are denoted as follows: wisa 3 x 1 vector, vis a
3 x 1 vector, and A is a scalar representing the rotation component, translation component,
and scale component, respectively.

The optimization method employs four coordinate systems, namely the SLAM world
coordinate system, geographic coordinate system, local camera coordinate system, and
global camera coordinate system. In this paper, S¢;,, € Sim(3) is utilized to denote the
similarity transformation matrix from the SLAM world coordinate system to the geographic
coordinate system. S; € Sim(3) represents the similarity transformation matrix from the
local camera coordinate system to the global camera coordinate system. T,; € SE(3)
signifies the pose transformation matrix from the global camera coordinate system to the
geographic coordinate system in frame i. T,,; € SE(3) denotes the pose transformation
matrix from the local camera coordinate system to the SLAM world coordinates in frame
i. The variables S¢;y and S share a common scale parameter, which can be expressed
as follows:

0 1

o SgwI3><3 0 ’
Se = [ 0 1

Squw = [sgngw tgw}
)

The conventional VO estimates the pose of a UAV, denoted as T,;, by optimizing
the visual information through visual BA (Figure 2a). In contrast, the proposed visual-
geography BA (Figure 2b) jointly optimizes the parameters T,; and Sgy, using both visual
and geolocation information from keyframes.

Map Points

r/ 4 g 1 Reprojection residual
Map Points ][ } . 1[ (Teograph@ residual
s ﬁ 2 5 7 T, UAV relative pose
: * [ [ [ ¢ UAV geographic pose
I8 L ss e I Tug Tls\ TE i
S,
(a) Visual BA (b) Visual-Geography BA

Figure 2. Factor graph representation for different optimizations. The nodes in the factor graph
correspond to optimization variables, including the UAV’s relative pose in the SLAM world coordinate
system, its geographic pose, map points, and initialization parameters. Meanwhile, the edges
represent constraints through reprojection residuals and geographic residuals. By optimizing these
nodes using BA, we aim to minimize these residuals.

First, the visual residual r;’j is defined as the reprojection error of the map point j in
frame i.
rZ‘ = 55] - H(Twin)/ (3)

where %; is the observed value of the map points, X; represents the 3D location of the map
pointj, and 7(-) corresponds to the camera projection function.
Then, the geographic residual rlg of frame i is defined as follows:

= Log(Tg—ilsngwisf), @)

where Log : SE(3) — R is a mapping from the Lie group Sim(3) to the vector space
sim(3), Tgi is an observability measure, and S¢;, and T;,; are the optimization variables.
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Given k keyframes and their states Ty = {Tp--- Tx_1}, [ 3D map points and their
states x; = {Xo - - - Xx_1}, the cost function of this optimization is as follows:

o) oe(ll)) o

where } ¢ and }_, represent the weight factors of visual residual and geographical residual,
respectively. The value of } - is obtained from [13], while the derivation of ), is elaborated
in detail in Section 2.1.3. For visual and geographic residuals, we use a robust Huber kernel
function p(-) to reduce the influence of spurious matchings.

To enhance the optimization efficiency of visual-geography BA, the algorithm must
optimize the Jacobian matrix of the residual for the variable. Among them, the Jacobian
matrix of the visual residual concerning the optimization variables T;; and X; can be
obtained from [13]. Therefore, this paper only derives the Jacobian matrix of the geographic
residual to the optimization variables S¢;,) and Ty;.

. k=11-1
{T;, Xj,Sgqw|T; € T, Xj € x1} = argmin ) _ ) (p(

c
T;,X; i=0j=0

In Equation (4), the geographic residual r{ is a 7-dimensional vector, the tangent
vector ggy) of the S¢yp is also a 7-dimensional vector, and the tangent vector d,; of T, is a
6-dimensional vector. The Jacobian matrices of the geographic residual concerning &7, and

Oy; are as follows:
arf o . (g Ogxe O
g Ad](Tgi ) B Ad] (ri) |: 0 1:| ©)

Br;g s P9
30, — Adf (Tgi Sgw) { 0

where Adj(S) is the adjoint matrix of S, which takes the following form:

R 0 0
Adj(S) = |txR sR —t|, 7)
0o 0 1

The optimization process of this BA requires the assignment of initial values. The
initial values for the variables T;; and X; are provided by VO, while the initial value for
the variable Sy, is calculated during the geographic initializer.

2.1.2. Geographic Initializer

The algorithm utilizes a [13]-based VO technique to track the motion of the UAV in real-
time and perform a visual initializer. To enhance the real-time performance and accuracy
of the SLAM, our algorithm employs a subset of representative frames as keyframes for BA
optimization and image matching. During the selection process, temporal intervals, visual
content disparities, camera movements, and co-visibility relationships between the current
frame and other keyframes are all taken into consideration.

The algorithm then employs a rapid and robust geographic initializer, which aims to
accurately estimate the initialization parameter S¢;, that aligns the SLAM world coordinate
system with the geographic coordinate system. The transformation relationship between
the local pose in the SLAM world coordinate system and the geographical pose is described
as follows:

Tgi = SngwiSc_lf 8)

We state the geographic initializer as a map estimation problem, which can be divided
into three sequential steps.

(1) Visual BA optimization

The algorithm utilizes a vision-only BA (Figure 2a) to optimize the UAV’s pose and
map points during the initial phase of its operation, when sufficient geolocation information
is not yet available.
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(2) Calculate the initial value of Sg¢z

The algorithm calculates the initial value of S¢, after receiving reliable geolocation
information from the two keyframes. At this stage, the local poses of the two keyframes
are denoted as Ty,;1 and Ty, while their geographical poses are represented by Tg1 and Tgp.
The scale component s, of the similarity transformation matrix Sgy is as follows:

Htg2 — tng
= 9
Sgw ||tz02 - twl || ( )

The rotation component R¢y, of the similarity transformation matrix Sgq is as follows:

Rew = R1RT
gw 8181 , (10)
{R/gw = RpRyp

The translation component ¢, of the similarity transformation matrix Sgy, is as follows:

w3, 11
tew = —RgaRI tun + sga}tg2 (11)

{tgw = —Rg1 R to1 + sgater

The initializer calculates the initial value of S¢, at this stage. It is important to note

that the geolocation information obtained during this process relies on a coarse-to-fine

image-matching method, which may result in mismatching. Therefore, the algorithm

utilizes an error coefficient to check the reliability of S¢;y. We construct S¢yy and s/ qw using

(Rgw, tgws Sqw) and (R’ gw, t' gw, Sqw), Tespectively, and the error coefficient is calculated
as follows:

-1
rs = ||Log (SguS'sa ) | (12)
The reliability of S¢ is considered when rg < th; otherwise, the algorithm will wait
for the keyframe to continue receiving geolocation information of the UAV and repeat the
aforementioned steps.

(3) Visual-geography BA

When the algorithm obtains a reliable initial value of S¢y, the prior geographic pose
of the UAV can be calculated based on Equation (11). At this stage, the geolocation method
based on heterogeneous image matching can directly extract the satellite image according
to the prior geographic pose and perform more precise fine matching. Once geolocation
information has been received for N keyframes, the algorithm optimizes the UAV pose, map
points, and initialization parameter S using visual-geography BA (Figure 2a) of Equation (5).

2.1.3. Map Fusion Method and Geographic Weights Update

After the completion of the geographical initialization, it remains necessary for the
system to output real-time and accurate geographical pose of the UAV. To achieve this,
we employ visual-geography BA to optimize both UAV poses and map points. Unlike
visual-geography BA with a geographical initializer, at this stage, our algorithm does not
optimize the initialization parameter.

The geolocation information obtained by image matching is subject to errors, ne-
cessitating the assignment of weights to each geographic edge in the visual-geography
BA. Therefore, we propose a calculation method for quantifying the magnitude of geo-
graphic residuals.

Refine the weight of the geographic edge i in BA according to the following criteria:

2 Iy 2
|+ Be|lef| (13)

9= Bugn + By |Log (T T'sc)

where the balance factors B, B, and B, represent the weights assigned to different compo-
nents; the variable ¢, represents the number of remaining inner points after removing outer
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points from the matching points obtained by the RANSAC algorithm [28]; Ty and T'g.
denote the prior geolocation information input in the image matching and the geolocation
information output by image matching, respectively; and elg represents the geographic
residual of geographic edge i in BA.

The first two terms in Equation (13) are generated during the image matching, while
the last term is dynamically updated through BA. In Equation (5), qI7.7 is introduced into
)., to fine-tune the weighting of geographic residuals in the BA. By adjusting the weight of
geographic edges in BA, this algorithm enables a more accurate estimation of the UAV’s
geographic pose.

2.2. Geolocation Based on Heterogeneous Image Matching

The geolocation method based on heterogeneous image matching is utilized to provide
precise geolocation information for keyframes. Considering the characteristics of VO,
appropriate adjustments are made to the geolocation method. In the initial stage of the
algorithm, a coarse-to-fine image-matching method is employed for UAV geolocation. After
the algorithm calculates the Sy, the satellite image is intercepted using the prior pose of
the UAV and then directly processed by the fine matching.

2.2.1. Coarse-to-Fine Image-Matching Method

The geolocation of the UAV is achieved in this paper by implementing the coarse-to-
fine image-matching method utilized in [23], even in the absence of prior geolocation infor-
mation. The pipeline of the coarse-to-fine image-matching method is shown in Figure 3.

~N

Global descriptor \I
E SuperPoint + SuperGlue :

|

i = ; |

i i |
PnP '

’H —— UAV pose :

|

|

o .
i |
N H |

Figure 3. Pipeline of the coarse-to-fine image-matching method.

During the coarse matching stage, satellite images are preprocessed offline. These
images, which have varying resolutions, are clipped into smaller map tiles and then mapped
into 4096-dimensional global descriptors using NetVLAD [29]. During UAV execution,
the extracted global descriptors from aerial images are also obtained using NetVLAD. The
12-norm of the differences between the aerial image’s global descriptor and every single
global descriptor in the prepared array is computed and sorted in ascending order. The top
3 candidates in the sorted list are selected for subsequent fine matching.

After the coarse matching stage, the algorithm proceeds to conduct fine matching
between the aerial image and the satellite image. This process involves utilizing Super-
Point [30] for extracting local descriptors from both images, generating 2D matching points
between the aerial image and the candidate matching images through SuperGlue [31]. The
matching result of SuperPoint + SuperGlue is shown in Figure 4.

Assuming a planar ground with zero height, these 2D-2D correspondences are trans-
formed into a camera projection relation from the 3D coordinates in the geographic co-
ordinate system to the 2D-pixel coordinates in the aerial image. The EPnP+RANSAC
algorithm [28] is then utilized to accurately determine the geographic pose of the UAV.
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Figure 4. The matching result of SuperPoint + SuperGlue. The green lines depict the extracted feature
correspondences between the aerial and satellite images using SuperPoint + SuperGlue.

2.2.2. Prior-Based Image-Matching Method

The coarse-to-fine image-matching method exhibits drawbacks, such as significant
latency and a high mismatching rate. In this study, leveraging the operational characteristics
of VO, we propose a prior-based image-matching approach for precise UAV geolocation.

After obtaining the geographic initialization parameter Sgy, the algorithm calculates

the prior geographic pose Ty (Té; 1) of the keyframe i based on Equation (8). Assuming a
planar ground with zero height, the transformation relationship between the geographic

plane coordinates of the satellite image and pixel coordinates of the aerial image is described
using a homography matrix Hj,.

Hi, = %Kl:rigllrigZI tig], (14)
where R;; and t;; are the rotational and translational components of Tig, rig1 and rig are
the first and second columns of R;,, respectively, K represents the camera internal reference,
and A denotes the depth of the feature point, which is equivalent to the absolute value of
the z coordinate of (—Ri_gl tl-g> .

The aerial image can be transformed into a geographic plane coordinate by applying
the homography matrix H;e, extracting a rectangular region in the geographic plane coordi-
nate system for intercepting the satellite image. Subsequently, utilizing the homography
matrix, the captured satellite image is projected onto the pixel coordinate of the aerial
image. Figure 5 illustrates the flowchart depicting satellite image extraction.

pseudo-Mercator projection coordinate system E

Figure 5. Flowchart of satellite image extraction.

After extracting the satellite image, the algorithm will perform fine matching, as
described in Section 2.2.1, to accurately determine the geographic pose of the UAV.
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3. Experimental Setups and Results
This section outlines the experimental setup and presents the test results. To simulate
real-flight conditions, we have configured the Ubuntu environment on NVIDIA Jetson
Xavier NX and conducted experimental validation.
3.1. Simulation Dataset
3.1.1. Setups
To evaluate the efficacy of the algorithm proposed in this paper, we generated a
simulation dataset using a custom simulation program. This program employs the camera
projection principle to transform satellite images captured in visible light mode into image
sequences by configuring camera parameters and executing trajectories.
The trajectory of the UAV in the simulation dataset is depicted in Figure 6, with
a satellite image serving as the background. Specific characteristics of the dataset are
elaborated upon in Table 1.
e
Z
@
£
A=
=
0 2 4 8 8 10 12 14 16 18
kilometer
Figure 6. Trajectories of the UAV in the simulation dataset.
Table 1. Characteristics of the simulation datasets.
Dataset Length (km) Altitude (m) Speed (m/s) Duration (s) Resolution Frame Rate (fps)
simulation 29.1 500 30 960 960 x 540 20

3.1.2. Geolocation Performance

To evaluate the performance of our proposed algorithm, we compare it with various
algorithms in the simulation dataset, including the VO algorithm (the monocular vision
mode of ORB-SLAM3) [13], the VO algorithm after geographic initialization, the geolocation
algorithm based on coarse-to-fine image matching [23], and our proposed algorithm. The
2D errors between the different algorithms and the ground-truth trajectory are depicted in
Figure 7. The trajectory obtained from the VO algorithm is converted into the geographic
coordinate through a similarity transformation matrix, which is derived using multiple
ground truth poses by solving a least-squares problem [32].

500 . : . . . . .
—VO
400 L~ Geo-initialized VO _
Coarse-to-Fine method

E a0 Proposed algorithm |
I — ]
S \//
O 200 - J
~ JN —

100 ! l J

0 100 200 300 400 500 600 700 800 900
i(s)

Figure 7. Localization errors of various algorithms in the simulated dataset.
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3.2. Real-World Dataset
3.2.1. Setups

To evaluate the performance of the proposed algorithm in a real environment, we
employed the DJI M300 RTK UAV equipped with an H20 pan-tilt camera to generate
two distinct datasets for visual navigation and positioning of the UAV.

The trajectory of the UAV in real-world datasets is depicted in Figure 8, with the
accurate trajectory obtained by RTK represented by the red curve. Furthermore, two videos
were captured from a downward-facing perspective by the UAV, and their specific charac-

teristics are detailed in Table 2.

kilometer

kilometer

(@)

kilometer

kilometer
(b)

Figure 8. (a) The trajectories of UAVs in the real-world dataset 1; (b) The trajectories of UAVs in the
real-world dataset 2. Red lines represent the accurate trajectory obtained by RTK.

Table 2. Characteristics of the real-world datasets.

Dataset

Length (km) Altitude (m) Speed (m/s)

Duration (s) Resolution Frame Rate (fps)

1
2

7.7
7.8

500 9.5 808 960 x 540 20
500 12.2 640 960 x 540 20

3.2.2. Geolocation Performance

To evaluate the performance of our proposed algorithm, we conducted a comparative
analysis with various state-of-the-art algorithms using real-world datasets. These include
the VO algorithm, the VO algorithm after geographic initialization, the geolocation algo-
rithm based on coarse-to-fine image matching, and our proposed algorithm. The 2D errors
between the different algorithms and the ground-truth trajectory are depicted in Figure 9.
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Figure 9. (a) Localization errors of various algorithms in the real-world dataset 1; (b) Localization
errors of various algorithms in the real-world dataset.

3.3. Ablation Study

We conduct an ablation study to evaluate the contribution of each module in the
proposed algorithm. The translation errors by removing different configurations are present
in Table 3. We can observe that the result using the full proposed framework achieves the
best performance.

Table 3. Ablation study on different configurations.

Dataset Metric Geo-Init Image Matching Trajectory Fusion Full
il Mean (m) 161.12 14.36 1536 10.32
imulation RMSE (m) 181.04 14.94 17.21 1111
Mean (m) 241.16 17.36 19.36 12.47

Real-World 1 RMSE (m) 275.79 19.21 2133 12.72
Mean (m) 150.37 16.33 14.13 7.53

Real-World 2 RMSE (m) 161.99 18.96 16.52 8.31

Geo-init: VO with geographic initialization; Image matching: pose estimation of UAV via SuperPoint + SuperGlue;
Trajectory fusion: optimizing only trajectory in map fusion; Full: results using all proposed modules.

3.4. Analysis of Experimental Findings

We conducted geolocation experiments in a simulated dataset and two segments of
real-world datasets. Throughout the experiment, we evaluated the proposed geographic
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initialization method, which successfully accomplished geographic initialization within
5s. Comparative analysis with the VO algorithm revealed that performing geographic
initialization significantly enhances stability. The mean and RMSE of the different algo-
rithms in the geolocation experiment are compared in Tables 4 and 5. It is evident that the
algorithm proposed in this paper exhibits superior accuracy, enabling precise estimation of
the geographic pose of the UAV.

Table 4. The mean and RMSE of various algorithms in the simulated dataset.

Metric VO Geo-Initialized VO  Coarse-to-Fine Method Prop(.)sed
Algorithm
Mean (m) 254.58 161.12 20.59 10.32
RMSE (m) 282.35 181.04 25.40 11.11
Table 5. The mean and RMSE of various algorithms in the real-world dataset.
Dataset Metric voO Geo-Initialized VO Coarse-to-Fine Method Proposed Algorithm
1 Mean (m) 330.63 241.16 25.45 12.47
RMSE (m) 376.23 275.79 37.11 12.72
5 Mean (m) 255.54 150.37 19.08 7.53
RMSE (m) 293.14 161.99 26.47 8.31

The geolocation method based on coarse-to-fine image matching in the experiment
exhibits high accuracy. However, the output positioning data exhibit a delay of 3 s and
a mismatching probability not lower than 25%, making it unsuitable for real-time UAV
positioning. The proposed algorithm achieves a data update frequency of 20 Hz/s, while
the visual navigation algorithm presented in this paper enhances performance. Specifically,
our proposed visual navigation algorithm enables accurate and real-time estimation of the
geographic pose of the UAV in GNSS-denied environments.

4. Conclusions

This paper presents a visual navigation algorithm for UAVs based on visual-geography
optimization, which effectively integrates visual and geolocation information from keyframes
to achieve tightly coupled geolocation. Moreover, the algorithm incorporates a heteroge-
neous image-matching approach for geolocation, which combines coarse-to-fine image
matching and prior-based methods. Based on the experimental results, the following
conclusions can be drawn:

e In the geolocation method based on heterogeneous image matching, our proposed
prior-based image-matching method utilizes the prior information to enhance the
accuracy and efficiency of geolocation for the algorithm.

e  The fusion method based on visual-geography optimization achieves stable and reli-
able estimation of geographic initialization parameters within 5 s, enabling real-time
estimation of the UAV’s geographic pose.

e  We propose a tightly integrated fusion method that effectively combines the visual
information from VO with the geolocation information obtained through the image-
matching method. Experimental results demonstrate that our proposed algorithm
accurately and in real-time estimates the UAV’s geolocation information solely relying
on the vision sensor, even in GNSS-denied environments.

5. Discussion

Although promising results have been achieved, there are several limitations. Firstly,
the proposed algorithm is more suitable for scenarios within the range of tens to hundreds
of meters. For higher or lower scenarios, significant errors may arise due to the image-
matching method employed in the algorithm. Secondly, to calculate the geographic pose
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of the UAV, we assume a planar ground with zero elevation. However, this assumption
introduces a significant discrepancy in estimating the altitude of the UAV. Lastly, when con-
fronted with low image texture or substantial variations in lighting conditions, inevitable
disruptions occur in the visual navigation and positioning algorithm utilized by the UAV.

To enhance the positioning performance of UAVs in complex scenarios, our future
research will focus on developing visual-inertial navigation algorithms for UAV positioning
and incorporating barometers or laser rangefinders to accurately measure UAV altitude,
thereby providing precise and reliable positioning information.
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