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Abstract: The increasing use of unmanned aerial vehicles (UAVs) is overwhelming air traffic controllers
for the safe management of flights. There is a growing need for sophisticated path-planning tech-
niques that can balance mission objectives with the imperative to minimise radar exposure and
reduce the cognitive burden of air traffic controllers. This paper addresses this challenge by de-
veloping an innovative path-planning methodology based on an action-shaping Proximal Policy
Optimisation (PPO) algorithm to enhance UAV navigation in radar-dense environments. The key
idea is to equip UAVs, including future stealth variants, with the capability to navigate safely and
effectively, ensuring their operational viability in congested radar environments. An action-shaping
mechanism is proposed to optimise the path of the UAV and accelerate the convergence of the overall
algorithm. Simulation studies are conducted in environments with different numbers of radars
and detection capabilities. The results showcase the advantages of the proposed approach and key
research directions in this field.

Keywords: UAVs; proximal policy optimisation (PPO); action-shaping; radar detection; Neyman–
Pearson criterion; path planning

1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have revolutionised
modern transport and smart living applications [1]. Their ability to perform a variety of
missions ranging from surveillance, package delivery, search and rescue, and reconnais-
sance, among others; have made them indispensable devices [2]. However, the increasing
reliance on UAVs has also introduced significant challenges, particularly in the domain of
safe and efficient navigation [3] through contested environments where radar systems are
actively employed to detect and control the air traffic.

Radar systems are a primary method of detecting and tracking UAVs [4]. These systems
emit electromagnetic waves that reflect off objects, allowing the detection of their presence,
speed, and trajectory [5]. Here, due to the increasing use of drones across many applications,
it has increased as well the cognitive load in the air traffic control system. This, in conse-
quence, yields the following: (i) delays in flights, (ii) economic loss, (iii) accidents between
UAVs or key assets, and (iv) issues in prioritising UAVs over others. There is currently
a flourishing community that aims to reduce the cognitive burden of air traffic controllers
by developing new path planning techniques that ensure the execution of the mission,
whilst avoiding its detection.

UAV path planning [6] refers to the process of determining an optimal or feasible route
for an Unmanned Aerial Vehicle (UAV) to follow from its starting point to a designated
target or series of waypoints [7]. The objective is to navigate the UAV through its envi-
ronment, while adhering to certain constraints, such as avoiding obstacles [8], minimising
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exposure to threats (like radar detection in contested environments) [9], optimising flight
time [10], energy consumption, or maintaining safe flight conditions [11].

Path planning algorithms for UAVs typically focus on optimising flight paths based
on factors such as distance [12], fuel efficiency, or specific mission objectives [13]. However,
these methods often overlook the complexities of avoiding detection by advanced radar
systems. While the UAVs under consideration in this research are not inherently stealthy,
the techniques developed can also be applied to future stealth UAVs. As UAVs increas-
ingly operate in congested environments where radar surveillance is pervasive, there is
a critical need for path planning methods that integrate both mission efficiency and radar
evasion [14]. In response to this challenge, researchers have explored a range of strategies,
from heuristic-based algorithms to machine learning techniques. These approaches aim to
enhance the ability of UAVs to navigate effectively in contested airspaces, minimising the
risk of detection while achieving mission goals.

2. Related Work

Due to the advancement of radar detection systems, especially those capable of identi-
fying stealth aircraft, there is an increasing need for sophisticated path-planning approaches
that also minimise radar detection. The literature has evolved from basic heuristic algo-
rithms to advanced machine-learning techniques to address this challenge.

2.1. Heuristic-Based Path Planning Approaches

Heuristic-based algorithms like A∗ [15] and Dijkstra [16] algorithms are widely
adopted for UAV path planning due to their simplicity and efficiency. These algorithms
prioritize finding the shortest path to the target [17], often disregarding the risk of radar
detection. A modified A∗ algorithm has been used for fighter aircrafts [18]. The approach
uses the values of the radar cross-section (RCS) to minimise the detection risk. By factoring
in the RCS and terrain elevation, this approach demonstrates superior performance in plan-
ning paths that evade detection from advanced radar systems. However, while effective in
certain scenarios, the A∗ algorithm may not always adapt well to dynamic environments
where radar positions or detection ranges can change unpredictably.

The sparse A∗ algorithm [19] addresses the limitations of traditional A∗ by incorpo-
rating sparse graphs to reduce computational complexity [20]. The algorithm introduces
a heuristic that does not only consider the shortest path but also integrates a cost function
that factors in radar detection probabilities [21]. This approach shows promise in balancing
the trade-off between path length and detection risk, particularly in complex environments.

2.2. Reinforcement Learning-Based Path Planning

In recent years, reinforcement learning (RL) [22] has emerged as a powerful tool for
autonomous systems, including UAVs [23]. By allowing UAVs to learn from interactions
with their environment, RL-based models can develop strategies for avoiding radar de-
tection while achieving mission objectives [24]. Proximal Policy Optimisation (PPO) [25],
a popular RL algorithm, has been applied to UAV path planning with considerable suc-
cess. PPO enables UAVs to learn optimal paths through trial and error, adjusting their
strategies based on rewards and penalties associated with radar detection and mission
completion [26]. However, traditional RL methods often require substantial computational
resources and extensive training times [27], making them less practical for real-time or
resource-constrained applications.

Q-learning has been applied to minimise the probability of detection by the sonar
systems [28]. The success of this method in underwater environments suggests that similar
techniques could be effectively applied to aerial environments, where radar detection is the
primary concern. Other approaches use PPO for path planning [29]. The authors highlight
the limitations of traditional PPO, particularly its susceptibility to poor convergence due
to high variance in reward signals. To address this, they propose an enhanced version,
FD-PPO, which decomposes rewards into frequency components, improving the stability
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and convergence of the learning process. The results indicate that FD-PPO outperforms
standard PPO in navigating complex environments with minimal radar detection risk.

Recurrent neural networks such as the long-short term memory (LSTM) network
have been used to address the limitations of single-step decision-making in existing deep
reinforcement learning-based UAV path planning [30]. A Real-time Path Planning based
on Long Short-Term Memory network [31] was proposed to leverage the memory capabili-
ties of LSTM networks within the Deep Q-Network (DQN) framework. The RPP-LSTM
algorithm represents a significant improvement in UAV path planning by incorporating the
memory capabilities of LSTM networks into the deep reinforcement learning framework.
This allows for more effective and adaptive decision-making in dynamic environments,
offering improved performance over traditional methods.

The reviewed literature underscores the evolution of UAV path planning from simple
heuristic methods to advanced RL-based approaches. While traditional algorithms like
A∗ have been adapted to consider radar detection, RL-based methods such as PPO and
its variants offer more dynamic and adaptable solutions. The integration of RL with
other deep learning techniques, such as LSTM, further enhances the ability of UAVs to
navigate complex environments while evading detection. However, challenges remain in
terms of computational demands and real-time applicability, which are critical areas for
future research.

Despite the good solutions offered by RL agents there is an issue in terms of the
smoothness of the final control policy as well as the time dedicated to train the RL agents.
Reward shaping [32] has been widely used to improve the performance of the RL agents
by adapting the reward function based on heuristic mechanisms [33]. Reward shaping
has been exploited in multi-task problems to address the catastrophic forgetting of RL
models [34]. Imitation learning [35] and inverse reinforcement learning [36] approaches
have been also explored to improve the reward design based on expert trajectories. These
models require a considerable set of expert demonstrations to infer the reward or policy
from the data [37]. Primitive-based learning [38] has been applied to leverage preferences
and learn a reward function model. Another technique that has also been applied to
improve the performance of RL agents is action shaping [39]. The most simple approach
is to discretize continuous actions (DC) into discrete actions, which is widely applied
in tabular RL methods. Removing actions (RA) has been used to remove unnecessary
actions [40] which notably accelerates the training convergence of RL agents.

2.3. Contributions

In view of the above, this paper aims to contribute to the field of UAV path planning
approaches in radar-contested environments through the development and assessment
of algorithms that prioritize radar detection avoidance. This is conducted by improving
the decision-making capabilities of the standard PPO algorithm by integrating an action-
shaping mechanism. This mechanism restricts the UAV action space to a subspace whose
actions strategically bring UAV closer to the target goal. In contrast to previous path
planning approaches using RL that learn the complete path to the target we apply only
the RL agent in zones of radar detection, whilst non-detection zones are driven by the
action shaping mechanism that aims to minimise the distance between the UAV and the
target goal. This approach enhances the practicality of reinforcement learning in real-world
scenarios where UAVs must operate under constrained conditions. Diverse simulation
studies are conducted to show the benefits of the work.

The main contributions of this work are twofold

• A novel path-planning approach based on the PPO algorithm and an action-shaping
mechanism that accelerates learning and avoids radar detection.

• A radar warning zone switching criteria is developed based on the Neyman–Pearson
Criteria to improve the action selection in both warning and non-warning radar
detection zones.
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3. Problem Formulation

Figure 1 shows the high-level diagram of the proposed radar-evasion problem. The
diagram consists of a 2D environment that models a contested environment with several
radars with different detection range. The key goal of this paper is to design a path planning
algorithm that is capable of driving a UAV to reach a target point without being detected
by the radars located in the 2D environment, whilst minimising the travelled distance.

Goal

UAV

Radar
detection zone

Warning zone

Figure 1. High-level diagram of the proposed radar evasion problem.

3.1. UAV Model

The UAV model is based on a simple kinematic model in the 2D plane, that is, we
neglect the movement on the z-axis. The following kinematic model is considered

xk+1 = xk + T cos(q)v
yk+1 = yk + T sin(q)v,

(1)

where xUAVk = [xk, yk]
⊤ ∈ R are the position coordinates of the UAV in time instance k,

q ⊂ R is the orientation of the UAV, T > 0 is a sampling time, and v ∈ R is a nominal linear
velocity. It is assumed that the UAV flies with a constant velocity. The orientation q of the
UAV is used as a control input to drive the UAV to the desired target goal. In this paper,
we set T = 100 s and v = 10 m/s to model that at each time step the UAV advances 1 km.

3.2. Technical and Theoretical Concepts

In order to design the proposed path planning algorithm, we need to consider key
technical and theoretical concepts that allow a comprehensive understanding of the chal-
lenges involving the overall application. This section aims to outline these concepts that
we consider in the proposed algorithm design.

3.2.1. Radar Detection

Radar systems are critical components of modern military defence, designed to detect,
track, and identify airborne objects over long distances [41]. The effectiveness of radar is
typically measured by its ability to detect an object, which is influenced by factors such as
the Radar Cross Section (RCS) of the target, the distance between the radar and the target,
and environmental conditions. The RCS is a measure of how detectable an object is by
radar; it depends on the object’s size, shape, material, and orientation relative to the radar.
Stealth technology aims to reduce the RCS of an aircraft, making it less detectable by radar.

This is achieved through various design features such as angular shapes that deflect
radar waves away from the source, radar-absorbent materials, and careful management of
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heat and other emissions. However, as radar technologies advance, even stealth aircraft
face challenges in remaining undetected, particularly when operating in environments
with multiple, overlapping radar systems [42]. In this research, while the UAV under
consideration is not inherently designed as a stealth vehicle, the principles of radar detection
avoidance are still applicable. The UAV’s path planning must account for radar detection
probabilities and strategically avoid areas with high radar coverage.

3.2.2. Neyman–Pearson Criterion

The Neyman–Pearson criterion [43] is a fundamental concept in statistical hypothesis
testing, particularly in the field of signal detection theory, where it is often applied to radar
detection scenarios. The criterion provides a rigorous method for making decisions based
on observed data, specifically in determining whether to accept or reject a null hypothesis
(typically that a signal is not present) in favour of an alternative hypothesis (that a signal is
present), In the context of radar detection, it provides a framework for making decisions
about the presence of a signal (e.g., whether a radar has detected the UAV) based on
observed data while controlling for the probability of false alarms. In radar detection, the
Neyman–Pearson criterion helps in setting thresholds for detecting targets by maximising
the probability of detection (PD) while keeping the probability of false alarm (PFA) within
acceptable limits. This criterion is used to calculate the detection probability of the UAV
when it is within the range of a radar system, forming the basis for the cost function in the
A∗ algorithm and the reward function in the proposed PPO model.

The radar detection probability PD is determined by the following components,

1. Signal-to-Noise Ratio (SNR): The SNR is a measure of the signal strength relative to
the background noise. In the radar context, it helps to determine how easily a target
can be detected by the radar. A higher SNR means better detectability of the target.
SNR is calculated based on the distance between the UAV and the radar. The SNR
decreases with the fourth power of the distance, i.e.,

SNR =
Radar Power

Distance4 . (2)

2. Eigenvalues of the Correlation matrix: The correlation matrix represents how similar
or correlated the signals received by the radar are across different pulses or measure-
ments. Suppose a radar transmits a series of pulses, and for each pulse, it receives
a signal that may or may not contain the reflected signal from a target like a UAV. If
the radar transmits N pulses, the signals it receives can be represented as a vector,
where each entry corresponds to the received signal for one pulse. For a radar with N
pulses and correlation ρ, the eigenvalues λi of the correlation matrix are

λi = ρi, i = 0, 1, . . . , N − 1. (3)

3. Detection threshold: The detection threshold VT is obtained by specifying the false
alarm probability PFA as [19]

PFA = exp(−VT)
N−1

∑
n=0

VT
n

n!
. (4)

4. Detection probability: the detection probability is calculated by adding the contri-
butions from each pulse while accounting for the SNR and the detection threshold,
i.e.,

PD = 1−
N

∑
i=1

N

∏
j=1
j ̸=i

(
1−

1 + SNR · λj

1 + SNR · λi

)−1

exp(−VT/(1 + SNR · λi)). (5)
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4. Methodology

The proposed approach is depicted in Figure 2. This approach consists of the design
of an autonomous path-planning algorithm for UAVs capable of reducing the detection
of radars and ensuring that the task is completed. The proposed approach consists of
a modified proximal policy optimisation (PPO) algorithm based on an action-shaping
mechanism that allows the PPO algorithm to focus only on the detection zones in order to
avoid the detection of radars in real-time.

UAV Position

Radar Location
Radar Power

Warning Range
Detection Range

Next State

Action Shaping

Radar Warning
Zone

Actor

Critic

State Yes

No

Radar

UAV

Action Shaping PPO

Figure 2. High-level diagram of the proposed Action-shaping PPO algorithm for detection avoidance
of radars.

The main elements of the proposed architecture are as follows:

1. UAV and Radar State Information: these blocks provide the necessary information
regarding both the locations of the UAV and radar, as well as the radar power, warning
and detection ranges. This information plays a pivotal role in the decision-making
process for action selection and manoeuvrability.

2. Radar Warning: in this block, the state is analysed to verify if the UAV is within
a radar’s warning zone. If the UAV is within a warning zone, then the PPO algorithm
is applied for detection avoidance. Otherwise, it applies an action-shaping mechanism
to select actions that drive the UAV towards the target location.

3. Action-shaping mechanism: this mechanism is used only when the UAV is not within
a radar’s warning range. Here, the action-shaping consists of reducing the action-
space of the UAV to move only in the direction of the target goal and avoid using
actions that may produce unnecessary movements.

4. Actor-Critic PPO Module: this module consists of two main elements,

• Actor Network: which is responsible for the action selection based on a parametrised
policy πθ(at | st) with parameters θ.

• Critic Network: which evaluates the value function Vµ(xt) with parameter µ that
enables to improvement of the actor policy.

Both the actor and critic networks are updated using mini-batches of experiences
collected from the environment–UAV interaction.

5. Reward function and policy update: the PPO algorithm uses a clipped objective
function to prevent large and unstable updates. In the action-shaping implementation,
the restricted action space complementary works with the clipped updates to stabilise
the algorithm training and accelerate its convergence. The PPO updates the policy
using a clipped objective LCLIP(θ) based on the advantage estimate Ât.
The reward is designed to penalise actions leading to radar detection. This encourages
the UAV to avoid those penalising paths, whilst moving towards to the location goal.
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6. Action and policy iteration: based on the reward and value function updates, the
actor selects the next action at that the UAV will apply to reach a new state st+1 that
is not within the detection range of the radars. This process is repeated until the
goal is reached or if a terminal condition is met (e.g., the maximum number of steps
is reached).

4.1. Proximal Policy Optimisation (PPO)

PPO is a well-known reinforcement learning (RL) architecture that has gained
popularity for its effectiveness and simplicity in solving complex decision-making prob-
lems [44]. PPO is part of the policy gradient methods in RL, where the objective is to
directly optimize the policy (the decision-making strategy) that maps states to actions to
maximise cumulative rewards.

PPO operates by iteratively improving the policy while ensuring that updates to the
policy are not too large. It uses a clipped objective function to prevent large policy updates,
which could destabilise the learning process. This approach allows PPO to strike a balance
between exploration and exploitation, making it suitable for dynamic environments where
conditions change over time.

PPO uses an actor-critic framework, where the actor network represents the policy πθ

with parameter θ, and a critic network Vµ(st) with parameter µ. PPO introduces a surrogate
objective function that includes a clipping mechanism to prevent large updates to the policy.
The probability ratio rt(θ) is defined as the ratio of the probability of taking an action under
the new policy to the probability of taking the same action under the old policy

rt(θ) =
πθ(at|st)

πθold(at|st)
. (6)

The clipped objective function is formulated as,

LCLIP(θ) = Et[min(rt(θ)Ât, clip(rtθ), 1− ϵ, 1 + ϵ)Ât)], (7)

where Ât is an estimate of the advantage function, ϵ is a hyperparameter that determines
the clipping range and the function, clip(rt(θ), 1− ϵ, 1 + ϵ) limits rt(θ) to a small range
around 1, preventing the policy from changing too drastically.

The advantage function Â(t) measures how good or worse an action is compared
to the expected outcome. It helps to reduce the variance in the gradient estimates. The
clipping mechanism in PPO acts as a form of regularisation to ensure that the policy does
not change too much with each update. This makes the learning process more stable and
prevents performance degradation.

In this paper, the state space is continuous within a user-defined bounded box. The
action space consists of eight actions given by

A = {→, ↑, ↓,↗,↘,←,↖,↙}. (8)

where each action symbol is described in Table 1.

Table 1. Actions meaning.

Symbol Meaning

→ Forward
↑ Upward
↓ Downward
↗ Forward-upward
↘ Forward-downward
← Backward
↖ Backward-upward
↙ Backward-downward
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The actions are transformed into their respective physical angles as

A = {→, ↑, ↓,↗,↘,←,↖,↙} 7→ q =

{
0,

π

2
,−π

2
,

π

4
,−π

4
,−π,

3π

4
,−3π

4

}
. (9)

4.2. Action Shaping PPO

The objective of this paper is to train a path planning algorithm that drives the UAV to
navigate from a starting point to a goal, whilst minimising the risk of detection by radar systems.
This is achieved by taking strategic actions that avoid radar detection zones, whilst moving
efficiently towards the goal. Here, the use of the standard PPO algorithm can lead to suboptimal
learning and slow convergence, because the algorithm learns the complete path from scratch.

Warning radar zone switching criteria are developed based on the Neyman–Pearson
criteria to determine the decision-making strategy that the UAV needs to follow when it is
within a warning or non-warning radar detection zone areas.

The proposed action shaping PPO algorithm aims to improve the learning efficiency
of standard PPO algorithm, whilst generating a higher-quality path that minimises radar
detection. The key idea of the algorithm is to strategically limit the UAV’s movements into
directions that optimize its efficiency in reaching the target goal. Here, the PPO algorithm
is applied only when the UAV enters the a warning area before reaching the detection zone,
whilst the action shaping is used in non-detection zones and drives the UAV to reach the
target goal. Algorithm 1 provides the pseudo-code of the action-shaping mechanism used
in the proposed action-shaping PPO.

Algorithm 1 Action shaping mechanism

1: Given the UAV position and goal position
2: if yUAV = yGoal then
3: if xUAV > xGoal then
4: Allowed actions {←} (backward).
5: else if xUAV < xGoal then
6: Allowed actions {→} (forward).
7: end if
8: else if yUAV < yGoal then
9: if xUAV = xGoal then

10: Allowed actions {↑} (upward).
11: else if xUAV > xGoal then
12: Allowed actions {←,↖, ↑} (backward, backward-upward and upward).
13: else if xUAV < xGoal then
14: Allowed actions {↑,↗,→} (upward, forward-upward and forward).
15: end if
16: else if yUAV > yGoal then
17: if xUAV = xGoal then
18: Allowed actions {↓} (downward).
19: else if xUAV > xGoal then
20: Allowed actions {←,↙, ↓} (backward, backward-downward and downward).
21: else if xUAV < xGoal then
22: Allowed actions {→,↘, ↓} (forward, forward-downward and downward).
23: end if
24: end if

The key advantages of the proposed action shaping PPO are fivefold,

• Restricted Movement Integration: The action space is reduced based on the UAV’s
position relative to the target goal and the radar warning zone. The UAV’s movement
options are dynamically adjusted during training. Depending on its environment, the
action space can be narrowed or expanded, ensuring the UAV avoids unnecessary
movements that would lead to the exploration of suboptimal paths.
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• Actor-Critic Structure: The use of separate actor and critic networks allows for more
stable learning in environments with complex dynamics.

• Adaptive Action Selection: The model adapts the action space depending on whether
the UAV is in a radar warning area, improving efficiency and safety.

• Faster Convergence: By limiting the action space to strategic movements, the model
converges faster, requiring fewer training steps.

• Enhanced Safety: The restricted movement prevents the UAV from making large, unpre-
dictable moves, ensuring it stays within safe zones during both training and deployment.

The reward function r is designed as a sparse reward with the following components

• If the UAV is in a non-detection zone, that is, the action-shaping mechanism is applied
then the reward is r = −∥xUAV − xGoal∥, where xUAV = [xUAV , yUAV ]

⊤ is the position
of the UAV and xGoal = [xGoal , yGoal ]

⊤ is the position of the target goal.
• If the UAV moves to a previous visited state, then it is penalised with a reward of

r = −1.
• If the UAV moves to a position that reduces the distance to the target, then a positive

reward of r = 20 is given.
• If the UAV enters into the radar detection range and exceeds a threshold of 0.2, then it

is penalised by a reward of r = −1000PD.
• If the UAV is within the radar range, then it is penalised by a reward of r = −20.
• If the UAV reaches the target then a positive reward of r = 1000 is given; otherwise, it

is penalised with a reward of r = −0.1.

4.3. Modified Sparse A∗ Algorithm

For fair comparisons of the proposed action-shaping PPO, we design a modified
version of the sparse A∗ algorithm [45] that is capable of optimising the trajectory path in
environments with multiple radars, enabling the aircraft to avoid regions of high radar
detection probability, whilst maintaining efficient flight paths. This is achieved by designing
a relative complex cost function based on the Neyman–Pearson criteria. This makes the
algorithm more suitable for scenarios like radar detection avoidance, where stealth and
safety are as important as reaching the goal.

The following key features are considered in the optimisation cost,

• Total distance: this term accounts for the cumulative distance travelled. This term
accounts for the cumulative distance travelled along the current path. The algorithm
aims to minimise the overall distance, which aligns with operational efficiency and
fuel conservation.

• Distance to Goal: This heuristic guides the path toward the goal. It is the Euclidean
distance between the current node and the goal. This term encourages the UAV to
move closer to the target in a straight line when possible.

• Cumulative Radar Detection Probability: It considers the cumulative radar detection
probability encountered along the path. Lower detection probabilities are preferred, so
paths that keep this metric low are favoured. The radar detection probability is computed
using a Neyman–Pearson criterion-based model that accounts for factors like signal-to-
noise ratio (SNR), and the characteristics of the radar (e.g., pulse number, correlation).

• Height Difference: This term measures the altitude change between consecutive nodes.
Large altitude changes are undesirable due to aircraft performance limits, energy
consumption, or increased radar visibility. For 2D environments, it can be set to zero.

• Immediate Radar Detection Probability: This term considers the radar detection
probability at the current node. It ensures that paths moving into high-risk areas (high
detection probability) are heavily penalised.

The node with the lowest overall cost is selected for further expansion. This process
repeats iteratively until the goal is reached. The radar model also considers the detection
range, warning range, and radar field of view. Nodes outside the radar’s detection range
are considered safe, while those within the range are evaluated based on the radar model.
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Therefore, the proposed optimisation cost is designed as a linear combination of the
aforementioned features as follows

J = k1 · Total distance + k2 ·Distance to Goal + k3 ·Cumulative detection probability
k4 ·Height difference + k5 · Immediate radar detection,

(10)

where ki, i = 1, . . . , 5 are user-defined scalars that weight each feature. By carefully balanc-
ing the cost function’s components, the algorithm can generate paths that are both stealthy
and efficient.

Remark 1. Both the cost of the sparse A∗ and the reward function of the PPO algorithm aim to
minimise the travel distance with minimum detection probability. Despite sharing the same task,
they are designed differently due to the design nature of A∗ and RL algorithms.

5. Results

We test the proposed approach in different environments under different target goal
locations and radars with different capabilities. These configurations were consistent across
all models to ensure fair comparisons.

We consider a square area of 400× 400 km2. This area is divided into a 1200× 1200 grid
to train the proposed approach. Here, the positions of the kinematic model are discretised
to match the closest position location of the 1200× 1200 grid. This allows to model a time-
varying velocity instead of the constant velocity of the kinematic model. It is assumed that
the UAV is equipped with a radar detection sensor, capable of identifying radar systems
and issuing warnings prior to the UAV entering their detection range. Multiple radars were
placed within the environment, each with defined detection and warning ranges, power,
number of pulses, correlation, and false alarm rate. These parameters are used to calculate
the radar detection probability using the Neyman–Pearson criterion. The radar detection
probability for each position of the UAV is computed based on its distance from the radar
and the radar’s characteristics. Table 2 summarizes the characteristics of the radars used in
the proposed implementation.

Table 2. Radar parameters.

No Radar Detection Warning Range Radar Power Pulse Correlation False Alarm

1 30 40 5 × 10−5 5 0.5 1 × 10−6

2 40 55 1 × 10−4 10 0.5 1 × 10−6

3 50 70 3.9063 × 10−3 15 0.5 1 × 10−6

The neural network of the PPO algorithm consists of a multi-layer perceptron (MLP) with
two hidden layers. Each hidden layer consists of 64 neurons and a ReLU activation function.
The output layer is determined by the dimension of the action space of the environment.
The hyperparameters of the simulation are set to a learning rate of 0.0001 and a clip range
of 0.2. The number of steps that the UAV requires to reach the target goal is denoted as an
episode. In each episode we modify the number of radars and their locations to ensure good
generalisation of the PPO algorithm. We consider 100,000 time steps to train the PPO algorithm.
For the modified sparse A∗ algorithm, we use the weights of Table 3 for the cost design.

Notice that the scalar weights ki depend on the radar detection range. These values
are proposed to ensure the UAV behaves similarly for all radars.

Table 3. Proposed scalar weights of the modified sparse A∗ cost.

No Radar Detection Weights (k1, k2, k3, k4, k5)

1 30 (0, 1 × 10−4 , 0.8, 0, 0)
2 40 (1 × 10−6, 1 × 10−4, 8, 0, 1 × 102)
3 50 (1 × 10−9, 1 × 10−4, 8, 0, 9.5)
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5.1. Comparison against Traditional PPO

We first motivate the proposed approach by first training a simple PPO algorithm
without an action-shaping mechanism. The results of the PPO algorithm in episode 5 are
observed in Figure 3. Here, the strong orange circles denote the radar detection range,
whilst the soft orange contour models the radar warning zones.

Figure 3. Path planning of UAV using PPO algorithm: Trajectory obtained in the episode 5.

The result of Figure 3 shows that the PPO algorithm takes unnecessary actions in
zones without radar detectability. This translates into more steps to reach the target goal,
specifically, it takes 74,879 time steps to reach the target with a cumulative detection
probability of 49.99 and a total travelled distance of 86,048.72 km. Figure 4 shows the
results using the proposed action-shaping PPO algorithm in episode 5.

Figure 4. Path planning of UAV using action-shaping PPO: Trajectory obtained in the episode 5.

Notice that incorporating the action-shaping mechanism allows having a smooth
trajectory that accelerates convergence to the goal in fewer steps. Here, the action-shaping
PPO takes 887 time steps to reach the goal with a cumulative detection probability of 15.99
and a total travel distance of 1504.12 km. This clearly shows the benefits of adding this
simple mechanism into the PPO algorithm to obtain better and more reliable results. Table 4
summarises the comparison results between PPO and action-shaping PPO.
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Table 4. Comparison of UAV path planning outcomes using standard PPO and action-shaping PPO
under the Scenario 1.

Methods Time Steps Cum. Probability Dist. Travelled

PPO 74,879 49.99 86,048.72 km

Action-shaping
PPO 887 15.99 1504.12 km

Remark 2. The distance travelled by each agent is variable in each time step due to the discretisation
of the position of the drone in the proposed large state space grid.

The comparisons allow us to conclude the following key benefits

• Efficiency: the UAV using the action-shaping PPO reaches the goal much faster
compared with the UAV using the standard PPO. This means that the action-shaping
mechanism provides an effective tool to guide the UAV towards the goal without
applying unnecessary actions.

• Detection probability: the cumulative detection probability is notably reduced which
is critical for this particular implementation to ensure the survivability of the UAV.

• Path smoothness: as previously discussed, the path of the standard PPO is not smooth
due to the random selection of actions in zones without radar detectability. In contrast,
the proposed approach overcomes this issue such that the PPO is only applied in the
coverage area of the radar.

• Distance travelled: this is a key benefit of the proposed approach since the UAV is
capable of reaching the goal in less number of steps which directly affects the travel
distance that is a critical element when the UAV resources are limited, e.g., battery
time or fuel.

In view of this, we can conclude that action-shaping brings value to the standard PPO
in this specific application. Figure 5 shows the cumulative reward and detection probability
in each episode of the action-shaping PPO. Here, the cumulative reward fluctuates due
to the different travel distances obtained from the change in the number of radars and
their locations. However, we can observe that the detection probability is minimised
across diverse environment configurations. If the number of radars and their locations are
maintained fixed we obtain the results of Figure 6. In this case, the cumulative reward and
detection provability converge in approximately 11 episodes.

(a) Cumulative reward (b) Total detection probability

Figure 5. Training results of the action-shaping PPO under random environment configurations.
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(a) Cumulative reward (b) Total detection probability

Figure 6. Training results of the action-shaping PPO under a fixed environment configuration.

We further compare the proposed approach using the modified sparse A∗ algorithm
designed in this paper across different implementations. Here, we used the policy generated
by the action-shaping PPO trained under individual environments after 50 episodes.

5.2. Scenario 1

Consider first the results of the modified sparse A∗ algorithm in a scenario of three
consecutive radars located in front of the UAV and the target goal. The result is shown
in Figure 7.

Figure 7. Scenario 1: Penetration Path of the modified sparse A∗ algorithm.

The results demonstrate that the modified sparse A∗ is effective in avoiding the
detection of the radars across all the paths. Here, the UAV takes 4700 time-steps to reach the
goal with a cumulative detection probability of 0 and a total travelled distance of 613.32 km.
Figure 8 shows the results of the action-shaping PPO.
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Figure 8. Scenario 1: Penetration Path of the action-shaping PPO algorithm.

Similar to the results observed in Figure 4, the action-shaping PPO is effective in
reaching the goal, whilst avoiding the radar detection. In this case, the action-shaping PPO
takes more steps (and therefore, travel distance) compared with the modified sparse A∗

algorithm. This is evident since the modified sparse A∗ assumes knowledge of the map
which facilitates the optimisation problem. Here, the action-shaping PPO takes 778 time
steps to reach the goal, with 0 cumulative detection probability and a travel distance of
1394.76 km. Notice that the behaviour of the action-shaping PPO can be further improved
by considering other action-shaping mechanisms to consider the radar detection range as
an indicator for action selection based on the location of the UAV. The obtained results are
summarised in Table 5 for visualisation purposes.

Table 5. Comparison of UAV path planning outcomes using modified A∗ and action-shaping PPO
under Scenario 1.

Methods Time Steps Cum. Probability Dist. Travelled

Modified sparse A∗ 470 0.0 613.32 km

Action-shaping
PPO 778 0.0 1394.76 km

5.3. Scenario 2

Consider a more complex scenario which consists of five radars located in different
positions on the map with different detection ranges. The result of the modified sparse A∗

algorithm is shown in Figure 9.
A similar performance is observed in this specific scenario, where the path followed

by the modified sparse A∗ algorithm stays in the borderline of the radar detection range.
This performance can be risky since a wrong manoeuvre can lead to the UAV entering the
radar range and increasing the likelihood of detection. Nevertheless, the path followed by
the UAV effectively reach the target goal with 0 detection probability. Here, the modified
sparse A∗ algorithm reaches to the goal in 636 time steps which is equivalent to 767.72 km
of travel distance.
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Figure 9. Scenario 2: Penetration Path of the modified sparse A∗ algorithm.

Figure 10 shows the result using the action-shaping PPO algorithm. In this case, the
path followed tries to move in the zones where the radar detection is null such that the
detection probability is zero. This implies moving at a relatively larger distance, i.e., the
algorithm takes 681 time steps equivalent to 1323.03 km of travel time. Table 6 summarises
the results obtained from this particular scenario.

Figure 10. Scenario 2: Penetration Path of the action-shaping PPO algorithm.

Table 6. Comparison of UAV path planning outcomes using modified sparse A∗ and action-shaping
PPO under the Scenario 2.

Methods Time Steps Cum. Probability Dist. Travelled

Modified sparse A∗ 636 0.0 767.72 km

Action-shaping
PPO 681 0.0 1323.03 km
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5.4. Scenario 3

Consider other complex scenarios with five radars with only three potential paths to
reach the target goal. Figure 11 shows the results of the modified sparse A∗ under this
new scenario.

Figure 11. Scenario 3: Penetration Path of the modified sparse A∗.

Similar results to Scenario 2 are observed, that is, the modified sparse A∗ algorithm
follows a path in the borderline of the radars detection range. As we previously discussed,
this performance is risky such that the UAV can be detected under windy conditions or
wrong manoeuvres. Here, the modified sparse A∗ algorithm reaches the target goal in just
472 steps equivalent to a travelled distance of 615.31 km with zero detection probability.
Figure 12 shows the results using the action-shaping PPO, where the UAV reaches the goal
in 609 time steps with zero detection probability and a travelled distance of 1197.18 km.

Figure 12. Scenario 3: Penetration Path of the action-shaping PPO.

Table 7 summarizes the obtained results using both the modified sparse A∗ and
action-shaping PPO algorithms.
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Table 7. Comparison of UAV path planning outcomes using modified sparse A∗ and action-shaping
PPO under the Scenario 3.

Methods Time Steps Cum. Probability Dist. Travelled

Modified sparse A∗ 472 0.0 615.31 km

Action-shaping
PPO 609 0.0 1197.18 km

5.5. Improvement of the Action-Shaping PPO

To enhance the performance of the action-shaping PPO, we modify the action-shaping
mechanism and use the Euclidean distance to select the state that is closer to the target goal.
Figure 13 shows the results obtained by this slight improvement.

Figure 13. Scenario 3: Penetration Path of the improved action-shaping PPO.

The results show that the incorporation of the Euclidean distance in the action-shaping
mechanism smooths the trajectory path in the zones without radar detection. Here, the
algorithm reaches the target goal in just 444 time steps and reduces the travel distance of
the action-shaping PPO to 1100.53 km. Table 8 compares the results of the modified sparse
A∗, the action-shaping PPO, and the improved action-shaping PPO algorithms.

Table 8. Comparison of UAV path planning outcomes using modified sparse A∗, action-shaping PPO
and improved action-shaping PPO under the Scenario 3.

Methods Time Steps Cum. Probability Dist. Travelled

Modified sparse A∗ 472 0.0 615.31 km

Action-shaping
PPO 609 0.0 1197.18 km

Improved Action-shaping
PPO 444 0.0 1100.53 km

5.6. Limitations and Future Work

New developments in the field of path planning for UAVs have started to include
measurements of the Radar Cross Section (RCS) to improve the effectiveness of the path
planning algorithm. This is intended to minimise the radar visibility of UAVs, especially
in stealth operations. However, the proposed approach did not incorporate RCS as an
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additional feature for the design of the path planning models. The RCS of a stealth aircraft is
a critical metric in assessing the radar visibility of an object, which involves understanding
the following key factors,

• Geometric Data of the Aircraft: this includes the dimensions of the aircraft such as its
length, wingspan, height, and overall shape. In addition, the surface materials for the
absorption of radar waves, and the panel configuration are critical aspects that affect
the RCS.

• Data on Stealth Features: this covers the design features (e.g., edge alignment, RAM
coating, cooling techniques) and operational profiles (e.g., typical flights and angles
that the aircraft operates) that play important roles in the performance of the RCS.

• Radar Characteristics:

– Radar frequencies that interact differently with the aircraft’s surface. Higher
frequencies (shorter wavelengths) are more sensitive to smaller details on the
aircraft’s surface, while lower frequencies (longer wavelengths) interact more
with the overall shape.

– Polarisation of the radar signal (vertical, horizontal, or circular) can affect how
the radar waves interact with the aircraft. The RCS can vary depending on the
polarisation of the incoming radar signal.

– Incident Angle where the radar waves hit the aircraft is critical. RCS is highly
dependent on the aspect angle, and the orientation of the aircraft relative to the
radar source.

• Environmental Conditions: include both atmospheric conditions (e.g., humidity, tem-
perature and pressure) and background noise which can reduce the radar signal
strength and/or the radar readings.

• Radar Cross-section Data: such as monostatic and bistatic RCS. Here, the monostatic
RCS is a measurement taken when the radar transmitter and receiver are at the same
location. It is the most common method and provides a direct measure of how much
energy is reflected back to the radar source. On the other hand, the bistatic RCS
is the measurement taken when the radar transmitter and receiver are at different
locations. These data help in understanding how radar waves are scattered in different
directions, not just back towards the radar source.

• Computational Simulations:

– Electromagnetic Modelling to predict the RCS, electromagnetic modelling tech-
niques like the Method of Moments (MoM), Finite Element Method (FEM), or
Finite Difference Time Domain (FDTD) are used. These simulations require
detailed geometric and material data of the aircraft.

– Simulation Parameters such as frequency range, incident angles, and polarisation
settings, which need to align with the actual measurement conditions.

• Historical RCS Data: which consists of data from previous tests or from similar aircraft
models used for comparison. This helps to understand the effectiveness of the stealth
features and identify areas for improvement.

Incorporating RCS data into the proposed path planning algorithms is a research
direction that we are keen to address as future work. In addition, the development of
hybrid approaches that combine the strengths of heuristic-based methods like Sparse A∗

with RL techniques is becoming an attractive field for future research.

6. Conclusions

This paper investigates the development of path-planning systems for military UAVs,
emphasising radar detection avoidance to ensure safe navigation in contested environ-
ments. An action-shaping PPO is proposed to address this problem. The approach uses
the Neyman–Pearson criterion to measure the probability of radar detection, ensuring
consistent evaluation of UAV exposure to radar. The algorithm incorporates an action-
shaping mechanism to impose additional constraints on UAV movements and refine the
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path-planning process. This method is designed to enhance the training speed and effi-
ciency of traditional PPO algorithms by limiting the UAV’s action space to only the most
strategic movements. This action-shaping mechanism not only accelerates the learning
process, but also enhances the UAV’s ability to avoid radar detection more efficiently. For
comparison purposes, we design a modified version of the sparse A∗ algorithm that evalu-
ates the cost of reaching the goal from different nodes while considering radar detection
probabilities. The results demonstrate that the proposed models inject into the UAV the
ability to learn effective strategies for avoiding radar while navigating towards its target.
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