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Abstract: Visual recognition and localization of underwater optical beacons are critical for AUV
docking, but traditional beacons are limited by fixed directionality and light attenuation in water.
To extend the range of optical docking, this study designs a novel omnidirectional rotating optical
beacon that provides 360-degree light coverage over 45 m, improving beacon detection probability
through synchronized scanning. Addressing the challenges of light centroid detection, we intro-
duce a parallel deep learning detection algorithm based on an improved YOLOv8-pose model.
Initially, an underwater optical beacon dataset encompassing various light patterns was constructed.
Subsequently, the network was optimized by incorporating a small detection head, implementing dy-
namic convolution and receptive-field attention convolution for single-stage multi-scale localization.
A post-processing method based on keypoint joint IoU matching was proposed to filter redundant
detections. The algorithm achieved 93.9% AP at 36.5 FPS, with at least a 5.8% increase in detection
accuracy over existing methods. Moreover, a light-source-based measurement method was developed
to accurately detect the beacon’s orientation. Experimental results indicate that this scheme can
achieve high-precision omnidirectional guidance with azimuth and pose estimation errors of -4.54◦

and 3.09◦, respectively, providing a reliable solution for long-range and large-scale optical docking.

Keywords: underwater optical beacon; docking technology; pose detection; deep learning;
underwater localization

1. Introduction

Autonomous underwater vehicles (AUVs), a subset of unmanned underwater vehicles
(UUVs), have long been a focal point of research within underwater robotics. They are
extensively used in marine science research, ocean resource surveys, and maritime security.
In marine science, AUVs facilitate deep-sea mapping, current tracking, and ecosystem
studies, generating high-resolution data critical for understanding climate change and
biodiversity [1]. In resource exploration, AUVs enable the detailed mapping of underwater
geological features and the assessment of mineral and hydrocarbon deposits, reaching
depths and terrains beyond human capability [2]. Additionally, they support critical tasks
in maritime security and surveillance, providing valuable data in areas that are challenging
or hazardous for human divers to access [3]. Effective guidance and docking systems
of AUVs are vital, as they enable routine tasks such as charging, data offloading, and
maintenance to be performed autonomously, reducing the need for human intervention
and extending mission duration. In modern underwater guidance and docking systems,
optical beacons serve as highly efficient guidance tools, playing a crucial role, especially in
achieving high-precision autonomous guidance and docking.

Underwater optical docking technology employs underwater cameras to identify opti-
cal beacons such as LEDs and laser diodes (LDs) to guide the docking of AUVs with base
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stations. Particularly in close-range docking processes, optical positioning technologies
provide extremely high positional accuracy and stability for AUVs, thus becoming the pri-
mary means for precise short-range underwater docking [4]. Key indicators of underwater
optical docking include range of operation, positioning accuracy, and update frequency. In
recent years, advancements in computer vision technology and hardware upgrades have
enhanced the positioning accuracy of optical methods to centimeter-level, with real-time
updates being possible. Specifically, Zhang et al. [5,6] achieved AUV docking using an
L-shaped light array, controlling the positioning errors within 20 cm horizontally, 15 cm
longitudinally, and 15 cm vertically. Petar et al. [7] designed an optical docking system
using four asymmetrically arranged flashing LEDs, achieving a positioning accuracy of
20 cm within 4 m. Cheng et al. [8] proposes a real-time method based on polarized op-
tical guidance using four polarized artificial underwater landmarks with a localization
position error of no more than 0.116 m. Zhao et al. [9] introduced a dual-type marker
fusion-based underwater visual positioning method, combining light sources and ArUco
markers, achieving positioning accuracies between 1.62 cm and 2.39 cm. Furthermore, Sun
et al. [10] utilized a 460 nm blue LED beacon for close-range guidance and docking within
a 15 m range. Zhejiang University [11] used a 94w power white SLS-5200 underwater lamp
combined with a line of sight (LOS) guidance scheme to complete docking over a distance
of 20–30 m on a lake. In 2024, they [12] utilized an improved detection algorithm to achieve
wide-range monocular single-light visual guidance. Cai et al. [13] addresses the docking
of the autonomous underwater helicopter (AUH) by installing two blue guide lights with
large diffusion angles on the landing platform and realizing high-precision localization
through binocular two-light vision algorithms. Dörner et al. [14] realized a six-degree-of-
freedom attitude reconstruction of an AUV at a range of 7 m using a set of optical beacons
with anterior and posterior height differences. Xu et al. [15] proposed a stereoscopic vision
navigation method using four green LEDs, achieving centimeter-level positioning accuracy
within a maximum range of 20 m. The Institute of Semiconductors [16,17] developed a blue
laser diode docking light named “Beijixing,” which can recognize up to 18 m. Furthermore,
they employed intersecting laser lines to extract four-point correspondences, successfully
achieving optical positioning over a distance of 10 m in a controlled pool environment.
Chen et al. [18] designed a node with integrated laser guidance and communication capa-
bilities, and this laser docking system is capable of guiding AUVs to communicate with the
seafloor observation network.

Despite advancements in optical docking precision, existing solutions still face con-
siderable challenges regarding their operational range and distance. The propagation of
light through water is significantly affected by absorption and scattering, which typically
restricts the emission angles of LED and LD sources. While increasing the emission angle
can extend the capture range, overly broad angles lead to a substantial loss in light energy,
thereby reducing the guiding distance. Consequently, current optical beacons must strike
a balance between emission angles and transmission distances, typically limiting their
operational range to approximately 20 m within a sector-shaped area. The constrained
range in both distance and direction significantly diminishes the success rate of AUV
docking, as it heavily relies on the accuracy of the return navigation phase, resulting in low
fault tolerance. Against this background, this paper introduces an innovative design for an
omnidirectional rotating optical beacon. Utilizing 360-degree dynamic scanning, the beacon
significantly enhances docking range and capture scope, effectively addressing directional
capture limitations in existing systems. While extending the distance, it provides precise
multi-angle guidance for the AUV, facilitating smooth adjustments and successful dock-
ing despite directional deviations during the return phase, thereby markedly improving
mission success rates. This omnidirectional rotating optical beacon aligns with current
trends in intelligence and autonomy, offering essential technical support for extended-
range guidance and multi-angle docking in complex underwater environments for future
AUV applications.
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The detection of underwater optical beacons is another critical issue for the optical
docking of AUVs. Water scattering and environmental noise cause significant variations
in the size and shape of optical beacons during docking, making accurate localization of
the beacon’s center challenging and impacting the precision of optical docking. Currently,
the methods for detecting underwater optical beacons primarily fall into three categories:
traditional image feature extraction, a hybrid approach combining deep learning-based
object detection with traditional optical center feature extraction, and optical center detec-
tion based solely on deep learning. Traditional image processing methods often utilize
color and brightness characteristics to highlight the optical beacon, combining adaptive
threshold segmentation and morphological fitting to extract features of the center [15,19–21].
Although straightforward, these methods lack adaptability to changes between the light
source and background, exhibit limited robustness, and achieve lower detection precision.
Deep learning-based object detection techniques, such as YOLO and Fast R-CNN, can
extract deeper features of the optical beacon, directly detecting the entire docking station or
individual beacons and then utilizing traditional image processing to extract the optical cen-
ter in the detected areas [22,23]. Despite their excellent robustness and detection accuracy,
these two-stage processes increase the complexity of the algorithms. Moreover, traditional
methods of optical center feature extraction are susceptible to changes in beacon shape,
which can reduce the accuracy of center detection. In contrast, deep learning algorithms
treat localization as a regression problem, directly outputting the optical center position
from input images using convolutional neural networks [24]. This approach is structurally
simpler and more efficient in detection but has weaker interference resistance and is prone
to misidentification.

To address the issues outlined above, this study proposes a deep learning-based ap-
proach for simultaneous light source detection and centroid extraction. We implemented
and refined this approach using the YOLOv8-pose model specifically for underwater opti-
cal beacon scenarios. The method processes object detection and centroid extraction tasks
in parallel, improving detection speed compared to traditional image processing and deep
learning methods that rely on conventional feature extraction for centroid determination.
Furthermore, it ensures accurate centroid localization even when the light source undergoes
deformation, thereby enhancing the precision of optical center positioning. Compared to
direct deep learning centroid detection methods, our algorithm leverages detection bound-
ing boxes during inference to help filter out the correct centroids, significantly reducing
the false detection rate. In response to challenges posed by multi-scale light sources in
underwater optical docking contexts, we have added a detection head for small targets
and optimized the network through dynamic convolution and RFApose detection heads
(receptive-field attention convolution integrated into pose detection heads). Lastly, we
introduced a post-processing method based on keypoint and intersection over union (IoU)
matching that leverages keypoint positional data to help filter detection boxes, effectively
eliminating redundant matches. This research applies the proposed underwater optical
beacon detection algorithm to the detection of omnidirectional rotating optical beacons and
introduces a light source feature-based metric method on this basis, achieving precise detec-
tion of beacon orientation. Through synchronized scanning and LOS methods, this study
utilizes the omnidirectional rotating optical beacon to obtain directional and attitudinal
information about AUVs, providing support for long-distance and omnidirectional data.

The main contributions of this study are as follows:

• An underwater omnidirectional rotating optical beacon was designed to offer a
360-degree operational range of up to 45 m. The design overcomes the limitations of
traditional underwater optical beacons, which are hindered by restricted directions
and shorter detection distances, thus enhancing docking success rates.

• We have created an underwater optical beacon dataset with manually annotated tar-
get boxes and centroid keypoints. A deep learning-based algorithm was developed
for the parallel detection of optical beacons and centroids, which is an improved
YOLOv8-pose model that significantly enhances detection performance. The algo-
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rithm achieved 93.9% AP at 36.5 FPS, with at least a 5.8% increase in detection accuracy
over existing methods.

• For the omnidirectional rotating optical beacon, we developed a metric method based
on light source features that achieves correct beacon orientation detection. Com-
bined with synchronized scanning and LOS methods, the azimuth and pose esti-
mation errors of this approach are 4.72◦ and 3.09◦, respectively, which meet the
practical requirements.

2. Underwater Omnidirectional Rotating Optical Beacon Docking System
2.1. Docking Approach for the Underwater Omnidirectional Rotating Optical Beacon

In the design of the docking system for underwater omnidirectional rotating optical
beacons, the core strategy involves installing these beacons on base stations to perform a
360-degree dynamic scan. This provides precise location and orientation information to
AUVs from all directions, facilitating accurate guidance for docking. To address the limited
range of traditional optical beacons, the beacons designed in this study feature a narrowed
emission angle with focused light sources, significantly extending the transmission distance
to 40–50 m at the same power output. However, this design also introduces the challenge of
a reduced operational range. To overcome this, we employed a planar 360-degree rotational
scanning technique, trading time for space to achieve long-range guidance in all directions.
Moreover, the continuous scanning of the omnidirectional rotating optical beacon ensures
uninterrupted signal coverage, reducing signal interruptions caused by direction changes
and enhancing the docking process’s stability. The specific setup, as shown in Figure 1,
includes a docking control cabin within the docking base station, housing a timer and
the omnidirectional rotating optical beacon. The AUV is equipped with an underwater
camera and a vision computing board to capture and process images of the optical beacon.
The docking control cabin powers the light source and the motor, controlling the motor
to drive the reflector for a 360-degree light scan. After capturing the image of the optical
beacon, the underwater camera of the AUV transmits it to the vision computing board
for recognition and angle calculation, guiding the movement of the AUV. Before docking,
the AUV and the base station’s docking control cabin synchronize their timers for time
alignment, and the AUV’s angle is calculated based on a predetermined rotational strategy
and the current time.
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As illustrated in Figure 2, the omnidirectional rotating optical beacon effectively
expands the pre-adjustment range for AUVs during long-distance docking. Even if the
AUV is positioned behind the docking station, it can begin directional adjustments from a
distance, significantly enhancing the success rate of docking operations. At closer ranges,



Drones 2024, 8, 697 5 of 21

the docking station uses traditional optical beacons, utilizing their fan-shaped docking
areas for precise pose estimation. Consequently, this docking scheme not only demonstrates
efficiency and reliability but also shows adaptability and flexibility in practical applications,
which is crucial for AUVs operating long-term in complex marine environments.
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Figure 2. Schematic of the underwater omnidirectional rotating optical beacon docking system.

2.2. Design of Underwater Omnidirectional Rotating Optical Beacon

The main structure of the underwater omnidirectional rotating optical beacon is shown
in Figure 3. The beacon consists of a mounting case, a transparent protective cover, a light
barrel, a reflector, and a rotating mechanism. Both the light barrel and the reflector’s
rotating mechanism are housed within a sealed case, with the transparent protective cover
situated above the case. The reflector is affixed to an inclined bracket and connected to
the rotating mechanism via a screw. The rotating mechanism includes a motor, motor
gears, and drive gears, with the motor mounted inside the case to rotate the reflector
via gear engagement. Positioned beneath the drive gears, the light barrel contains lenses
and a light filament, with the lenses clamped between two lens mounts. Additionally,
a heat sink connected to the bottom case is installed beneath the light filament to efficiently
conduct heat from the electronic components. During the beacon’s operation, light emitted
from the light source is focused through the lenses, reflected by the rotating reflector, and
then emitted through the transparent protective cover. The position of the lenses can be
adjusted by modifying the fixed mounts, altering the focus of the light, which in turn affects
the light’s operational distance and angle. Furthermore, the angle of the reflector can be
adjusted by replacing the supports and shims with different angles, thus flexibly changing
the direction of the light output.
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To achieve long-distance guidance with the optical beacon and obtain optimal light
source characteristics, we carefully selected the light source. According to the research
by Duntley S.Q. [25], blue-green light with a wavelength of 400–550 nm attenuates much
less in water compared to other wavelengths. Therefore, we chose a blue LED with
a wavelength of 450 nm as the light source to reduce transmission losses. To obtain better
light source image information, we tested the imaging characteristics of the blue guide light
under different power, distance, and beam divergence conditions in a pool environment,
as illustrated in Figure 4. The results indicated that at the same power, the narrower the
beam divergence angle of the light source, the greater the transmission distance. To surpass
existing transmission distance limitations, we reduced the beam divergence angle to within
10 degrees at 30 W, extending the effective operational distance to 45 m while maintaining
excellent directionality.
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3. Deep Learning-Based Detection Algorithm for Underwater Optical Beacon

In the complex underwater environment, spatial distribution and scattering cause
light spots to distort, making it difficult to accurately extract the centroids of optical beacons
and affecting positioning precision. This issue is especially pronounced when detecting
omnidirectional rotating optical beacons, where light sources at different rotation angles
produce varied imaging shapes, such as haloed trailing ellipses and circles. Traditional
feature extraction methods struggle to effectively address these challenges. Consequently,
this study introduces a deep learning algorithm for the real-time detection and centroid
extraction of underwater optical beacons. Leveraging its powerful feature extraction
capabilities, deep learning enhances the accuracy and stability of optical beacon detection
in complex and variable underwater conditions.

3.1. Underwater Optical Beacon Dataset

This study compiled a dataset of 7372 real underwater degraded images collected
in pool and lake environments, encompassing various quantities and distances of optical
beacons and considering factors such as blur and noise light interference. The underwater
optical beacon dataset includes images of eight lights, six lights, four lights, two lights, and
single light setups, with the eight-light images sourced from the UDID dataset [26] and
the remaining images derived from video data from docking experiments. We recorded
videos in multiple underwater environments using a high-resolution underwater camera
to ensure clarity and detail, capturing footage at 30 frames per second (FPS) to maintain
stability in dynamic scenes. Automated scripts were employed to extract images from
the recorded videos, selecting one image every 15 frames to ensure sufficient temporal
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separation and avoid redundancy from consecutive frames. We randomly divided the
dataset into training and validation sets at a ratio of 5:1, ensuring that images of each light
quantity were distributed proportionally. Ultimately, the training set contained 6144 images,
and the test set comprised 1228 images. During the data division, it was ensured that each
video segment was assigned exclusively to either the training or test set to prevent overlap
between consecutive frames. This division method helps consider the diversity of sample
scenarios during the model training and validation phases, enhancing the model’s general-
ization capability. Moreover, to mitigate the risk of overfitting due to the small dataset, we
implemented various data augmentation techniques, including random rotation, flipping,
scaling, brightness adjustment, and color transformation, thereby increasing the dataset’s
diversity and improving the model’s robustness. Specific parameters of the dataset are
detailed in Table 1.

Table 1. Parameters of the underwater guide light dataset.

Eight Lights Six Lights Four Lights Two Lights Single Light *

Examples

Drones 2024, 8, x FOR PEER REVIEW 8 of 22 
 

Examples 
     

Training Set 1535 1374 350 1805 1080 
Test Set 307 274 70 361 216 

Image Size 720 × 576 960 × 576 960 × 576 1920 × 1080 1920 × 1080 
* The single light images are from the underwater omnidirectional rotating beacon experiment. 

For the annotation task of underwater optical beacons, we utilized the Labelme v4.5.9 
software. First, we delineated the position of each optical beacon with bounding boxes, 
ensuring that these boxes tightly encompassed each light source. Then, we marked the 
centroid of each optical beacon as the unique keypoint within each bounding box. 
Statistical data reveal that our dataset comprises 26,476 annotated instances. Figure 5 
illustrates the annotated visualization information of the dataset. Figure 5a displays a joint 
distribution histogram of the bounding box positions, revealing that while the centers of 
the bounding boxes predominantly cluster near the center of the images, they are 
distributed throughout the image. Figure 5b shows histograms of the heights and widths 
of the bounding boxes, demonstrating that the dimensions of these boxes are generally 
concentrated within half the image size. Notably, the bounding boxes are predominantly 
small and include not only squares but also elongated rectangles shaped by the spatial 
distribution of the light sources and the scattering effects underwater. 

 
Figure 5. Annotation information of the underwater optical beacon dataset. (a) Normalized 
positions of the bounding boxes; (b) Normalized sizes of the bounding boxes. Both panels are 
presented through histograms with 50 bins per dimension, with darker colours indicating more 
partitions. 

In summary, the proposed underwater optical beacon dataset offers several 
advantages: Firstly, it covers different water quality environments, ranging from clear 
pool waters to algae-rich lake waters. Secondly, the dataset includes a variety of lighting 
conditions, from bright images in shallow water areas to dim images in deeper waters, 
supporting the algorithm’s adaptability across different lighting scenarios. Moreover, the 
dataset showcases the complete morphological characteristics of underwater optical 
beacons from various viewing angles, not only capturing images of fixed-position optical 
beacons but also utilizing omnidirectional rotating optical beacons to record guide lights 
from multiple perspectives and attitudes. This diversity aids the algorithm in learning the 
high-dimensional features of optical beacons, enhancing its detection capabilities across 
different forms. Lastly, the dataset has undergone multiple rounds of filtering and manual 
annotation, providing pixel-level precise bounding box annotations, which lay a solid 
foundation for accurate model training and validation. 

3.2. Underwater Optical Beacon Detection Algorithm Based on YOLOv8-Pose 

Drones 2024, 8, x FOR PEER REVIEW 8 of 22 
 

Examples 
     

Training Set 1535 1374 350 1805 1080 
Test Set 307 274 70 361 216 

Image Size 720 × 576 960 × 576 960 × 576 1920 × 1080 1920 × 1080 
* The single light images are from the underwater omnidirectional rotating beacon experiment. 

For the annotation task of underwater optical beacons, we utilized the Labelme v4.5.9 
software. First, we delineated the position of each optical beacon with bounding boxes, 
ensuring that these boxes tightly encompassed each light source. Then, we marked the 
centroid of each optical beacon as the unique keypoint within each bounding box. 
Statistical data reveal that our dataset comprises 26,476 annotated instances. Figure 5 
illustrates the annotated visualization information of the dataset. Figure 5a displays a joint 
distribution histogram of the bounding box positions, revealing that while the centers of 
the bounding boxes predominantly cluster near the center of the images, they are 
distributed throughout the image. Figure 5b shows histograms of the heights and widths 
of the bounding boxes, demonstrating that the dimensions of these boxes are generally 
concentrated within half the image size. Notably, the bounding boxes are predominantly 
small and include not only squares but also elongated rectangles shaped by the spatial 
distribution of the light sources and the scattering effects underwater. 

 
Figure 5. Annotation information of the underwater optical beacon dataset. (a) Normalized 
positions of the bounding boxes; (b) Normalized sizes of the bounding boxes. Both panels are 
presented through histograms with 50 bins per dimension, with darker colours indicating more 
partitions. 

In summary, the proposed underwater optical beacon dataset offers several 
advantages: Firstly, it covers different water quality environments, ranging from clear 
pool waters to algae-rich lake waters. Secondly, the dataset includes a variety of lighting 
conditions, from bright images in shallow water areas to dim images in deeper waters, 
supporting the algorithm’s adaptability across different lighting scenarios. Moreover, the 
dataset showcases the complete morphological characteristics of underwater optical 
beacons from various viewing angles, not only capturing images of fixed-position optical 
beacons but also utilizing omnidirectional rotating optical beacons to record guide lights 
from multiple perspectives and attitudes. This diversity aids the algorithm in learning the 
high-dimensional features of optical beacons, enhancing its detection capabilities across 
different forms. Lastly, the dataset has undergone multiple rounds of filtering and manual 
annotation, providing pixel-level precise bounding box annotations, which lay a solid 
foundation for accurate model training and validation. 

3.2. Underwater Optical Beacon Detection Algorithm Based on YOLOv8-Pose 

Drones 2024, 8, x FOR PEER REVIEW 8 of 22 
 

Examples 
     

Training Set 1535 1374 350 1805 1080 
Test Set 307 274 70 361 216 

Image Size 720 × 576 960 × 576 960 × 576 1920 × 1080 1920 × 1080 
* The single light images are from the underwater omnidirectional rotating beacon experiment. 

For the annotation task of underwater optical beacons, we utilized the Labelme v4.5.9 
software. First, we delineated the position of each optical beacon with bounding boxes, 
ensuring that these boxes tightly encompassed each light source. Then, we marked the 
centroid of each optical beacon as the unique keypoint within each bounding box. 
Statistical data reveal that our dataset comprises 26,476 annotated instances. Figure 5 
illustrates the annotated visualization information of the dataset. Figure 5a displays a joint 
distribution histogram of the bounding box positions, revealing that while the centers of 
the bounding boxes predominantly cluster near the center of the images, they are 
distributed throughout the image. Figure 5b shows histograms of the heights and widths 
of the bounding boxes, demonstrating that the dimensions of these boxes are generally 
concentrated within half the image size. Notably, the bounding boxes are predominantly 
small and include not only squares but also elongated rectangles shaped by the spatial 
distribution of the light sources and the scattering effects underwater. 

 
Figure 5. Annotation information of the underwater optical beacon dataset. (a) Normalized 
positions of the bounding boxes; (b) Normalized sizes of the bounding boxes. Both panels are 
presented through histograms with 50 bins per dimension, with darker colours indicating more 
partitions. 

In summary, the proposed underwater optical beacon dataset offers several 
advantages: Firstly, it covers different water quality environments, ranging from clear 
pool waters to algae-rich lake waters. Secondly, the dataset includes a variety of lighting 
conditions, from bright images in shallow water areas to dim images in deeper waters, 
supporting the algorithm’s adaptability across different lighting scenarios. Moreover, the 
dataset showcases the complete morphological characteristics of underwater optical 
beacons from various viewing angles, not only capturing images of fixed-position optical 
beacons but also utilizing omnidirectional rotating optical beacons to record guide lights 
from multiple perspectives and attitudes. This diversity aids the algorithm in learning the 
high-dimensional features of optical beacons, enhancing its detection capabilities across 
different forms. Lastly, the dataset has undergone multiple rounds of filtering and manual 
annotation, providing pixel-level precise bounding box annotations, which lay a solid 
foundation for accurate model training and validation. 

3.2. Underwater Optical Beacon Detection Algorithm Based on YOLOv8-Pose 

Drones 2024, 8, x FOR PEER REVIEW 8 of 22 
 

Examples 
     

Training Set 1535 1374 350 1805 1080 
Test Set 307 274 70 361 216 

Image Size 720 × 576 960 × 576 960 × 576 1920 × 1080 1920 × 1080 
* The single light images are from the underwater omnidirectional rotating beacon experiment. 

For the annotation task of underwater optical beacons, we utilized the Labelme v4.5.9 
software. First, we delineated the position of each optical beacon with bounding boxes, 
ensuring that these boxes tightly encompassed each light source. Then, we marked the 
centroid of each optical beacon as the unique keypoint within each bounding box. 
Statistical data reveal that our dataset comprises 26,476 annotated instances. Figure 5 
illustrates the annotated visualization information of the dataset. Figure 5a displays a joint 
distribution histogram of the bounding box positions, revealing that while the centers of 
the bounding boxes predominantly cluster near the center of the images, they are 
distributed throughout the image. Figure 5b shows histograms of the heights and widths 
of the bounding boxes, demonstrating that the dimensions of these boxes are generally 
concentrated within half the image size. Notably, the bounding boxes are predominantly 
small and include not only squares but also elongated rectangles shaped by the spatial 
distribution of the light sources and the scattering effects underwater. 

 
Figure 5. Annotation information of the underwater optical beacon dataset. (a) Normalized 
positions of the bounding boxes; (b) Normalized sizes of the bounding boxes. Both panels are 
presented through histograms with 50 bins per dimension, with darker colours indicating more 
partitions. 

In summary, the proposed underwater optical beacon dataset offers several 
advantages: Firstly, it covers different water quality environments, ranging from clear 
pool waters to algae-rich lake waters. Secondly, the dataset includes a variety of lighting 
conditions, from bright images in shallow water areas to dim images in deeper waters, 
supporting the algorithm’s adaptability across different lighting scenarios. Moreover, the 
dataset showcases the complete morphological characteristics of underwater optical 
beacons from various viewing angles, not only capturing images of fixed-position optical 
beacons but also utilizing omnidirectional rotating optical beacons to record guide lights 
from multiple perspectives and attitudes. This diversity aids the algorithm in learning the 
high-dimensional features of optical beacons, enhancing its detection capabilities across 
different forms. Lastly, the dataset has undergone multiple rounds of filtering and manual 
annotation, providing pixel-level precise bounding box annotations, which lay a solid 
foundation for accurate model training and validation. 

3.2. Underwater Optical Beacon Detection Algorithm Based on YOLOv8-Pose 

Drones 2024, 8, x FOR PEER REVIEW 8 of 22 
 

Examples 
     

Training Set 1535 1374 350 1805 1080 
Test Set 307 274 70 361 216 

Image Size 720 × 576 960 × 576 960 × 576 1920 × 1080 1920 × 1080 
* The single light images are from the underwater omnidirectional rotating beacon experiment. 

For the annotation task of underwater optical beacons, we utilized the Labelme v4.5.9 
software. First, we delineated the position of each optical beacon with bounding boxes, 
ensuring that these boxes tightly encompassed each light source. Then, we marked the 
centroid of each optical beacon as the unique keypoint within each bounding box. 
Statistical data reveal that our dataset comprises 26,476 annotated instances. Figure 5 
illustrates the annotated visualization information of the dataset. Figure 5a displays a joint 
distribution histogram of the bounding box positions, revealing that while the centers of 
the bounding boxes predominantly cluster near the center of the images, they are 
distributed throughout the image. Figure 5b shows histograms of the heights and widths 
of the bounding boxes, demonstrating that the dimensions of these boxes are generally 
concentrated within half the image size. Notably, the bounding boxes are predominantly 
small and include not only squares but also elongated rectangles shaped by the spatial 
distribution of the light sources and the scattering effects underwater. 

 
Figure 5. Annotation information of the underwater optical beacon dataset. (a) Normalized 
positions of the bounding boxes; (b) Normalized sizes of the bounding boxes. Both panels are 
presented through histograms with 50 bins per dimension, with darker colours indicating more 
partitions. 

In summary, the proposed underwater optical beacon dataset offers several 
advantages: Firstly, it covers different water quality environments, ranging from clear 
pool waters to algae-rich lake waters. Secondly, the dataset includes a variety of lighting 
conditions, from bright images in shallow water areas to dim images in deeper waters, 
supporting the algorithm’s adaptability across different lighting scenarios. Moreover, the 
dataset showcases the complete morphological characteristics of underwater optical 
beacons from various viewing angles, not only capturing images of fixed-position optical 
beacons but also utilizing omnidirectional rotating optical beacons to record guide lights 
from multiple perspectives and attitudes. This diversity aids the algorithm in learning the 
high-dimensional features of optical beacons, enhancing its detection capabilities across 
different forms. Lastly, the dataset has undergone multiple rounds of filtering and manual 
annotation, providing pixel-level precise bounding box annotations, which lay a solid 
foundation for accurate model training and validation. 

3.2. Underwater Optical Beacon Detection Algorithm Based on YOLOv8-Pose 

Training
Set 1535 1374 350 1805 1080

Test Set 307 274 70 361 216
Image Size 720 × 576 960 × 576 960 × 576 1920 × 1080 1920 × 1080

* The single light images are from the underwater omnidirectional rotating beacon experiment.

For the annotation task of underwater optical beacons, we utilized the Labelme v4.5.9
software. First, we delineated the position of each optical beacon with bounding boxes,
ensuring that these boxes tightly encompassed each light source. Then, we marked the
centroid of each optical beacon as the unique keypoint within each bounding box. Statistical
data reveal that our dataset comprises 26,476 annotated instances. Figure 5 illustrates the
annotated visualization information of the dataset. Figure 5a displays a joint distribution
histogram of the bounding box positions, revealing that while the centers of the bounding
boxes predominantly cluster near the center of the images, they are distributed throughout
the image. Figure 5b shows histograms of the heights and widths of the bounding boxes,
demonstrating that the dimensions of these boxes are generally concentrated within half
the image size. Notably, the bounding boxes are predominantly small and include not only
squares but also elongated rectangles shaped by the spatial distribution of the light sources
and the scattering effects underwater.
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In summary, the proposed underwater optical beacon dataset offers several advan-
tages: Firstly, it covers different water quality environments, ranging from clear pool waters
to algae-rich lake waters. Secondly, the dataset includes a variety of lighting conditions,
from bright images in shallow water areas to dim images in deeper waters, supporting
the algorithm’s adaptability across different lighting scenarios. Moreover, the dataset
showcases the complete morphological characteristics of underwater optical beacons from
various viewing angles, not only capturing images of fixed-position optical beacons but also
utilizing omnidirectional rotating optical beacons to record guide lights from multiple per-
spectives and attitudes. This diversity aids the algorithm in learning the high-dimensional
features of optical beacons, enhancing its detection capabilities across different forms.
Lastly, the dataset has undergone multiple rounds of filtering and manual annotation,
providing pixel-level precise bounding box annotations, which lay a solid foundation for
accurate model training and validation.

3.2. Underwater Optical Beacon Detection Algorithm Based on YOLOv8-Pose

YOLOv8-pose is a deep learning algorithm designed explicitly for keypoint detection
tasks, extending the classic YOLOv8 framework and enabling simultaneous object detection
and keypoint recognition. Compared to methods that train object and keypoint detectors
separately, this unified approach simplifies the training process and enhances training
efficiency. YOLOv8-pose was selected as our preferred model for its low computational
and parameter requirements while still delivering high detection accuracy and real-time
performance, making it especially suitable for operation on resource-constrained devices.
These characteristics make YOLOv8-pose ideal for practical engineering applications in
detecting underwater optical beacons.

3.2.1. Network Architecture

The network architecture of YOLOv8-pose consists of three main components: back-
bone, neck, and head. The backbone extracts multi-scale feature information from the
input image through convolution and C2f modules. The neck employs a path aggregation
network to integrate multi-level features. The head is equipped with three decoupled
detection heads that target large, medium, and small objects, respectively, and calculate
features for classification, object box regression, and keypoint regression tasks. However,
due to the multi-scale nature of underwater optical beacon detection scenarios, the baseline
model’s performance could have been better. Several key improvements were made to the
YOLOv8-pose model to enhance model performance in this context. First, a prediction head
was added for small objects to mitigate the impact of object scale variations on detection.
Second, dynamic convolution replaced the 3× 3 convolution in the C2f structure bottleneck
in the neck [27] to improve the model’s generalization capabilities. Lastly, receptive-field
attention convolution (RFAConv) was introduced in the pose detection head [28], thereby
boosting detection accuracy. The improved YOLOv8-pose architecture is illustrated in
Figure 6, and the following sections will detail the enhancements made.

• Small target detection head: In optical docking, operational range is a critical metric,
which is why our dataset includes numerous small object instances at long distances.
Zhang et al. [29] have shown that shallower features might be more effective for such
small, indistinct targets. Consequently, we introduced a specialized prediction head at
the P2 layer designed specifically for detecting small targets. This quad-head structure
significantly mitigates the adverse effects of substantial changes in object scale, thereby
markedly improving the detection performance for small targets.

• C2f_DC: Dynamic convolution, an extension of traditional convolutional, processes
input data by dynamically selecting or combining different convolutional kernels
for each input sample. It adapts to the input characteristics by adjusting parameters
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through a learnable multilayer perceptron (MLP) network that generates weights
controlling the contribution of each kernel. The process operates as follows:{

a = MLP(GAP(X))

Y = ∑M
i=1 ai(X ∗Wi)

(1)

where X represents the input features and Y the output. Wi represents the convolu-
tional kernels, each controlled by a dynamic coefficient ai, generated by processing the
globally averaged pooled input features through a small-scale MLP network. Specifi-
cally, dynamic convolution enhances network performance under low FLOP condi-
tions. By incorporating dynamic convolution into the C2f structure, we significantly
improved detection accuracy in underwater environments. Dynamic convolution
can adaptively select the optimal convolution kernels to address the varying imaging
results caused by the scattering and attenuation of underwater light sources. This
allows the model to better capture critical features while minimizing interference. This
approach not only facilitates the deployment of more complex network architectures
in resource-constrained environments but also enhances the model’s generalization
capability across diverse underwater scenarios.

• RFApose detection head: RFAConv combines spatial attention mechanisms with con-
volution operations to optimize how the convolution kernels process spatial features
within their receptive fields, as illustrated in Figure 7. H, W, and C in the figure
represent the height, width, and number of channels of the feature map, respectively.
K denotes the size of the convolution kernel. By introducing attention mechanisms,
RFAConv transcends traditional spatial dimensions, enabling the network to more
precisely understand and process key areas of the image. The adaptation enhances
feature extraction accuracy, particularly in underwater environments characterized
by low visibility and light scattering. Furthermore, it optimizes attention weights for
large kernel convolutions, effectively addressing the challenge of shared kernel pa-
rameters. By reconstructing feature maps, RFAConv further enhances the encoding of
image contextual information, allowing the network to better discern the relationship
between noise and target light sources in underwater scenes, thereby effectively avoid-
ing erroneous detection of interfering light. In this study, we integrated RFAConv
into the decoupled detection head, enabling it to extract more precise classification,
bounding box, and keypoint information from multi-scale feature maps, thus help-
ing YOLOv8-pose more effectively address the challenge of indistinct optical beacon
features caused by complex underwater environments.
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3.2.2. Post-Processing Based on Keypoint Joint IoU Matching

The post-processing of the YOLOv8-pose model primarily involves parsing the net-
work’s output and applying non-maximum suppression (NMS) [30]. The outputs typically
include the bounding box coordinates, class confidence scores, as well as keypoint coor-
dinates with their confidence scores. However, when processing the underwater optical
beacon dataset, the scattering effects of underwater light often result in halos in the images,
leading to multiple overlapping bounding boxes for the same light source target, as shown
in Figure 8. These redundant detections possess similar confidence scores to actual beacons,
making them difficult to filter out using simple confidence thresholds. Moreover, variations
in size and proportions among overlapping targets further challenge traditional NMS
methods, which rely solely on confidence and IoU thresholds and struggle to remove these
redundant boxes effectively.
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To address this issue, this study introduces a novel NMS post-processing method
based on keypoint joint IoU matching, which refines the selection of detection results by
incorporating keypoint information. Specifically, we use the object keypoint similarity
(OKS) [31] as a metric for keypoint information, combining it with IoU to serve as the
criteria for NMS, thereby effectively removing redundant detections with high keypoint
similarity. The formula for OKS is as follows, with values ranging from 0 to 1, where values
closer to 1 indicate higher similarity. Here, di represents the distance between detected
keypoints and true keypoints, s is the scale factor of the bounding box, ki is constant
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coefficients for each keypoint, and δ (vi > 0) is an indicator function used to determine the
visibility of keypoints.

OKS =
∑i e

−
d2

i
2s2k2

i δ(vi > 0)
∑i δ(vi > 0)

(2)

The specific steps of this algorithm are outlined in Algorithm 1. The variables bboxdet
and keypointdet represent the bounding box and keypoint position information output by
the network, respectively, while bboxfilter and keypointfilter are the final filtered detection
results. The parameters λconf, λiou, and λoks correspond to the confidence threshold, the
bounding box IoU threshold, and the keypoint similarity threshold, respectively. The
keypoint joint IoU matching-based post-processing method effectively resolves the issue
of multiple overlapping detections in underwater guide light detection, enhancing the
model’s accuracy in underwater target detection and providing a more reliable basis for
subsequent orientation determination and pose estimation for AUVs.

Algorithm 1: Joint Keypoint Similarity and IoU NMS

Input: {bboxdet}, {bboxconf}, {keypointdet}, λconf, λiou, λoks
Output: {bboxfilter}, {keypointfilter}
1 Initialization
2 {bboxfilter}← []
3 {bboxdet}, {keypointdet}← {bboxs, keypoints|bboxconf ≥ λconf}
4 order← sort ({bboxconf}, descending)
5 while numel (order) > 0 do
6 i← order [0]
7 {bboxfilter}← {bboxfilter} ∪ bboxdet [i]
8 {keypointfilter}← {keypointfilter} ∪ keypointdet [i]
9 if numel (order) = 1 then break
10 {bboxremian}← {bboxdet [order [1:]]}
11 {keypointremain}← {keypointdet [order [1:]]}
12 µiou ← IoU (bboxdet [i], {bboxremian})
13 µoks ← OKS (keypointdet [i]i, {keypointremain})
14 order← order [where µiou < λiou and µoks < λoks]
15 end
16 return {bboxfilter}, {keypointfilter}

3.3. Experiments on Underwater Optical Beacon Detection Algorithm
3.3.1. Experimental Setup

Table 2 outlines the hardware and software configurations utilized in the experiments.
Uniform training parameters were applied across different experimental groups during the
training phase to ensure accuracy. The input image resolution was set to 640 × 640 pixels,
using an SGD optimizer with an initial learning rate of 0.01, momentum of 0.937, and
a decay rate of 0.0005. The model was trained for up to 300 epochs with a batch size of 48,
employing early stopping if no improvements were observed after 50 epochs. Inference
was conducted on the Jetson AGX Orin board. The confidence threshold was set at 0.1,
with a batch size of 1, indicating frame-by-frame image processing and other parameters
were consistent with the training phase.

The evaluation metrics in this study included the average precision of the bounding
box and keypoint detections, the number of parameters, computational workload, and
FPS. For the single-category underwater optical beacon detection scenario, target detection
performance was assessed using APiou50 and APiou50–95, where the former indicates the
average precision at an IoU threshold of 50%, and the latter aggregates average precisions
across multiple IoU thresholds from 50% to 95%. The precision of detecting the optical
beacon’s centroid was evaluated using APoks50, representing the average precision at
an OKS threshold of 50%. Additionally, FLOP measures the number of floating-point
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operations per image processed by the model, while the parameter indicates the total
number of trainable parameters. FPS evaluates the model’s real-time processing capability,
a critical indicator for determining the model’s practical applicability.

Table 2. The experimental setting.

Environment Specification (Train) Specification (Inference)

CPUs 2 × Intel Xeon Gold 6234 12-core ARM Cortex-A78AE

GPU NVIDIA RTX A6000 (48G) NVIDIA Ampere, 2048 CUDA cores,
64 Tensor Cores

CUDA 11.3 11.4
PyTorch 1.11.0 1.13.0

3.3.2. Comparative Experiments

To validate the proposed deep learning-based optical beacon detection algorithm, we
conducted comparative experiments against existing underwater optical beacon and optical
center localization methods. Specifically, the performance of traditional image feature
extraction methods [21], deep learning-based object detection combined with grayscale
centroid methods [22], and CNN-based optical center localization [24] were assessed on
the test set images.

As indicated in Table 3, our method excelled across multiple evaluation metrics and
significantly outperformed traditional and other deep learning approaches. Specifically, our
algorithm achieved a 10.2% improvement in detection accuracy compared to traditional
image feature extraction methods, while increasing processing speed from 28 FPS to
36.5 FPS, thereby meeting real-time detection requirements. This enhancement is primarily
due to the traditional methods’ limited adaptability to variations in daylight and noise,
challenges that our algorithm effectively addresses. Although the CNN-based method
recorded the fastest detection speed at 67.9 FPS, its keypoint accuracy was only 86.7%,
significantly lower than our method’s 93.9%, leading to frequent misidentifications and
omissions. Compared to the YOLOv8 with centroid method, our approach maintained
a similar detection speed while enhancing the precision of bounding box and keypoint
detection by 3.2% and 5.8%, respectively. The YOLOv8-pose baseline model, despite a
slight precision decrease of 0.8% compared to the YOLOv8 centroid method, demonstrated
a significant speed advantage, laying a strong foundation for future model optimization.
Furthermore, our comparisons with the YOLOv9 and YOLOv10 models as target detection
frameworks revealed that our model consistently maintained superior detection precision.
While the YOLOv9t showed marginally better detection precision than the YOLOv8n,
it fell short in detection speed, primarily due to its optimization for complex scenes, which
does not confer substantial advantages for a single-target dataset like underwater optical
beacons. The YOLOv10n demonstrated a 1% improvement in APiou50 compared to the
YOLOv8n, but its performance declined by over 2% in APiou50–95. This decline is attributed
to the interference caused by overlapping halos from underwater light sources, which
hindered the YOLOv10 model’s ability to accurately determine target locations without
NMS, ultimately affecting the accuracy of centroid positioning.

Figure 9 illustrates the detection performance of various methods across different
scenarios. In scenario 1, where light sources form non-circular spots due to viewing angles
and narrow beam spread, deep learning methods can identify the deformed light sources,
while traditional image processing methods incorrectly filter them out. Furthermore,
our algorithm achieves a target light source confidence level of 0.85, significantly higher
than other deep learning algorithms. It also accurately locates the optical center, whereas
YOLOv8 with the centroid method often misidentifies the optical center due to reliance
on superficial brightness or shape features. When light source deformation is minimal
and sources are mostly circular, as in scenario 2, all methods detect the light sources with
similar accuracy. However, the simplistic network structure of CNN leads to instability
in optical center detection. Traditional image processing methods and YOLOv8 with
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centroid method tend to approximate the optical center as the geometric center. In contrast,
our algorithm leverages high-dimensional features from the surrounding area to assist
in optical center localization, achieving better precision. In scenario 3, where reflections
on the water surface are present, deep learning methods effectively distinguish between
genuine and false light sources due to their advanced feature learning capabilities, whereas
traditional image processing methods and CNN often misidentify these reflections as light
sources. Overall, these results demonstrate the advantages of our algorithm in reducing
target misidentifications and improving the accuracy of optical center detection.

Table 3. Results of comparative experiments.

Methods APiou50 APiou50–95 APoks50 FPS

Tradition - - 0.837 28
CNN - - 0.867 67.9

YOLOv8n + Centroid 0.911 0.572 0.881 40
YOLOv9t + Centroid 0.918 0.569 0.893 38.9

YOLOv10n + Centroid 0.924 0.555 0.871 51
YOLOv8n-pose 0.903 0.564 0.874 66.6

Ous 0.943 0.599 0.939 36.5
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3.3.3. Ablation Experiments

Ablation studies are a common research methodology designed to elucidate the
significance and function of individual components or features within a deep neural
network model. To assess the effectiveness of various modules, we conducted ablation
experiments on an underwater optical beacon dataset, with results presented in Table 4.
Notably, the AP of keypoints was calculated concurrently with object box detection during
training, ensuring that it was not influenced by the accuracy of object box detection, which
may result in higher keypoint precision than box precision.

From Table 4, the YOLOv8n-pose baseline model achieves an APiou50 of 90.3% and
an APoks50 of 96.6% on the underwater optical beacon dataset, demonstrating reliable
performance in its default configuration. The introduction of a small target detection head
resulted in a notable improvement in detecting smaller objects, particularly APiou50, from
90.3% to 92.3%. However, this enhancement was accompanied by an increase in computa-
tional complexity, with FLOP rising to 12.4 G and FPS decreasing to 49.6, demonstrating
a trade-off between accuracy and inference speed. Further incorporation of dynamic
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convolution and RFApose heads increased the APiou50 and APiou50–95 by 1.2%, while
FLOP decreased to 10.5 G, but the increase in parameter further reduced the FPS to 38.6.
Finally, introducing the keypoint joint IoU matching post-processing into the model further
enhanced detection precision, with APiou50 reaching 94.3%, a 4% improvement over the
baseline model, and keypoint detection APoks50 reaching 99.4%, a 2.8% increase. Despite
the increase in FLOP and parameters, the model still operates at 36.5 FPS, meeting real-time
performance requirements. This demonstrates that our algorithm maintains high detection
accuracy while balancing computational resource utilization and inference speed well.

Table 4. Results of ablation experiments.

Model APiou50 APiou50–95 APoks50 FLOP (G) Parameter (M) FPS

YOLOv8n-pose 0.903 0.564 0.966 8.7 6.2 66.6
+p2 * 0.923 0.576 0.978 12.4 6.2 49.6

+p2, +DC * 0.928 0.581 0.978 11.8 7.5 43.7
+p2, +DC, +RFApose * 0.935 0.588 0.982 10.5 9.1 38.6

+p2, +DC, +RFApose, +kp * 0.943 0.599 0.994 10.5 9.1 36.5

* +p2: adding a small object detection head at the P2 feature layer; +DC: replacing the standard convolutions with
dynamic convolutions; +RFApoes: adding RFAConv to the pose detection head; +kp: using a NMS method based
on keypoint joint iou matching.

4. Pose Estimation Based on Underwater Omnidirectional Rotating Optical Beacon
4.1. Azimuth Estimation

An underwater omnidirectional rotating optical beacon utilizing a rotational synchro-
nized scanning method assists AUVs in determining their orientation relative to a docking
station. The specific steps are as follows:

• By determining the frame rate of the AUV’s camera, the observable angle of the
optical beacon, and the permissible error margin, the maximum scanning rate of the
omnidirectional rotating optical beacon can be calculated. The maximum scanning
rate, s′, is computed using the following equation:

s′ =
f × a
360◦

(3)

where f represents the frame rate of the AUV’s camera, and a is the observable angle
of the beacon. In this work, the AUV’s camera captures at 30 Hz, and the beacon’s
observable angle is 10◦. Consequently, the maximum scanning rate that ensures the
beacon’s visibility by the AUV’s camera at all times is s′ = 0.83 rps. This means that
when the scanning rate is less than 0.83 rps, the AUV’s 30 Hz camera can always
capture the output light at one angle position per complete rotation. Observational
errors are inevitable due to factors like the camera’s frame rate and light scatter. Thus,
it is necessary to discuss the theoretical and actual angular positions of the beacon
light’s output due to these observational discrepancies. If the AUV’s camera is within
the allowed observational error range (±e degrees) of the beacon’s central axis, the
beacon is still considered to be facing the AUV directly. Figure 10 illustrates these
error scenarios, and the formula for calculating the maximum positional error e′ is
as follows.

e′ =
360◦ × s

f
+ e (4)

The precision of this formula is dependent on the scanning rate s and the permissible
observational error e. When e is 2◦ and s is 0.5 rps, the maximum positional error is 8◦,
which is within acceptable limits. Therefore, the beacon’s scanning rate is set to 0.5 rps
in this work.

• During the docking process, due to the rotational characteristic of the beacon, the
deep learning algorithm may detect the target light source in multiple consecutive
frames within the same rotation. To accurately determine the beacon’s orientation,
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we propose a metric method based on the light source’s characteristics, as detailed
in Algorithm 2. We hypothesize that the larger the area of the detected target light
source and the closer its shape to a circle, the more likely it is that the beacon is facing
the AUV directly. Here, I denotes the input image, bboxarea represents the area of
the bounding box, and bboxshape represents the aspect ratio of the bounding box.
We assign weights to the metrics warea and wshape, and use their weighted sum
as the final detection evaluation metric. Additionally, for occasional frame drops in
continuous detection, interpolation is used to fill in the gaps.
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Algorithm 2: Forward Beacon Detection Algorithm

Input: I, bbox, warea, wshape, t
Output:bboxmax, tmax
1 Initialization
2 bbox, keypoint, t← YOLOv8-UL(I)
3 detect, framemiss, framedet, {bbox}← False, 0, 0, []
4 if bbox is not none:
5 detect, framemiss ← True, 0
6 {bbox}← {bbox} ∪ bbox
7 framedet = framedet + 1
8 if framedet ≥ 5:
9 {bboxarea}← area({bbox})
10 {bboxshape}← shape({bbox})
11 score← warea ∗ {bboxarea}+ wshape ∗ {bboxshape}
12 return bboxmax, tmax ← max ({bbox}, key = score)
13 else: framemiss = framemiss+ 1
14 if framemiss ≥ 5 then
15 {bbox}, detect← [], False
16 end

• Prior to the start of AUV docking, the time synchronization between the AUV and the
docking station is confirmed through a timing system. Then, using the detection time
tdet of the beacon obtained in step 2 and the initial time tinit, the theoretical angular
position of the beacon at any given moment can be calculated, representing the AUV’s
azimuth relative to the docking station. The formula is provided below:

A = ((tdet − tinit)mods−1)× s× 360◦ (5)
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4.2. Pose Estimation

The scanning method of the omnidirectional rotating optical beacon can determine
the AUV’s azimuthal orientation relative to the docking station. However, this method
does not ascertain the precise pose of the AUV. This limitation arises because the broad
field of view of the underwater camera allows the AUV to capture the optical beacon from
various poses at the same location. To achieve accurate pose estimation, we employ the LOS
method [32] to compute the AUV’s pose. This method enables the calculation of equivalent
angular deviations using a single light source, thereby deriving the AUV’s current pose
relative to the base station in both the horizontal and vertical planes.{

α = arctan
( 2u

M × tan α0
)

β = arctan
( 2v

N × tan β0
) (6)

Here, (u,v) represents the pixel position of the optical center in the image, M is the
number of rows in the image, and N is the number of columns. The symbols a0 and β0
denote the camera’s field of view angles on the horizontal and vertical planes, respectively.
The pixel position of the optical center can be directly obtained from the previously de-
scribed detection algorithm. Based on the horizontal and vertical deviation angles, the
AUV adjusts its heading to align with the target, typically by controlling its rudder or pitch.
When the AUV is oriented toward the front of the docking station, it can directly adjust
based on the deviation angles, continuously correcting its course to approach the station
gradually. When the AUV is at the rear of the docking station, it must first turn to face the
station before using the equivalent angular deviations for pose adjustments, ultimately
achieving precise docking.

5. Pool Experiments

To provide data support for the underwater omnidirectional rotating optical beacon
docking system, this study designed and conducted a series of pool simulation experi-
ments. These experiments aimed to evaluate the effectiveness of the proposed underwater
omnidirectional rotating optical beacon docking method, particularly in terms of azimuth
and relative pose estimation accuracy.

5.1. Experiment Setup and Procedure

The experiments were conducted in a water pool measuring 80 m × 15 m × 30 m,
characterized by relatively clear water with an attenuation coefficient of 0.40 m−1, which
meets the standards for coastal seawater as referenced in [33]. To determine the specific
orientation of the underwater optical beacon relative to the camera, an experimental mea-
surement platform was designed and installed on a gantry above the pool. This platform
was equipped with a rail system that allowed movement along the X-axis, facilitating the
free translation of the camera in both the X and Y directions. Scales marked on the gantry
and rails enabled experimenters to accurately record the camera’s position on the XOY
plane. For ease of measurement, the rotating beacon was placed on a small underwater
platform 3 m below the water surface, ensuring the camera and rotating beacon were at
the same depth. The experiments utilized an underwater camera, the HDMultiSeaCam
(manufactured by DeepSea, based in San Diego, CA, USA), which has a frame capture
rate of 30 Hz and a resolution of 1920 × 1080. The horizontal and vertical field of view
angles are 85◦ and 50◦, respectively, enabling effective capture of underwater target light
sources. Figure 11 provides a top view of the experimental conditions for image acquisition.
In addition, to explore the impact of natural light on the detection of underwater optical
beacons, experiments were conducted during the day (with daylight) and at night (without
daylight, with minimal artificial light). The daytime experiments were conducted between
1 PM and 3 PM when natural sunlight illuminated the water surface. The nighttime experi-
ments took place between 8 PM and 9 PM, during which there was no sunlight, although
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a small amount of illumination was provided to ensure the experiments could proceed.
The experimental procedure is as follows:
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Figure 11. Experimental setup.

• Camera platform setup: The camera platform was mounted on the gantry above the
pool, with the gantry’s center serving as the origin for the X-axis. The camera moves
along the X-axis from −4.5 m to 4.5 m in 3 m increments, moving four times and
capturing video at each position to simulate the AUV viewing the optical beacon from
different directions.

• Y-axis movement: With the position of the omnidirectional rotating optical beacon
serving as the origin for the Y-axis, the camera platform moves along the Y-axis from
20 m to 50 m using the gantry, with 5 m increments, repeating the operation in step 1
seven times. This results in 24 video scans of the optical beacon from various positions.
Figure 12 shows representative images collected during the experiment.
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Figure 12. Detection results of different methods. (a) Daylight, the beacon faces forward; (b) darkness,
the beacon faces forward; (c) daylight, the beacon faces sideways; (d) darkness, the beacon faces
sideways.
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• Data collection: Experimental data were collected from offline videos with a resolution
of 1920 × 1080. The algorithm runs on a vision computing board, Jetson AGX Orin
(manufactured by NVIDIA, based in Santa Clara, CA, USA), which is compact, highly
capable, and easily deployable in underwater robots. It provides efficient and reliable
computational support for data processing and analysis.

5.2. Experiment Results

The experimental results indicate that our underwater omnidirectional rotating optical
beacon demonstrates excellent imaging capabilities at depths of up to 45 m, regardless of
the presence of ambient light. As shown in Figure 12, under the same distance conditions,
the imaging area of the light source is larger and its features are more pronounced in the
absence of ambient light. At a detection distance of 50 m, the light source becomes nearly
invisible in the presence of ambient light, while in dark conditions, the light source can
still be detected within a certain angular range. This highlights the significant impact of
lighting conditions on the effective range of the beacon, suggesting that it is more suitable
for underwater environments with limited ambient light, such as seabed docking stations.
Furthermore, the experiments were conducted in a clear water pool, minimizing the effects
of light absorption and scattering caused by underwater particles. However, when the
beacon is applied in turbid or algae-rich aquatic environments, its effective range may be
further reduced.

The azimuthal errors between the actual and measured values of the underwater
omnidirectional rotating optical beacon docking system under both daytime and nighttime
lighting conditions are presented in Table 5.

Table 5. Azimuth detection errors.

X-Axis\Y-Axis 20 m 25 m 30 m 35 m 40 m 45 m 50 m

4.5m (day) 6.12 5.63 5.43 5.60 4.94 5.61 -
4.5m (night) 6.12 5.62 5.43 5.55 4.89 5.54 -
1.5m (day) 4.53 4.48 4.58 4.29 4.49 4.38 -

1.5m (night) 4.53 4.48 4.58 4.29 4.47 4.34 4.21
−1.5m (day) 3.92 3.73 3.86 3.15 2.95 2.78 -
−1.5m (night) 3.92 3.70 3.86 3.14 2.95 2.77 2.68
−4.5m (day) 5.85 5.52 5.55 5.43 5.17 5.58 -
−4.5m (night) 5.85 5.52 5.52 5.43 5.11 5.50 -

According to Table 5, the differences under varying lighting conditions are minimal,
remaining within 0.1 degrees, and consistent trends are observed. However, when the
distance increases to 40 m, detection accuracy at night is slightly higher than during the
day, even with larger angular deviations (±4.5 degrees). This improvement is attributed to
the enhanced imaging effect of the light source in the absence of daylight, which facilitates
light source detection. At a distance of 50 m, the light source becomes nearly undetectable
during the day, whereas it remains detectable at night with smaller angular deviations
(±1.5 degrees). The table also indicates that errors at a distance of 20 m are larger compared
to other distances, which might be attributed to the proximity affecting the image area
of the light in the camera view. The area differences between different rotational angles
are similar, leading to errors in beacon orientation determination. Additionally, errors at
4.5 m on the X-axis are generally higher than those at 1.5 m by approximately 2.5 degrees.
This could be due to the smaller angle between the camera and the optical beacon at 1.5 m,
which increases the likelihood of capturing the frontal light source compared to at 4.5 m.
Overall, the average absolute error in azimuth is 4.54 degrees, with the maximum error
at 6.12 degrees and the minimum error reaching 2.77 degrees. These results validate the
effectiveness of the location information provided by the proposed omnidirectional rotating
optical beacon and its accompanying scanning method. To assess the accuracy of the
pose estimation algorithm based on the detection algorithm, Table 6 displays the errors



Drones 2024, 8, 697 19 of 21

between actual and measured values of the equivalent horizontal deviation angles for the
underwater omnidirectional rotating optical beacon docking system. Since the camera and
the rotating beacon were maintained at the same depth during experiments, the equivalent
vertical deviation angle was essentially zero and thus not recorded.

Table 6. Equivalent horizontal deviation angle errors.

X-Axis\Y-Axis 20 m 25 m 30 m 35 m 40 m 45 m 50 m

4.5m (day) 4.26 4.13 4.01 3.88 3.95 3.93 -
4.5m (night) 4.26 4.13 4.01 3.82 3.90 3.87 -
1.5m (day) 2.15 2.91 1.97 2.28 1.72 1.95 -

1.5m (night) 2.15 2.91 1.97 2.28 1.72 1.94 1.84
−1.5m (day) 2.82 3.20 1.95 1.93 1.86 1.88 -
−1.5m (night) 2.81 3.20 1.95 1.93 1.85 1.84 1.79
−4.5m (day) 4.22 4.14 3.93 3.55 3.71 3.99 -
−4.5m (night) 4.22 4.14 3.90 3.54 3.62 3.95 -

Based on the data presented in Table 6, the differences in error under various lighting
conditions are negligible at close range. Nevertheless, as the distance increases and the
imaging position approaches the edge of the image, the nighttime error is approximately
0.05 degrees smaller than that observed during the day. This reduction can be attributed to
the clearer light path of the underwater light source at night, which facilitates more accurate
centroid localization. We observe a general trend of decreasing error with increasing
distance, which can likely be attributed to the reduction in the imaging area of the optical
beacon. This reduction narrows the range of error in centroid detection and allows the
imaging position to gradually align closer to the image center, thereby enhancing precision.
In contrast, errors at a 4.5 m distance along the X-axis are consistently higher than those at
1.5 m. This discrepancy may be due to wide-angle distortion caused by the underwater
camera’s field of view. The calculations for equivalent deviation angles do not fully account
for this distortion, resulting in reduced accuracy for off-center light source images. Overall,
the average absolute error of the equivalent horizontal deviation angle is 3.09 degrees, with
a maximum error of 4.26 degrees and a minimum error reaching 1.72 degrees. The average
error of 3.09 degrees validates the high precision of our deep learning-based centroid
localization algorithm, meeting the requirements for engineering experiments.

6. Conclusions

This study proposes a deep learning-based approach for AUV docking using an
omnidirectional rotating optical beacon, designed to address issues related to limited emis-
sion angles and insufficient beacon detection accuracy encountered during underwater
optical docking. By employing an omnidirectional rotating optical beacon, the system
achieves comprehensive 360-degree light radiation and significantly increases the likeli-
hood of beacon detection by AUVs using a scanning method, thereby providing accurate
azimuth information and two degrees of freedom. Additionally, this paper introduces
a parallel deep-learning detection algorithm for optical beacons and centroids enhanced
by the YOLOv8-pose model. This approach significantly improves the multi-scale posi-
tioning accuracy of optical beacons through optimized network structures and advanced
post-processing techniques, ensuring stability and robustness in complex underwater envi-
ronments. Results from pool experiments indicate that the designed system can provide
high-precision omnidirectional docking within a range of 45 m, with the proposed algo-
rithm outperforming traditional methods in terms of detection accuracy and processing
speed. Compared to baseline models, our detection strategy enhances target detection and
keypoint localization accuracy by 4% and 2.8%, respectively, while substantially reducing
the false detection rate. Moreover, a motion trend measurement method based on the char-
acteristics of the light source has been implemented, accurately detecting the orientation of
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the rotating optical beacon. Overall, the docking scheme performs as expected, offering
a robust and efficient solution for omnidirectional autonomous AUV docking.

In future work, we intend to incorporate a broader variety of optical beacons and
datasets from complex environments to enhance the adaptability and generalization capa-
bility of the algorithm. Additionally, we will improve the design of the omnidirectional
rotating optical beacon to facilitate both horizontal 360-degree scanning and vertical scan-
ning, thereby expanding its guidance range. System validation and optimization will be
conducted using AUVs in more challenging real-world marine environments to ensure the
practicality of this technology. To address potential adaptability in various underwater
environments, we will explore the integration of adaptive light source adjustment tech-
nology and underwater image enhancement algorithms. These measures aim to improve
interference resistance in turbid conditions by optimizing light source modulation and
detection strategies, ensuring reliable localization under complex scenarios. Ultimately, our
research will focus on further enhancing the stability and reliability of the docking scheme
for the omnidirectional rotating optical beacon, advancing the development of autonomous
AUV docking technologies, and providing robust support for AUV missions that require
multi-angle and long-distance guidance and localization, such as marine monitoring, rescue
operations, and deep-sea sampling.
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