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Abstract: In challenging environments such as disaster aid or forest rescue, unmanned
aerial vehicles (UAVs) have been hampered by inconsistent or even denied global naviga-
tion satellite system (GNSS) signals, resulting in UAVs becoming incapable of operating
normally. Currently, there is no unmanned aerial vehicle (UAV) positioning method that is
capable of substituting or temporarily replacing GNSS positioning. This study proposes
a reliable UAV top-down absolute positioning method (RTAPM) based on a monocular
RGB camera that employs joint optimization and visual–inertial assistance. The proposed
method employs a bird’s-eye view monocular RGB camera to estimate the UAV’s moving
position. By comparing real-time aerial images with pre-existing satellite images of the
flight area, utilizing components such as template geo-registration, UAV motion constraints,
point–line image matching, and joint state estimation, a method is provided to substitute
satellites and obtain short-term absolute positioning information of UAVs in challenging
and dynamic environments. Based on two open-source datasets and real-time flight experi-
mental tests, the method proposed in this study has significant advantages in positioning
accuracy and system robustness over existing typical UAV absolute positioning methods,
and it can temporarily replace GNSS for application in challenging environments such as
disaster aid or forest rescue.

Keywords: point–line image matching; motion constraints; joint state estimation; satellite
signals denied; absolute positioning

1. Introduction
In recent years, vision and vision-assisted localization [1,2] have emerged as the

most essential solutions for the replacement or supplementation of global navigation
satellite system (GNSS) positioning. Relative vision localization [3] and absolute vision
localization [2] are the two primary methods for localizing unmanned aerial vehicles
(UAVs) based on vision. Frame-to-frame positioning is another term for the relative vision
positioning technique, while frame-to-reference position is another term for the absolute
vision positioning method. The primary obstacles to vision-based localization methods are
the complexity of comprehending and discriminating these data, as well as the analysis of
big data in real time.

The primary challenge of relative vision positioning [2] is the resolution of error accu-
mulation, specifically time drift. Drift is the cumulative error that occurs when recursive
estimation is used to produce new estimates. The accuracy of the current estimation will
be influenced by the error in the previous estimate if the current estimate depends on it.
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Relevant researchers have conducted a significant amount of research on the fundamental
characteristics of cumulative error in the context of relative visual positioning. For instance,
visual–inertial odometry [4–6] closely integrates with inertial data. This method can ad-
dress UAVs’ short-term positioning demands in limited scenes. However, these methods
are unable to address the fundamental issue of error accumulation, necessitating further
targeted research. We employed absolute vision positioning as an approach to eliminate
drift. In order to complete the UAV self-positioning, the absolute vision positioning method
typically relies on a pre-collected dataset, known as reference data, which undergoes ac-
curate geo-reference and correction to compare its similarity to the current frame. The
reference data may consist of loosely organized satellite image sets or merged satellite
images, most of which have undergone orthorectification [7]. Nowadays, the increasing
availability of free maps (such as Google EarthTM) and geographic information systems
(GIS) (ArcGISTM) facilitates the rapid advancement of absolute positioning methods. The
pre-flight UAV image dataset is yet another method of acquiring reference data. When ac-
quiring images, it is necessary to record the airborne GNSS position information [8–11]. The
absolute visual positioning method relies on the reliability of GNSS during data collection,
whereas real-time positioning does not require GNSS.

The main contributions of the paper can be summarized as four parts:

(1) We proposed an automatic geo-referencing algorithm for remote sensing imagery.
Remote sensing images collected by Google Maps were written into geographical
information employing automatic registration procedures, completing the automatic
production of template images.

(2) A fast point–line matching approach was proposed. We estimated the UAV velocity
in real time and employed motion constraints to minimize the map’s matching range.
FAST methods were employed to extract anchor points on the line segments generated
by the EDlines approach, and a fast map matching and search method suitable for
large-scale outdoor environments was established by means of a limited amount of
anchor points. This method enhances the usability of map matching on platforms
with limited computer capabilities.

(3) A global state joint estimation approach was proposed. This study combined visual–
inertial odometry with error accumulation and map matching absolute positioning,
and it employed the global state joint estimate approach to substantially minimize
the error accumulation of the relative visual positioning method in the long-term
positioning process.

(4) An experimental platform was constructed, and a bird’s-eye view absolute positioning
solution was developed. The flight control served as an intermediate node, while
the onboard camera was employed to capture aerial views in real time. The UAV’s
onboard CPU processed any positioning issues in real time and sent the results to the
ground station in real time via the Mavros communication of the data transmission
module to be employed by other application modules.

This paper is divided into the following sections. First, an overview of visual absolute
positioning based on UAV is introduced in Section 2. Then, Section 3 explains the principle
of RTAPM, which is a robust top-view absolute positioning method. Afterwards, the design
and implementation of the experimental system are described in Section 4, and Section 5
describes the experiment and results. Finally, the experimental conclusions and future
research work are discussed in Section 6.

2. Absolute Localization: An Overview
Vision-based localization and navigation methods have been the subject of extensive

theoretical and experimental investigation by numerous academics [2]. Three primary
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subjects of exploration include visual odometry, feature matching-based UAV location
technology, and template matching-based UAV localization. As shown in Figure 1, the
absolute visual positioning and navigation process of a UAV based on prior satellite images
is described.
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Figure 1. Schematic diagram of the absolute visual positioning and navigation of UAV based on prior
satellite images [2].

2.1. UAV Localization Based on Template Matching

In the field of image matching and image registration, template matching is often
referred to as direct or intensive matching. Many researchers utilized template matching to
suggest various approaches in the research on absolute visual positioning. The positioning
process has been described as a template matching problem, and it can be performed
by searching for the template in the reference map based on the UAV’s current view.
The template matching-based UAV locating approach compares two image patches and
establishes their similarity measurements, employing image patch comparison operators
such as the sum of square differences. The high computational cost for calculating similarity
is the primary disadvantage of template matching.

Dalen et al. [12] proposed using normalized cross-correlation to estimate the UAV’s
absolute position. Dense images between UAV images and Bing MapsTM reference images
are aligned using the normalized cross-correlation that is added to the probability density
function in the particle filter architecture. The aim of this work was to add an absolute
location estimate to the simultaneous localization and mapping (SLAM) navigation sys-
tem [13,14]. The estimated location and variance are incorporated into the extended Kalman
filter (EKF) measurement update of the SLAM navigation system when the variance thresh-
old and continuous estimation are completely close. An information theoretic measure of
the interdependency between two signals is known as mutual information. For the purpose
of UAV location, mutual information is employed to quantify how much information two
images share [15,16]. When analyzing local and global differences between images, mutual
information is more accurate than sum of squares and normalized cross-correlation, but
it is computationally more challenging. Wan et al. [17] proposed a positioning approach
based on illumination invariant phase correlation [18]. Phase correlation is a template
matching method based on Fourier translation features. Research and demonstration have
shown that the phase correlation process is fundamentally indifferent to light fluctuations
brought about by the sun’s position. Patel [19] presented a positioning strategy based
on Yol’s work [20]. In [21], a location approach was proposed based on the normalized
information distance estimated using mutual information similarity measurements. Un-
like mutual information, normalized information distance remains unaffected by image
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overlap. As a result, normalized information distance is more commonly utilized for
geographical location.

2.2. UAV Localization Based on Feature Matching

Feature matching, also known as indirect matching, has the potential to effectively
substitute template matching in UAV visual positioning applications. Feature matching and
location include two phases, which are feature point detection and descriptor extraction.
The angle detectors, such as the well-known Harris and FAST [22] detectors, are commonly
employed for feature point detection. The aim of feature point detection is finding salient
spots that are readily discernible in two completely distinct detection rounds on separate
photos in the same area. The images utilized for feature point detection may differ sub-
stantially in illumination, proportion, rotation, and viewpoint. Descriptor extraction is the
process of extracting feature vectors from the area around feature points. The gradient
histogram based on SIFT features [23] and the binary test based on Brief features [24]
represent two common feature matching approaches. The goal of feature matching is to
generate a descriptor that employs metrics like Euclidean distance or Markov distance to
match several feature points.

The works of Seema et al. [25] and Saranya et al. [26] are comparable. UAV images are
registered to the global reference map by comparing normalized cross-correlation features
with a combination of random sample consensus and SURF. Shan et al. [27] provided a
positioning system that incorporated directional gradient histograms, particle filtering, and
optical flow. The reference data for this method are obtained by applying the directional
gradient histogram to all feasible points of the global reference map. Chiu et al. [28]
proposed a system for positioning and navigation in a global positioning system (GPS)
denial environment that combines inertial measurement unit (IMU) and geographic image
registration data. Mantelli et al. [29] designed a 4-DOF absolute positioning system with
satellite imagery. The system employs a down-looking monocular RGB camera, assuming
that the roll and pitch angles are near zero, and matches the UAV image to the satellite map
employing Brief’s abBREIF descriptor. Masselli et al. [30] proposed a strategy combining
terrain classification and particle filtering. This approach classifies terrain patches into
four arbitrary categories: grass, bushes, roads, and buildings. This method just employs
the visual method to estimate position and does not involve additional IMU data. The
experiment was carried out in an outside environment of 100 m, and the average position
estimation error was 9.5 m.

2.3. Visual Odometry

Visual odometry is a positioning approach that compares the current frame observed
by the UAV to previous frames to determine the difference in self-motion. In general, the
pose estimation problem is solved using operational flow analysis [31]. Visual odometry
adds the estimated differential pose vector to the prior pose estimation to obtain a new
pose estimate. As a result, visual odometry can be used to estimate position only based on
current and historical observations.

Visual odometry is not limited to the relative visual positioning method but can
additionally be employed in an absolute visual positioning system developed with pre-
flight data. In this technique, visual odometry is employed to collect data registered
by geo-graphical location and establish a database that is valuable for future relocation.
The absolute positioning approach of visual odometry is distinct from the other methods.
Except for Goforth and Lucey [32], current approaches lack the use of continuous frame
comparison. In existing visual odometry methods [33], the UAV image must be compared
with the pose graph, not merely the image features, so it faces completely distinct challenges,
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promoting the development of the absolute visual positioning method of visual odometry.
The research of Goforth and Lucey appears to be more equivalent to the depth learning
method. Warren et al. [11] presented a positioning strategy. After GPS positioning failed,
the UAV could return to its initial area. The authors updated the VT&R path tracking
algorithm for the operation of unmanned vehicles. Once the UAV obtained stable and
continuous GPS location, it employed visual odometry and GPS navigation to generate a
relative pose graph. The visual odometry system employed SURF features to minimize
pose outliers and the maximum likelihood estimation sample consensus to obtain the
transformation relative to the last key frame.

In summary, when the satellite positioning system refuses, existing approaches mostly
employ imagery and the airborne reference image to match the scene in order to acquire the
UAV’s absolute position. However, as the reference image and the information collected
by the UAV in real time are different in height, time, and perspective, the corresponding
relationship of features in the image is destroyed, which makes it difficult to complete the
accurate positioning of the UAV in the real complex environment. As a result, a highly
reliable matching system must be explored with the goal of guaranteeing correct UAV
positioning in a real-world challenging environment.

3. RTAPM: A Robust Top-View Absolute Positioning Method
The matching positioning based on satellite maps attempts to address the problem

of being unable to obtain a reliable absolute position due to noisy GNSS signals or being
denied. In a complex challenge environment, this approach can replace the GNSS system
to obtain short-term absolute geographical location data for UAVs when GNSS signals
are unavailable or positioning has a significant divergence. As shown in Figure 2, the
UAV absolute positioning method based on the existing image only involves the use of an
airborne down-looking monocular RGB camera to estimate the flight position of the UAV
through image projection matching between the real-time aerial image and the existing
satellite image or mapping the base map in the flight area during flight, resulting in UAV
positioning and map measurement updates. The absolute positioning technology of UAVs
based on mapping base maps does not rely on GNSS, which can significantly improve the
autonomous combat capabilities of UAVs in a conflict environment.

The RTAPM method proposed in this paper is an absolute positioning technology for
UAVs that relies on surveying and mapping base maps. It locates and extracts significant
points and line features from up-to-date surveying and mapping base maps, generates a
key feature library, develops observation models employing real UAV collected data, and
achieves absolute positioning by matching the observation model to the feature library. At
the same time, the framework integrates a real-time visual–inertial odometry system and
employs the visual optical flow approach to enhance the system’s positioning efficiency.
In contrast, the motion constraint strategy is employed in the map matching stage to
minimize the range to be matched as much as feasible while maintaining accuracy, and
the least point and line feature matching is employed for efficient matching. Finally, joint
state filtering is utilized to attain high-precision fusion of the results of map matching and
visual–inertial odometry while taking consistency into account, resulting in the UAV’s
real-time geographical location.
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Figure 2. The framework of RTAPM. The green arrows represent the data flow of visual–inertial
odometry; the red arrows represent map matching; and the blue arrows represent pose evaluation.
The black arrows represent the common data flow for visual–inertial odometry and map matching.

3.1. Template Geographic Registration

The geographic registration template image is based on a Google Earth survey area
image. The imagery matching method is used to write a variety of coordinate information,
comprising geographical reference, so that the matching process can be completed with the
goal of responding immediately to real-time location during matching and positioning.

Algorithm 1 illustrates the template geographic registration method. First, select a
download source based on the survey area’s known longitude and latitude coordinates,
image zoom level, and image style, and then collect the Google image tiles that require
zoom level from the Google image. The downloaded image tiles suffer from ontological
coordinates, which are required to be unified into the same coordinate system. The image
tiles are then fused together. The desired coordinate scheme is chosen via a series of
appropriate coordinate transformations, and the world coordinates of the four corners of
the template image are filled in, which enables the matching and positioning to be quickly
retrieved based on the pixel values when the matching is completed. Finally, the image is
saved as the chosen geographic image.

Tiles primarily provide open-source images. For collecting tiles in an area with
accurate longitude and latitude, as well as the longitude and latitude corresponding to pixel
locations on tiles, longitude and latitude coordinates typically have to be converted to tile
coordinates and pixel coordinates, respectively. The fundamental differences between tile
coordinate systems are the distinct earth ranges intercepted by projection and the different
tile coordinate starting points. For the world map projected into a plane by Mercator across
different map resolutions, the world map is divided into pixels as map units, where each
map unit is referred to as a map tile. Figure 3 demonstrates the specific conversion.
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Algorithm 1 Template Geographic Registration

Input: Template boundary longitude longb, latitude latb and zoom level l.
Output: Registered template Tlong,lat.

1: if longb and latb are legal then

2:
Obtain template boundary tiles coordinates (xtile

b , ytile
b ) from (longb, latb) by

Equation (10).
3: if l exits in (xtile

b , ytile
b ) then

4: Obtain download source urls.
5: Obtain tile image total numbers n.
6: num = 0
7: for tile i in n do
8: num = num + 1
9: if num ≥ 2 then

10: Merge tile images from 1 to num.

11:
Obtain merged tiles corners pixel coordinates (xpixel

corner, ypixel
corer) by

Equation (11).

12:
Obtain merged tiles corners longitude and latitude

(longcorner, latcorer) by Equation (3).
13: Geographic information writing image.
14: num = num − 1
15: end if
16: end for
17: Save template image.
18: else
19: Decrease the zoom level l.
20: end if
21: end if
22: Obtain registered template Tlong,lat.
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Latitude and longitude coordinates (longb, latb) to tile coordinates
(

xtile
b , ytile

b

)
,

{
xtile

b = longb+180
360 ∗ 2l

ytile
b =

(
1
2 − ln(tan(latb∗π/180)+sec(latb∗π/180))

2π

)
∗ 2l (1)
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Latitude and longitude coordinates
(

longtile
corner, lattile

corner

)
to pixel coordinates(

xpixel
corner, ypixel

corer

)
,


xpixel

corner =
longtile

corner+180
360 ∗ 2l ∗ 256%256

ypixel
corer =

(
1 − ln(tan(longtile

corner∗π/180)+sec(longtile
corner∗π/180))

2π

)
∗ 2l ∗ 256%256

(2)

Pixel coordinates of tiles
(

xpixel
corner, ypixel

corer

)
to longitude and latitude coordinates

(longcorner, latcorer),
longcorner =

xtile
corner+

xpixel
corner
256

2l ∗ 360 − 180

latcorner = arctan

(
sinh

(
π − 2π

ytile
corner+

ypixel
corner
256

2l

))
∗ 180

π

(3)

where l represents the zoom level of tiles.

3.2. Motion Constraints

The primary aim of the UAV motion constraint is to establish the UAV’s real-time flight
speed. Based on the previously known position, a more reasonable estimate is developed
for the UAV’s position at the next time. The main objective of this step is to minimize the
size of satellite image matching while enhancing matching calculation efficiency. Figure 4
illustrates a schematic depiction of the solution, with the green dotted box representing the
UAV’s most likely position at the next period.
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single-direction evaluation. The red solid line represents the potential position based on a combined
evaluation of the two directions, while the green solid line represents the anticipated actual position.

The error state Kalman filter (ESKF) [34] is capable of accurately predicting the move-
ment state of UAVs. The alteration in position and speed of a fixed-wing UAV during
flight is primarily owing to forward motion; consequently, only scalar speed is evaluated.
Figure 4 demonstrates that the matching template image corresponding to the real-time
frame captured by the camera is the overlapping part of purple and blue dotted lines in
the Google reference map. The two dotted boxes represent the various positions of UAVs
obtained through moving in two directions (heading and sideways) at the same time.

Assuming that the UAV’s present position, as established through filtering, is (xt, yt)

and its velocity is
(
vx, vy

)
, the template image’s estimated heading length and width are
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dy and dy
2 , respectively; the estimated lateral length and width are dx and dx

2 , respectively.
The geometric relationship can be used to formulate dx and dy as follows:{

dx
2 = vy · ∆t

dy
2 = vx · ∆t

(4)

where ∆t is the time interval between the two image frames that are required to match.
Therefore, the coordinates of the lower left corner

(
xll

t , yll
t

)
and the upper right corner

(xur
t , yur

t ) of the template image are expressed as follows:{
xll

t = xt − dx
4 , yll

t = yt − dy
4

xur
t = xt +

dx
4 , yur

t = yt +
dy
4

(5)

3.3. Geographic Image Point–Line Matching

Conventional map matching algorithms generally employ points that have larger
gradient values that are positioned at corners as matching features. However, in real-world
situations, the number of stable feature points that can potentially be recovered from an
image is limited. We noticed that, when compared to feature points, straight line features
of artificial facilities such as buildings in aerial images in large-scale environments have
stronger stability and anti-interference capabilities; additionally, in typical scenes such
as urban environments, the probability of straight line textures appearing is higher than
feature points. Figure 5 demonstrates that in a large-scale urban context, straight line
elements between two adjacent aerial images are significantly more prevalent than point
features. As a result, employing straight lines as matching features could enhance both
accuracy and efficiency.
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Figure 5. A schematic comparison of the straight line elements (nine straight line segments listed in
different colors) in two adjacent aerial images of a landscape of cities. (a,b) are two adjacent aerial
frames, and 1–9 represent same straight line segment features in different images.

Classical descriptor-based line matching algorithms (e.g., LBD [35], MSLD [36],
LSD [37], EDLines [38]) model each line segment based on its local appearance and ge-
ometric constraints before matching it. However, these approaches have a considerable
amount of computation and are challenging to employ for real-time work; additionally,
the matching rate of success is mediocre. For continuous frame images, the offset of the
line texture is modest. Based on this assumption, we may employ certain efficient feature
point matching algorithms to achieve the line matching function. This work presents
a line segment-based point matching approach to reduce the number of matching com-
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putations required. Figure 6 illustrates the basic principle of anchor-based geographic
image point-line matching. Firstly, Fast [20] is employed for determining corner points,
followed by EDlines for recognizing line segments. Some significant points on the line
segment have been picked as anchor points, and these points are used to symbolize the
line during operation. The matching points are then counted, resulting in corner point and
line segment tracking.
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are adjacent frames. The three straight lines indicate line features, while the red dots represent anchor
points on the line segments. Employing the optical flow procedure, the anchor points are utilized as
feature points to move on frame It in an attempt to find the corresponding anchor points to retrieve
the line features.

Given two matched images I f and It, we employ EDLines to detect straight lines in each im-

age and establish a collection of straight line segments L f =
{

l f
i

∣∣∣l f
i =

(
p f

i,0, p f
i,1

)
, 0 ≤ i ≤ Nf

}
in image I f , where N f is the number of lines. p f

i,0, p f
i,1 represent the 2D coordinates

p = [x, y]T of the endpoints of the image’s i-th line segment l f
i . Similarly, Image It yields a

set of straight line segments It =
{

lt
j

∣∣∣lt
j =

(
pt

j,0, pt
j,1

)
, 0 ≤ j ≤ Nt

}
. For each line segment

l f
i ∈ I f on the image It =

{
lt
j

∣∣∣lt
j =

(
pt

j,0, pt
j,1

)
, 0 ≤ j ≤ Nt

}
, the direction vector a f

i and

normal vector n f
i are expressed.

a f
i =

[
a f

i,0, a f
i,1

]T
=

p f
i,1 − p f

i,0∣∣∣p f
i,1 − p f

i,0

∣∣∣ (6)

n f
i =

[
−a f

i,1, a f
i,0

]T
(7)

Utilizing FAST corner detection on any line segment l f
i ∈ I f in image I f , we sub-

sequently employ the found corner points as anchor points. The anchor point set is
S f

i =
{

s f
i,j0 ≤ j ≤ Ni

}
, and Ni is the number of line segment anchor points.

In visual–inertial odometry, for each anchor point on line segment l f
i ∈ I f in image

I f , with s f
i,j as the starting position and n f

i as the search direction, a matching point is

found on image It. s f
i,j is the anchor point on image I f , st

i,j is the corresponding matching
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point on image It, Lt =
{

lt
j

∣∣∣lt
j =

(
pt

j,0, pt
j,1

)
, 0 ≤ j ≤ Nt

}
is the set of straight line segments

in image It, and Nt is the number of lines. We calculate the distance di,j between each
matching point st

i,j and the straight line segments lt
j in image It.

di,j =

∥∥∥∥∥min

(
max

(
−
(

pj,1 − pj,0
)T(pj,0 − si,j

)(
pj,1 − pj,0

)T(pj,1 − pj,0
) , 0

)
, 1

)
·
(

pj,1 − pj,0
)
+
(

pj,0 − si,j
)∥∥∥∥∥ (8)

dmin =
0≤i≤Ni
mindi,j
0≤j≤Nt

(9)

where dmin is the distance between all straight line segments lt
j in image It, and dth is the

empirical threshold. When dmin < dth, point st
i,j is considered to belong to line lt

j .
When the ratio of anchor points falling on a straight line to the total anchor points

meets a particular threshold, the two straight lines are considered to be equivalent.
Nevertheless, our matching strategy is different from visual–inertial odometry in

geographical image matching. For obtaining the anchor point set St
i =

{
st

i,j0 ≤ j ≤ Nj

}
on

any line segment l f
t ∈ It in image It, we begin by performing the same procedure, where

Nj is the number of anchor points on the line segment. Subsequently, we make use of the
anchor points as feature points, and then we need to estimate the similarity of the two
anchor point sets based on the lowest Euclidean distance d2.

d
(

S f
i , St

i

)
=

√√√√ N

∑
j=1

(
s f

i,j − st
i,j

)2
(10)

The final key point descriptors of the two pairs have to meet the following conditions.

The nearest point S f
i from St

i in the frame

The next nearest point S f
j from St

i in the frame
< Threshold (11)

3.4. Joint State Estimation

The approach estimates the multi-rotor UAV’s global position and attitude employing
a monocular RGB camera, an IMU (merely for UAV attitude), and a set of geo-referenced
Google images.

Suppose TW,k is the conversion from UAV at the key frame to the global frame. The

position of UAV in the world coordinate system is determined by rk,W
W =

[
xk,W

W , yk,W
W , zk,W

W

]T

and roll, pitch, and yaw (ϕW,k, θW,k, ψW,k), which can be determined from the rotation

matrix CW,k. Let ↕q =
(

Iq
1 , Iq

2 , · · · , Iq
K

)
be a sequence of real UAV query images from each

key frame. We use a set of geo-referenced map images to locate each key frame image
↕m =

(
Im
1 , Im

2 , · · · , Im
N
)
.The global attitude of the map image is TW,ns .

TW,k =

[
CW,k rk,W

W
0T 1

]
(12)

The initial step in the estimate is to apply visual odometry to the UAV image. The
adjusted gray image and the non-static UAV-to-sensor transformation are employed as
inputs, with each frame calculated at 10 Hz. It is computed using the known translation
between the three angles to generate a composite transformation Tfs , f , which is then rotated
into an ordinary camera frame. When yaw follows the UAV’s heading, the roll and pitch
axes remain globally stable in the gravity-aligned inertial frame.
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For each frame of the image, features are extracted and SIFT descriptors are matched
between frames to perform landmark triangulation. Features that cannot be triangulated
through matching are triangulated through motion between consecutive frames. The
descriptor in the latest image is matched with the last key frame to generate a 2D–3D
point correspondence. The maximum likelihood estimation sample consensus (MLESAC)
estimator is used to determine the uncertain full SE (3) incremental UAV attitude from the
current frame to the last key frame Tf ,k, ∑ f , k. If the translation or rotation exceeds the
threshold, or the number of interior points is below the minimum, new key frames are
added. For each new key frame, windowing refinement (clump adjustment) is performed
using Simultaneous Track Estimation and Mapping (STEAM). For each key frame image
Iq
k , the goal is to determine the relative SE (3) pose between the query camera at k and the

camera of the adjacent image Tks ,ns and then obtain the global attitude measurement value
of the UAV.

TW,k = TW,ns T−1
ks ,ns

Tks ,k (13)

The state fusion is carried out by combining the Tk,k−1 uncertainty relative transforma-
tion of visual odometry and the uncertain attitude measurement value of image registration
Tk,0. It is worth noting that TW,0 is the transformation from the local coordinate system
to the global coordinate system, and it is constructed from the GNSS pose at the first key
frame. Therefore, the filtering equation can be expressed as

P̂ = Qk + τk,k−1P̂k−1τ
T
k,k−1 (14)

T̂k,0 = Tk,k−1T̂k−1,0 (15)

Kk = P̂k
(
P̂k + Rk

)−1 (16)

P̂k = (1 − Kk)P̂k (17)

T̂k,0 = exp

((
Kk ln

(
Tk,0T̂−1

k,0

)∨)∧
)

T̂k,0 (18)

where τk,k−1 is the adjoint of Tk,k−1, the prior uncertainty P̂k is the second-order approxi-
mation, Kk is the Kalman gain, and ln(·)∨, exp(·∧) are SE(3) operators.

The proportion of visual odometry is computed by minimizing the difference between
the incremental posteriori in the keyframe window and the translation of the visual odom-
etry. For failure matching, the expected position and uncertainty are propagated, resulting
in a posteriori global attitude for each key frame.

4. System Description
The RTAPM approach proposed in this study employs a monocular RGB camera and

involves prior map information to provide real-time position. The compiled and encapsu-
lated UAV positioning algorithm is universally compatible and can run independently of
the positioning module. Figure 7 illustrates the framework of the RTAPM experimental sys-
tem. The data from the flying control and camera are collected, utilizing ROS. Each module
receives various sensor data via the rospy publish–subscribe procedure and processes and
calculates it in its own module.
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and features a quad-core Cortex-A57 CPU and the smallest Maxwell architecture GPU, 
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era, the airborne core processing unit Jetson Nano processing board, and the Pixhawk 4 
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during online positioning, while the positioning data of the real-time GPS-RTK module 
can be used as a reference value for visual matching positioning to verify the algorithm’s 
accuracy. 
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4.1. RTAPM Experimental Platform Design

For the development of the experimental test system, a widely common computer
module, the NVIDIA Jetson Nano, was employed, which could provide up to 472 GFLOPS
of computing power while consuming only 5 W of power. Jetson Nano runs Ubuntu 20.04
and features a quad-core Cortex-A57 CPU and the smallest Maxwell architecture GPU,
with only 128 CUDA units, 4 GB LPDDR4 memory, and 16 GB of storage capacity.

Figure 8 shows the rotor UAV platform used for the experiment’s flight tests. The
rotor UAV is compatible with the down-looking 6 mm fixed-focus monocular RGB camera,
the airborne core processing unit Jetson Nano processing board, and the Pixhawk 4 flight
control built-in IMU module, which can be used to monitor the UAV’s flight attitude during
online positioning, while the positioning data of the real-time GPS-RTK module can be
used as a reference value for visual matching positioning to verify the algorithm’s accuracy.
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4.2. Data Communication and Transmission

For monitoring purposes of the UAV, the positioning module’s real-time position
needs to be transmitted to the ground station via flight control. The Jetson Nano airborne
computer, Pixhawk flight control, and ground terminal computer are the equipment used
for Mavros communications. The airborne computer and flight control are linked together
by a USB data line, while the flight control and ground computer are associated by a
wireless data transmission module, as illustrated in Figure 9.
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5. Experiments and Results
5.1. Aerial Image Datasets

The UAV aerial imagine dataset employed in this study is divided into two parts: an
open-source dataset and a real-world test. The aerial image datasets are mostly used for
algorithm testing. The datasets were collected by a quadrotor or vertical UAV. During
flight, the UAV was equipped with a nine-axis IMU and a monocular RGB camera, and it
operated at a relatively constant height. At the same time, the dataset contained real-time
flight position and attitude information provided by the GPS-RTK system and IMU. These
pose data can be employed as truth values for evaluating the accuracy of our algorithm’s
real-world positioning. The main parameters of the aerial image dataset are shown in
Table 1.

Table 1. Introduction to airborne image dataset.

Datasets Camera Type Flight Height (m) Frame Rate (FPS)

Dataset1 Unknown 60 m 30
Dataset2 Unknown 200 m 15

Dataset3 * Hikvision MV-
CA050-10GM/GC 50 m 18

* Dataset3 is composed of images, IMU, and GNSS data collected by the UAV experimental platform for RTAPM
in real-world flight tests.

5.2. Select Imaging Parameters and Compare Algorithms

The camera’s sample frequency was relatively high. To lower the data processing
capacity of the Jetson Nano computing module, we had to choose a suitable quantity of
frames to extract the camera’s real-time frames while maintaining positioning accuracy
prior to positioning. We had to compare two groups: one for analyzing the effect of the
frame number on the processing time of the processing board, and the other to calculate
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the impact of an integer on positioning results. For evaluating the processing time and
positioning error, we used 10 s for real-time frame samples. Considering the output
frequency of our positioning results was 1 Hz, we estimated the average processing time
within 1 s.

As shown in Figure 10, we selected one-third of the sample frequency for frame
extraction by comparing datasets with different sampling frequencies without increasing
the positioning error, minimizing calculation costs. In order to ensure that the prediction
range provided by the motion constraint boosted the computational efficiency of the
template image after clipping, we recorded each dataset’s operation time and compared it to
that before clipping. Table 2 demonstrates that the motion constraint enhances positioning
efficiency by approximately an order of magnitude.
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between image sampling frequency and computing time; (b) relationship between image sampling
frequency and positioning error.

Table 2. Comparison of dataset calculation time before and after template image clipping.

Datasets

Each Positioning Time of
Clip Template Image

Without Motion
Constraint (s)

Each Positioning Time of
Clip Template Image with

Motion Constraint (s)

Dataset1 1.59 0.303
Dataset2 1.66 0.291

Dataset3 * 1.45 0.323
* Dataset3 is composed of images, IMU, and GNSS data collected by the UAV experimental platform for RTAPM
in real-world flight tests.

For the purpose of evaluating the effectiveness and dependability of the FAST com-
bined with EDlines algorithm presented in this study in geographic imagery, the proposed
approach is compared to several mainstream line matching methods in terms of feature
extraction quantity and extraction time. Figure 11 and Table 3 show the experimental
statistical results. Experimental results demonstrate that the proposed approach, while
combined with FAST corner detection, productively eliminates a large number of redun-
dant line segment features and employs only a few line segment features to provide more
effective and high-precision matching while maintaining matching accuracy. As the amount
of online features declines, it consequently decreases the running time necessary to extract
those features.
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Figure 11. Comparing the number of point and line features extracted every frame, as well as the run-
ning time spent to extract features employing different approaches on various datasets. (a) The num-
ber of point and line features extracted from each frame; (b) the running time of feature extraction.

Table 3. The number of point and line features extracted from each frame and the running time of
feature extraction.

Dataset

LSD MSLD EDlines Improved EDlines

Line
Features
in Each
Frame

Feature
Extraction
Time (ms)

Line
Features
in Each
Frame

Feature
Extraction
Time (ms)

Line
Features
in Each
Frame

Feature
Extraction
Time (ms)

Line
Features
in Each
Frame

Feature
Extraction
Time (ms)

Dataset1 326 112.477 167 87.371 113 58.924 69 41.135
Dataset2 118 108.664 77 72.459 46 66.983 32 47.386

Dataset3 * 395 135.346 198 74.882 108 49.579 63 36.247
* Dataset3 is composed of images, IMU, and GNSS data collected by the UAV experimental platform for RTAPM
in real-world flight tests.

5.3. Dataset Comparison and Real-World Experiment

Dataset 1: The data were collected at Pakistan’s National University of Science and
Technology. The flying height of the UAV and other sensors in this dataset was around
50–60 m during data collection, with a total collecting period of 45 s. The model and
parameter details of the traveling camera remain unknown. The frame rate for collecting
images was 30 FPS, and the total number of images was approximately 1352. The data were
collected in an urban area environment. The flight geographical area comprised primarily
roadways and buildings, with a large number of image texture features.

The image data in this dataset have a high sampling frequency and are without frame
loss. In order to guarantee a stable and smooth data processing process, frame extraction
was performed throughout data preprocessing, and the positioning results became available
at 1 Hz. Figure 12 illustrate the calculation results of VIO, Geo-ref. + VIO, our approach
(RTAPM), and the GPS-RTK position on the template image. The GPS-RTK position can be
used as a reference trajectory for estimating the positioning errors for both methods. The
positioning results from VIO, Geo-ref. + VIO, and the approach presented in this study, as
well as the GPS trajectory, are symbolized as red solid lines, green solid lines, blue solid
lines, and yellow circles, respectively.
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Figure 12. Comparison of the positioning trajectories of three algorithms on Dataset 1. The true
trajectory is represented as a yellow circle, VIO’s trajectory as a red solid line, Geo-ref. + VIO’s
trajectory as a green solid line, and RTAPM’s trajectory as a blue solid line.

Figure 13a demonstrates the positioning estimation errors of VIO (red dashed line),
Geo-ref. + VIO (green solid line), and RTAPM in the horizontal and vertical directions on
various datasets. When utilizing the VIO system alone, positioning errors are cultivated
over time, and error accumulation in the X direction occurs faster than in the Y direction.
This might be since the feature similarity in the forward direction (X direction) is drastically
higher than in the Y direction, and the positioning error in the Y direction is extremely
similar and has always been high due to terrain features. The emergence of the absolute
positioning approach has lowered the positioning error in the Geo-ref. + VIO strategy,
but the overall error remains high. It is possible that the VIO system fails to obtain an
accurate location in a short period of time; consequently, the data fusion procedure should
be expanded. Compared to Geo-ref. + VIO, the approach proposed in this study reduces
the positioning error to a very small range at the beginning of the joint state optimization,
achieves accuracy optimization, and significantly eliminates VIO-induced position drift.
Figure 13b shows the cumulative distribution of absolute position estimation error among
three approaches. According to 3-sigma distribution statistics, the proposed method’s
1-sigma and 3-sigma positioning accuracy are greater than 5.5 m and 6.5 m, respectively.
Whether considering the overall error cumulative distribution or single point accuracy, the
method proposed in this study outperforms the other two methods in terms of stability.

Dataset 2: The data underlying the experiment were collected by unmanned aerial
vehicles in Rothenthurm, Switzerland. Figure 14 illustrates the map of the area. The
flying height of the UAV along with the other sensors in this dataset was approximately
200 m, with a total capture time of 132 s. The model and parameter details of the traveling
camera remain ambiguous. The frame rate of capturing images was 15 frames every second,
yielding a total of around 1982 frames. Datasets were collected in urban areas. The majority
of the flight area consisted of roads and grassy fields. The image texture features were
sparse, and the recognition accuracy was low. The yellow circle represents the UAV’s true
flying path (GPS-RTK signal).
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Figure 14. Comparison of the positioning trajectories of three algorithms on Dataset 2. The true
trajectory is represented as a yellow circle, VIO’s trajectory as a red solid line, Geo-ref. + VIO’s
trajectory as a green solid line, and RTAPM’s trajectory as a blue solid line.

Figure 15a demonstrate the positioning estimation errors of VIO (red dashed line),
Geo-ref. + VIO (green solid line), and RTAPM in the horizontal and vertical directions on
various datasets. Figure 15a demonstrates that following the UAV’s first turn, the drift
error of VIO emerged instantly and gradually accumulated. After the third rotation, the
cumulative error of VIO became apparent above 12 m; nevertheless, the way maps were
employed was comparable to GNSS, which limited the accumulation of drift errors and
maintained them within a stable range. Figure 15b demonstrate the cumulative distribution
of absolute position estimation errors among the three methods. According to the 3-sigma
distribution statistics, the proposed method’s 1-sigma and 3-sigma positioning accuracy
exceeded 5.5 m and 6.0 m, respectively.
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Figure 15. (a) Horizontal position estimation error in the X and Y directions (top and bottom);
(b) cumulative distribution of positioning errors in dataset 2.

Dataset 3 (real-world flight experiment): After offline testing of datasets, we employed
our own developed UAV hardware platform equipped with a Hikvision MV-CA050 camera
and an Nvidia Jetson Nano processor to conduct a real-time flight online positioning test at
Sun Yat-sen University’s Shenzhen Campus, as well as transmitting the positioning results
back to the ground station via data transmission. Figure 16 displays an image of the area,
on which we overlaid the real-time flight trajectories.
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Figure 16. Comparison of the positioning trajectories of three algorithms on Dataset 3*. The true
trajectory is represented as a yellow circle, VIO’s trajectory as a red solid line, Geo-ref. + VIO’s
trajectory as a green solid line, and RTAPM’s trajectory as a blue solid line.

Figure 17a demonstrate the positioning estimation errors of VIO (red dashed line),
Geo-ref. + VIO (green solid line), and RTAPM in the horizontal and vertical directions
on various datasets. Figure 17a shows that employing geographic reference effectively
eliminated drift and minimized errors in the orthogonal direction. Geographic reference did
not significantly decrease the error in the Y direction, and drift was effectively diminished.
Figure 17b demonstrate the cumulative distribution of absolute position estimation errors
among the three methods. According to the 3-sigma distribution statistics, the proposed
method’s 1-sigma and 3-sigma positioning accuracy exceeded 5.2 m and 5.6 m, respectively.
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Figure 17. (a) Horizontal position estimation error in the X and Y directions (top and bottom);
(b) cumulative distribution of positioning errors in Dataset 3 (real-world flight experiment).

Figure 18 demonstrates the positioning errors of the three approaches on three different
datasets in the form of box plots. The graph illustrates instinctively that the VIO method’s
positioning error distribution is appropriately discrete, with drift accumulation growing
over time. Whereas the Geo-ref. + VIO approach decreases positioning error by a certain
quantity through employing map matching, there are several discrete positioning results on
datasets 2 and datasets 3, demonstrating that its positioning stability is barely enough. In
comparison, the RTAPM approach productively solves this problem, with the positioning
error becoming extremely clustered and relatively small. Figure 18b,c show a remarkable
phenomenon. The Geo-ref. + VIO method’s positioning errors are separate outside the
box plots (small circles), with minimal error levels. This demonstrates that the absolute
positioning method is effective in reducing errors; however, because it is loosely integrated
with VIO, the benefits of both are not reached. This highlights the worth of joint state
optimization and the benefits of the strategy proposed in this study.

Drones 2025, 9, x FOR PEER REVIEW 20 of 24 
 

eliminated drift and minimized errors in the orthogonal direction. Geographic reference 
did not significantly decrease the error in the Y direction, and drift was effectively dimin-
ished. Figures 17b demonstrate the cumulative distribution of absolute position estima-
tion errors among the three methods. According to the 3-sigma distribution statistics, the 
proposed method’s 1-sigma and 3-sigma positioning accuracy exceeded 5.2 m and 5.6 m, 
respectively. 

  
(a) (b) 

Figure 17. (a) Horizontal position estimation error in the X and Y directions (top and bottom); (b) 
cumulative distribution of positioning errors in Dataset 3 (real-world flight experiment). 

Figure 18 demonstrates the positioning errors of the three approaches on three dif-
ferent datasets in the form of box plots. The graph illustrates instinctively that the VIO 
method’s positioning error distribution is appropriately discrete, with drift accumulation 
growing over time. Whereas the Geo-ref. + VIO approach decreases positioning error by 
a certain quantity through employing map matching, there are several discrete position-
ing results on datasets 2 and datasets 3, demonstrating that its positioning stability is 
barely enough. In comparison, the RTAPM approach productively solves this problem, 
with the positioning error becoming extremely clustered and relatively small. Figure 18b,c 
show a remarkable phenomenon. The Geo-ref. + VIO method’s positioning errors are sep-
arate outside the box plots (small circles), with minimal error levels. This demonstrates 
that the absolute positioning method is effective in reducing errors; however, because it 
is loosely integrated with VIO, the benefits of both are not reached. This highlights the 
worth of joint state optimization and the benefits of the strategy proposed in this study. 

   
(a) Dataset1 (b) Dataset2 (c) Dataset3 * 

Figure 18. Box plots are employed to compare the three algorithms’ positioning error distributions 
within the three datasets. The box plot’s small black circles indicate error values that are either too 
small or too large and are not within the range of the mean. (a–c) show the statistical results for 

Figure 18. Box plots are employed to compare the three algorithms’ positioning error distributions
within the three datasets. The box plot’s small black circles indicate error values that are either too
small or too large and are not within the range of the mean. (a–c) show the statistical results for
positioning errors on datasets 1, 2, and 3, respectively. Dataset3 * is composed of images, IMU, and
GNSS data collected by the UAV experimental plat-form for RTAPM in real-world flight tests.

To further analyze our experimental results, we performed a correlation analysis
on the positioning results for the three experiments, calculated the essential accuracy
evaluation indicators, and used graphs and tables for straightforward display. Figure 19
and Table 4 demonstrate the maximum, mean, and root mean square error of the three
methods’ positioning errors on three different datasets. At the same time, Figure 20 and
Table 5 illustrate the 3sigma distribution of the three algorithms’ positioning errors on
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three distinct datasets. Numerous types of evaluation indicators demonstrate that the
absolute positioning method proposed in this study exceeds the compared methods in
many categories.
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Dataset VIO Geo-ref. + VIO RTAPM 

Figure 19. Comparison of the three algorithms’ positioning errors on three datasets (maximum error,
mean error, and root mean square error). Dataset3 * is composed of images, IMU, and GNSS data
collected by the UAV experimental plat-form for RTAPM in real-world flight tests.

Table 4. Statistical errors (unit: m) (maximum, mean, root mean square error(rmse)) of various
algorithms on different datasets.

Dataset
VIO Geo-ref. + VIO RTAPM

Max Mean Rmse Max Mean Rmse Max Mean Rmse

Dataset1 11.05 6.54 6.94 7.08 5.51 5.58 6.42 4.95 5.03
Dataset2 12.28 7.11 7.45 6.69 5.88 5.93 5.95 5.19 5.21

Dataset3 * 10.94 7.28 7.47 6.59 5.69 5.72 6.14 4.97 4.99
* Dataset3 is composed of images, IMU and GNSS data collected by the UAV experimental platform for RTAPM
in real-world flight tests.
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Table 5. Statistical errors (unit: m) distribution (1σ, 2σ, 3σ) of various algorithms on different datasets.

Dataset
VIO Geo-ref. + VIO RTAPM

1σ 2σ 3σ 1σ 2σ 3σ 1σ 2σ 3σ

Dataset1 7.06 10.77 11.03 5.93 6.97 7.02 5.38 6.40 6.41
Dataset2 7.81 11.53 12.23 6.24 5.59 6.68 5.39 5.80 5.90

Dataset3 * 7.81 10.13 10.94 5.98 6.43 6.58 5.12 5.50 5.58
* Dataset3 is composed of images, IMU, and GNSS data collected by the UAV experimental platform for RTAPM
in real-world flight tests.

6. Conclusions
In this study, a map-based image matching positioning method compatible with UAVs

was established to address the issue of employing satellite maps for visual positioning in
the absence of GNSS satellite signals. The motion constraint module was then utilized
to determine a limited map matching range, which significantly increased the speed of
matching positions. The monocular RGB camera, IMU, and geo-referenced Google images
were employed to optimize and estimate the UAV’s global pose using point and line
features. Experimental results show that the proposed approach is capable of positioning
accuracy more than 6 m using only open-source Google images, which is not limited on
terrain, and the technical implementation is straightforward. It is more robust and reliable
than previous methods, significantly improving the accuracy and universality of UAV
autonomous position. However, this approach contains several limitations, such as not
properly taking into account the capture of data from visible light cameras under extreme
lighting conditions (insufficient lighting, overexposure, etc.). Given the limitations and
continuity, poor stability, and limited tasks of a single UAV’s autonomous positioning,
future work will employ a hierarchical multi-UAV cluster, combine multiple sensors to
perform sensor position and attitude fusion estimation research, and implement UAV
cluster collaborative positioning. In a UAV swarm, each UAV broadcasts its position in real
time, obtains information from other UAVs, and improves its global positioning capability
by using relative measures between UAVs.
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