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Abstract: For the multi-UAV path planning problem, environmental modeling and an
improved swarm intelligence-based optimization algorithm are discussed in this paper.
Firstly, to align with reality, specific constraints of UAVs in motions, attitudes and altitudes,
real-world threats such as radars and no-fly zones, and inter-UAV collisions are consid-
ered. Thus, multi-UAV path planning is transformed into a multi-objective constrained
optimization problem. Accordingly, an improved nutcracker optimization algorithm is
proposed to solve this problem. Through initializing with logistic chaotic mapping and the
lens imaging inverse learning strategy, a more fit elite initialization population is produced
to increase the efficiency of path planning. Furthermore, by adjusting adaptive param-
eters and integrating an improved sine-cosine search strategy, a balance between global
exploration capability and local exploitation capability during path planning is achieved.
Experimental results show that the improved nutcracker optimization algorithm surpasses
other algorithms with respect to both convergence speed and convergence value, making it
an effective method for multi-UAV path planning.

Keywords: multi-UAV; path planning; improved nutcracker optimization algorithm

1. Introduction
Owing to their compact size and light weight, strong adaptability, high concealment,

and low risk factor, UAVs have been widely applied as their technology matures. However,
due to the environmental complexity, task diversity, and payload limitations of UAVs,
a single UAV often struggles to meet many practical mission requirements. Therefore,
multiple UAVs are growing in significance and have gradually become a research hotspot.

Path planning is a significant part of the execution of the UAV mission and holds
significant research value. Existing UAV path planning algorithms mainly fall into three
categories. The first are traditional algorithms, including A* algorithm [1], Dijkstra’s
algorithm [2], artificial potential field method [3], probabilistic roadmaps [4], and rapid-
exploration random trees [5], etc. These algorithms perform well in single-UAV path
planning but are difficult to apply to large-scale, multi-dimensional and path planning
problems. For multiple UAVs, the second are deep learning algorithms, such as deep
q-learning (DQN) [6], deep deterministic policy gradient (DDPG) [7], and proximal policy
optimization (PPO) algorithms [8]. Bohao Li et al. focused on the study of UAV ground tar-
get tracking in obstacle-rich environments using deep reinforcement learning and proposed
an improved DDPG algorithm [9]. Xueyuan Wang et al. transformed the path planning
problem into a Markov decision process (MDP) with parameterized states, permissible ac-
tions, and detailed reward functions [10]. Then, a dueling double deep Q-network (D3QN)
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was proposed to learn the decision-making policy of a typical UAV, without any prior
knowledge of the environment. However, as the number of variables increases, the compu-
tational complexity also grows exponentially; thus, deep learning algorithms require long
training times and are difficult to converge. The last are intelligent optimization algorithms,
such as the ant colony algorithm (ACO) [11], particle swarm optimization (PSO) [12],
genetic algorithm (GA) [13], grey wolf optimizer (GWO) [14], and nutcracker optimiza-
tion algorithm (NOA) [15], etc. Compared to other algorithms, intelligent optimization
algorithms can effectively solve complex combinatorial optimization problems.

Intelligent optimization algorithms are effective in handling complex path planning
problems, especially those with nonlinear, multi-constraint, and multi-objective characteris-
tics. They do not require an accurate mathematical model of the problem and can find the
best or nearly the best solutions in large-scale, high-dimensional problem spaces. Tai-shan
Lou proposed a hybrid strategy-based golden jackal optimizer (HGJO) algorithm [16], in
which a pre-decreasing slow nonlinear energy decay strategy is utilized to balance global
and local search capabilities. However, this method is only applied under two-dimensional
conditions and is not suitable for three-dimensional scenarios of UAVs. Jie Zhang et al.
improved the sparrow search algorithm (SSA) [17] by applying golden search optimization
(GSO) and an adaptive iterative method to adjust local exploitation and global exploration,
enhancing overall optimization performance. Xiaobing Yu combined GWO with differential
evolution to solve the path planning problem of UAVs [18]. The position update equation
of GWO was improved to enhance the search capability of grey wolves, and a rank-based
mutation strategy was implemented to promote exploitation while maintaining exploration
capabilities. However, these two methods are mainly applied to single-UAV path planning
and have limits in multi-UAV path planning. Liang Xu et al. utilized the ideas of dynamic
multi-swarm PSO (DMSPSO) and comprehensive learning PSO (CLPSO) to propose the
CL-DMSPSO algorithm [19], which further improved the performance of both algorithms.
Kai Meng et al. proposed an evolutionary state estimation-based multi-strategy jellyfish
search (ESE-MSJS) algorithm for multi-UAV cooperative path planning to search for high-
quality paths [20]. However, CL-DMSPSO has only been compared with PSO algorithms
and not with other optimization algorithms, which lacks persuasiveness. The convergence
speed and robustness of ESE-MSJS still have room for improvement.

NOA is a highly competitive new intelligent optimization algorithm proposed by Mo-
hamed Abdel-Basset in 2023 [15]. This algorithm simulates the seasonal behavior of nutcrackers,
demonstrating superior performance with a strong global search capability and being easy to
implement. NOA can converge extremely fast and possess good robustness. It is applicable
not only to single-objective optimization problems, but also effectively handles multi-objective
optimization ones. Therefore, it has more potential for application to multi-UAV path planning
issues compared with other swarm intelligence optimization algorithms. However, it also has
issues such as uneven population initialization and an imbalance between exploration and
exploitation capabilities during path planning. To address these issues, an improved nutcracker
optimizer algorithm (INOA) is proposed. By using logistic chaotic mapping for initializa-
tion and a lens imaging inverse learning strategy, a more fit elite initialization population is
obtained. Furthermore, through the integration of parameter adjustment and an improved
sine–cosine search strategy, the balance between global exploration and local exploitation skills
is achieved. With these improvements, INOA effectively improves the performance of NOA
and has significant advantages in addressing multi-UAV path planning problems.

The main contributions of this paper are summarized as follows:

• A constrained optimization model for multi-UAV path planning is established, which
considers realistic constraints and threats that are specific to UAVs. Taking them into
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account would make the resulting path points more aligned with real-world scenarios
of UAVs.

• An INOA is proposed and then applied to the multi-UAV path planning problem.
Specifically, elite individuals are first obtained through chaotic mapping initialization
and lens imaging-based reverse learning strategy to increase the efficiency of path
planning. Then, parameters in the foraging/storage phase of NOA are adjusted to
balance global search and local exploitation capabilities. By integrating with the
improved sine–cosine strategy, the convergence speed and precision of searching for
optimal path is further enhanced.

• The effectiveness of the proposed INOA is first verified using the CEC2020 test suite.
Then, simulations of multi-UAV path planning are conducted in various scenarios
with the comparison of INOA and other related state-of-the-art algorithms, strongly
demonstrating the merits and applicability of INOA.

The remainder of this paper is organized as follows: Section 2 provides the problem
description for multi-UAV path planning. Section 3 outlines the technical details of the
proposed INOA. Section 4 gives a brief introduction to the applied path fitting method.
Then, Section 5 presents the results and analysis of the comparative experiment between
INOA and other state-of-the-art swarm intelligence optimization algorithms. Section 6
concludes with a summary of the main contributions.

2. Problem Description of Multi-UAV Path Planning
In path planning for multiple UAVs, they are subjected to various threats such as

mountains, radars and no-fly zones, and motion and attitude constraints, which were
modeled and analyzed in this study. As shown in Figure 1, the radar detection range is
described as a sphere based on its operating principle, the no-fly zones are modeled as
cuboids since the forbidden areas of UAVs are usually regular-shaped buildings or grounds,
and mountains are modeled as undulations. Multiple UAVs should avoid these threats to
reach destinations safely and efficiently while satisfying motion and attitude restrictions.

Figure 1. The diagram of the flying environment: the sphere represents the radar detection range, the
red cuboid indicates the no-fly zone, and the blue undulations represent mountains.



Drones 2025, 9, 116 4 of 24

2.1. Path Length Cost

Suppose that there are U UAVs, each of which has corresponding start and end
points. Between the start and end points, there are V trajectory points, denoted as
Pi,1, Pi,2, Pi,j, · · · , Pi,V , respectively, and each trajectory point has a corresponding coor-
dinate (xi,j, yi,j, zi,j). By connecting the start point, trajectory points, and the end point, a
corresponding path can be obtained. Thus, the path length cost FL is defined as follows:

FL =
U

∑
i=1

V+1

∑
j=1

Li,j (1)

Li,j =
√(

xi,j − xi,j−1
)2

+
(
yi,j − yi,j−1

)2
+

(
zi,j − zi,j−1

)2 (2)

where Li,j refers to the distance of the j-th path segment of the i-th UAV.
By constraining the total path length, UAVs can reach the target points with the

minimum distance, thereby saving the energy consumption of UAVs.

2.2. Modeling of Flight Environment and Threats

In order to tackle the aforementioned threats properly, the associated penalties are
defined as follows to help UAVs avoid the threat areas, and finally synthesized into the
total objective function of path planning.

2.2.1. Threat of Mountain Collision

For natural mountains in a flight environment, their mathematical model can be
described as follows:

Zk(x, y) =
n

∑
k=1

hk exp

[
−
(

x − xk
xrk

)2
−

(
y − yk

yrk

)2
]

(3)

where (xk, yk) represents the central coordinate of the i-th mountain, hk represents the
height of the mountain, xrk and yrk are the decay amounts along the x-axis and y-axis of
the k-th mountain, and n indicates the sum of mountains.

By referring to possible collisions on a mountain peak, effective obstacle avoidance
should be carried out. Then, the penalty FC of a mountain collision is defined as follows:

FC =
U

∑
i=1

V

∑
j=1

Ci,j (4)

Ci,j =

{
100

[
zi,j − Z

]
, i f zi,j < Z

0 , otherwise
(5)

where zi,j represents the height of the corresponding point on the mountain peak, and Z
represents the height of the mountain peak.

2.2.2. Radar Threat

As aforementioned, the detection range of the radar threat that UAVs may encounter is
considered as a spherical space, and the corresponding penalty FR is determined as follows
based on whether UAVs fly into the detectable areas:

FR =
U

∑
i=1

V

∑
j=1

Rnum

∑
k=1

Ri,j (6)
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Ri,j =

{
100, i f

∥∥Pi,j − O
∥∥ ≤ R

0, otherwise
(7)

where O represents the center of the radar’s sphere, and R represents the radius range of
the radar.

2.2.3. No-Fly Zone Threat

There always exists no-fly zones for UAVs in real applications. Therefore, this kind of
threat is also considered and modeled as a cuboid-shaped space, and the penalty FNF is
given as follows depending on whether UAVs enter the no-fly zone:

FNF =
U

∑
i=1

V

∑
j=1

NFnum

∑
k=1

NFi,j (8)

NFi,j =

{
100, i f (Nx − a ≤ xi,j ≤ Nx + a) and (Ny − b ≤ yi,j ≤ Ny + b)
0, otherwise

(9)

where NFi,j is a flag of the no-fly zone threat. (Nx, Ny), 2a, and 2b are the center coordinate,
length, and width of the no-fly zone.

2.3. Constraints of Motions and Attitudes of UAVs

Similarly, to address motion and attitude restrictions during path planning, other
penalties are defined to ensure UAVs operate within these specified limitations and are also
synthesized into the total objective function presented later.

2.3.1. Constraints of Path Segment Distance

When the path segment distance is too small, the UAV cannot complete some state
adjustments; accordingly, the penalty FSL based on the constraint of the path segment
distance is defined as follows:

FSL =
U

∑
i=1

V+1

∑
j=1

SLi,j (10)

SLi,j =

{
100, i f Li,j ≤ lmin

0, otherwise
(11)

where the path segment distance Li,j is defined in Equation (1). lmin refers to its minimum
value and can be determined upon the specifications of the UAV.

2.3.2. Attitudinal Constraints

The UAVs considered in this paper are quadrotors, and their dynamic equations are
as follows [21]:

mp̈ =

 0
0

−mg

+ R

 0
0

F1 + F2 + F3 + F4

 (12)

I

β̇

ϕ̇

α̇

+

β

ϕ

α

×

I

β

ϕ

α


 =

 l(F2 − F4)

l(F3 − F1)

M1 − M2 + M3 − M4

 (13)

where m is the mass of the UAV, p̈ is the acceleration vector of the UAV’s center of mass,
g is the gravity acceleration, and R is a rotation matrix that converts vectors from the
body frame to the world frame. F1, F2, F3, F4 are the upward thrust forces generated by the
four rotors, respectively. I is the inertia matrix of the UAV, which is a symmetric matrix
containing the moments of inertia of the UAV around the three axes. β, ϕ, α and β̇, ϕ̇, α̇ are
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the angular velocities and accelerations of the UAV, respectively. l is the distance from the
rotor to the center of mass of the UAV. M1, M2, M3, M4 are the counter-torques produced
by the four rotors.

As shown in Equations (12) and (13), when UAVs pose large attitude angles, the
required thrusts and torques may exceed the maximum values that motors can provide,
resulting in insufficient lifts. Therefore, the maximum yaw and pitch angles of UAVs are
limited, as well as the curvature of the path, which guarantees the safe operation of UAVs.
The schematic diagram of the limitations of the yaw and pitch angles along the path points
is shown in Figure 2. As a result, the penalties FY and FA based on these angular limitations
are defined as follows, respectively:

Figure 2. The diagram of the limitations of yaw and pitch angles along the path points: since the yaw
angle α and pitch angle β are within the restricted range, the curvature of the path connecting the
previous path point Pi,j−1, the current one Pi,j, and the next one Pi,j+1 is limited.

FY =
U

∑
i=1

V+1

∑
j=1

Yi,j (14)

Yi,j =

{
0, i f αi,j ≤ αmax

100, otherwise
(15)

αi,j = arctan


∥∥∥∥−−−−−→P

′
i,j−1P

′
i,j ×

−−−−−→
P

′
i,jP

′
i,j+1

∥∥∥∥
−−−−−→
P

′
i,j−1P

′
i,j ·

−−−−−→
P

′
i,jP

′
i,j+1

 (16)

FA =
U

∑
i=1

V+1

∑
j=1

Ai,j (17)

Ai,j =

{
0, i f βi,j ≤ βmax

100, otherwise
(18)
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βi,j = arctan

 zi,j − zi,j−1√(
xi,j − xi,j−1

)2
+

(
yi,j − yi,j−1

)2

 (19)

where αmax, βmax refer to the maximum yaw and pitch angles, respectively. αi,j , βi,j repre-

sent the yaw and pitch angle at the current point, respectively.
−−−−−→
P

′
i,j−1P

′
i,j is the horizontal

projection of
−−−−−→
Pi,j−1Pi,j.

2.3.3. Altitudinal Constraints

In real application, UAVs are usually encouraged to fly at appropriate altitudes to
mitigate the effects of winds and ensure safety. Therefore, the penalty FH depending upon
the altitudinal constraint is defined as follows:

FH =
U

∑
i=1

V

∑
j=1

Hi,j (20)

Hi,j =

{ ∣∣∣hi,j − hlb+hub
2

∣∣∣ , i f hlb ≤ hi,j ≤ hub

100 , otherwise
(21)

where hlb and hub refer to the lowest and highest flight altitudes, respectively, and hi,j = zi,j

represents the height of the UAV.

2.3.4. Collision Avoidance Between UAVs

To avoid collisions, each UAV should search for the position of other UAVs at each
trajectory point. Assuming that it flies at a constant speed between trajectory points, with a
speed of Vi,j, the time to pass through each trajectory segment can be calculated by Li,j, and
then the total flight time can be obtained accordingly.

Suppose that UAVs p and q have a total flight time of tp,j and tq,j at the j-th point
(p, q, j ∈ N+, j > 1), respectively. When tq,j−1 < tp,j < tq,j, the current position coordinate
of UAV q is given as

Pq = Pq,j−1 + (tp,j − tq,j−1)Vq,j (22)

where Vq,j = (vq,jx, vq,jy, vq,jz) indicates the velocity of UAV q in three directions.
Similarly, the positions of other UAVs can be determined. With these positions, the

safety distance, denoted as usd, could be set according to the application scenarios. So far,
the collision penalty FUC between UAVs is defined as follows:

FUC =
U

∑
i=1

V

∑
j=1

UCi,j (23)

where UCi,j is a flag of collision. If the distance
∣∣Pi − Pj

∣∣ between UAVs i and j exceeds usd,
UCi,j = 0; otherwise, UCi,j = 100.

2.4. Objective Function

Therefore, by integrating all the aforementioned penalties based on threats, physical
limitations of UAVs, as well as the collision avoidance issue into the path length cost shown
in Equation (1), the objective function of the multi-UAV path planning problem is written
as follows:

J = w1FL + w2FSL + w3FA + w4FY + w5FH

+w6FC + w7FUC + w8FR + w9FNF
(24)
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where J represents the total cost, i.e., the fitness, and wi refers to the weight of each
cost function.

Then, a swarm-intelligence-based optimization method is proposed and applied to
find the optimal value of the above objective function, with which the trajectory points
along the optimal path of UAVs can be obtained.

3. Improved Nutcracker Optimization Algorithm for Multi-UAV
Path Planning

This section first introduces the principle of the standard NOA, which is the basis
of solving the multi-UAV path planning problem, and then its limitations are analyzed.
Accordingly, INOA is proposed to further improve the planning performance.

3.1. Standard NOA

NOA is motivated by the foraging and food recovery behavior of nutcrackers. It
mimics two seasonal behaviors of the nutcracker, namely, seeking and storing seeds in
summer and autumn, and foraging based on memory in winter and spring. As a result,
this algorithm shows a strong global search capability, and it is suitable to implement in
path planning for multiple UAVs due to its applicability to constrained multi-objective
optimization problems.

3.1.1. Foraging Phase and Storage Stage

(1) Foraging stage

In this stage, a nutcracker checks the initial position first. If there exists food, it would
be actuated towards the storage area; otherwise, it goes to another location for continued
searching. The modeling of this behavior is given as follows:

X⃗t+1(new)
i =

 Xt
a,j + γ

(
Xt

U,j − Xt
V,j

)
+ µ

(
g2Uj − Lj

)
, i f t ≤ T/2.0

Xt
W,j + µ

(
Xt

U,j − Xt
V,j

)
+ µ(g1 < δ)

(
g2Uj − Lj

)
, otherwise

(25)

X⃗t+1(new)
i =

{
Xt

i,j, i f h1 < h2

Equation (25), otherwise
(26)

µ =


h3, i f g1 < g2

h4, i f g2 < g3

h5, i f g1 < g3

(27)

where Xt
i,j represents the j-th position of the i-th nutcracker in the iteration t, X⃗t+1(new)

i
represents the new position of the nutcracker, Xt

a,j represents the average position of all
nutcrackers, Xt

U,j, Xt
V,j and Xt

W,j represent three different nutcracker individuals randomly
selected from the population, and Uj and Lj represent the maximum and minimum values,
respectively. γ and h5 represent the random numbers generated by a Levy flight; g, g1,
g2, g3, h1, h2, and h3 represent random numbers in the range of [0, 1]; h4 refers to a
random number that follows a normal distribution; and δ is used to improve the local
exploitation capability.

(2) Storage stage

The nutcracker transports the food obtained during the foraging phase to the storage
area. This behavior can be mathematically represented as follows:
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X⃗t+1(new)
i =


X⃗t

i + µ
(

X⃗t
best − X⃗t

i

)
|λ|+ g1

(
X⃗t

U − X⃗t
V

)
i f h1 < h2

X⃗t
best + µ

(
X⃗t

U − X⃗t
V

)
i f h1 < h3

X⃗t
bestl otherwise

(28)

where λ represents the number generated based on a Levy flight, X⃗t
best represents the

current optimal solution, and l represents a factor that linearly decreases from 1 to 0.
Then, the following equation is used to adjust the conversion between the foraging

phase and storage stage:

X⃗t+1
i =

{
Equation (26), i f u < Pa1

Equation (28), otherwise
(29)

where u represents random numbers in the range of [0, 1], and Pa1 decreases linearly from
1 to 0.

3.1.2. Cache-Search and Recovery Strategy

(1) Cache-search stage

As winter approaches, the nutcracker would embark on its second round of explo-
ration, transitioning from its storage mode to a search mode by using two reference points
(FPs) as markers for a single storage area. These two reference points FPt

i,1 and FPt
i,2 are

defined as follows:

−→
FPt

i,1 =

 X⃗t
i + φcos(α)

((
X⃗t

U − X⃗t
V

))
+ φFP, i f α = π/2

X⃗t
i + φcos(α)

((
X⃗t

U − X⃗t
V

))
, otherwise

(30)

−→
FPt

i,2 =

 X⃗t
i +

{
φ cos(α)

((
U⃗ − L⃗

)
h3 + L⃗

)
+ φFP

}
U⃗s i f α = π/2

X⃗t
i + φcos(α)

((
U⃗ − L⃗

)
h3 + L⃗

)
U⃗s, otherwise

(31)

−→
Us =

{
1,−→g2 < Prp

0, otherwise
(32)

φ =


(
1 − t

T
)2· t

T , i f g1 > g2

( t
T
) 2

t , otherwise

(33)

where t and T represent the current and maximum number of generations, respectively. α

represents a random radian in the range of [0, π]. Prp represents the percentage likelihood
of investigating various areas within the exploration domain.

(2) Recovery stage

When nutcrackers search for their caches, they may encounter two possibilities. The
first possibility is that the nutcracker can use the first FP to remember its cache location.
The following formula characterizes this behavior:

Xt+1
i,j =

 Xt
i,j, i f h3 < h4

Xt
i,j + g1

(
Xt

best,j − Xt
i,j

)
+ g2

(
F⃗Pt

i,1 − Xt
W,j

)
, otherwise

(34)
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The second possibility is that the nutcracker, using the first FP, does not remember
the location of the hidden food, and then it would use the second FP to search for food.
This behavior can be characterized as follows:

Xt+1
i,j =

 Xt
i,j, i f h5 < h6

Xt
i,j + g1

(
Xt

best,j − Xt
i,j

)
+ g2

(
F⃗Pt

i,2 − Xt
W,j

)
, otherwise

(35)

where h6 is also a random number in the interval of [0, 1].
Thus, the recovery behavior can be summarized by the following formula:

X⃗t+1
i =

{
Equation (34), i f h7 < h8

Equation (35), otherwise
(36)

where h7, h8 are random numbers in the interval of [0, 1].
Update the position based on whether the nutcracker finds food, which is determined

by the following formula:

X⃗t+1
i =


X⃗t

i , i f f (X⃗t
i ) < i f (

−→
FPt

i,1)

−→
FPt

i,1, otherwise
(37)

X⃗t+1
i =


X⃗t

i , i f f (X⃗t
i ) < i f (

−→
FPt

i,2)

−→
FPt

i,2, otherwise
(38)

To balance foraging behaviors through FP, the following formula is utilized:

X⃗t+1
i =

{
Equation (37), i f f (FP′

i,1) < f (FP′
i,2)

Equation (38), otherwise
(39)

Similarly, the following equation is defined to adjust the conversion between the
caching phase and recovery phase:

X⃗t+1
i =

{
Equation (36), i f v > Pa2

Equation (39), otherwise
(40)

where v represents a random number in the range of [0, 1], and Pa2 represents the probability
of exchange between the cache search phase and the recovery phase.

3.2. Improvements on NOA

Although NOA is a competitive and efficient intelligent optimization algorithm for
path planning, it also has regular issues, such as uneven population initialization and an
imbalance between exploration and exploitation capabilities. Consequently, the following
improvements are implemented to enhance its search performance, thereby obtaining more
satisfactory paths for UAVs.

3.2.1. Improvement of Initialization Based on Logistic Chaos Map

The basic population initialization is randomly distributed throughout the entire space,
which has high randomness and uneven distribution, leading to problems such as a lack of
population diversity and low search efficiency. Utilizing the chaotic mapping mechanism
to increase the variety of the population can boost the efficiency of the algorithm. Its
nonlinear characteristics and periodic nature enable it to generate more complex and
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random sequences, which helps to enhance the variety of the population and stops the
population from converging on local optimal solutions. Commonly used chaotic mapping
methods include the logistic map and the tent map. Compared to the other one, the
logistic map offers a more flexible parameter adjustment, higher sensitivity to chaos, and
advantages in simulating complex systems. Therefore, the logistic map was used for
population initialization in this study, which is a nonlinear difference equation used to
describe the change in a variable across time. The formula is as follows:

xn+1 = µxn(1 − xn) (41)

where xn represents the state variable value at time step n, which is a number between 0
and 1, xn+1 is the state variable value at the next time step n + 1. µ is a positive control
parameter, which is typically in the range of [0, 4]. Here, we set it as 4, placing the map in a
fully mapped state with ergodicity.

As can be seen in Figures 3 and 4, the sequence produced by the logistic map initial-
ization is more uniform compared to a random initialization, which can find the optimal
solution more quickly and avoid being stuck in local minima.

Figure 3. Random initialization adopted in NOA: the initialization sequence is uneven.

Figure 4. The logistic map initialization employed in INOA: the initialization sequence is more
uniform.
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3.2.2. Lens Imaging Inverse Learning Strategy

A lens imaging inverse learning strategy is also introduced in this study, which further
enhances the diversity of the initial solutions. Compared to the ordinary backward learning
strategy, the lens imaging inverse learning introduces a scaling factor k, which is more
conducive to obtaining the global optimal solution. The schematic diagram is shown in
Figure 5. By generating the inverse solution of the current initial solution through inverse
learning, and comparing it with the fitness of the original solution, the initial solutions
are updated, thereby further increasing the probability of the algorithm escaping from
local optima.

The lens imaging inverse learning strategy is as follows:

X⃗r
i,j =

(
U⃗j + L⃗j

)
/2 +

(
U⃗j + L⃗j

)
/2k − X⃗t

i,j/k (42)

X⃗t
i,j =

{
X⃗r

i,j, i f f (X⃗r
i,j) < f (X⃗t

i,j)

X⃗t
i,j, i f f (X⃗r

i,j) ≥ f (X⃗t
i,j)

(43)

where X⃗r
i,j is the generated inverse solution, X⃗t

i,j is the current solution, and k is a random
value between 1 and 10. When the fitness of the inverse solution is lower than that of
the current solution, the inverse solution swaps out the current solution; otherwise, it
remains unchanged.

Figure 5. The diagram of the lens imaging inverse learning strategy: if P is the current point within
the bounds of [lb, ub], then P′ is the inverse solution of P obtained through by the lens imaging
inverse learning strategy.

3.2.3. Parameter Adjustment

The exploration phase reflects the algorithm’s capability to explore the global search
space, determining whether the algorithm can find the optimal solution, while the ex-
ploitation phase demonstrates the algorithm’s capability to mine in the local search space,
affecting the efficiency of the algorithm in obtaining the optimal solution. However, a
limitation of NOA is that its transition between exploration and exploitation is not balanced.
In the foraging/storage phase of NOA, the parameter Pa1 is responsible for regulating
the conversion between exploration and exploitation, and it decreases linearly. But the
actual foraging/storage behavior of the nutcracker may exhibit nonlinear characteristics.
Moreover, in the search for the caching/recovery food phase, the parameter Pa2 that con-
trols exploration and exploitation is set to a fixed value of 0.2, which cannot fully describe
the complex behavior of the nutcracker in the process of searching for the caching areas
and recovery food. Obviously, these parameters (Pa1 and Pa2) do not accurately reflect the



Drones 2025, 9, 116 13 of 24

changes in the actual process. Therefore, the following improvements are made, as shown
in Figure 6. Specifically, the original parameters are set as follows:

Pa1 = (T − t)/T (44)

Pa2 = 0.2 (45)

Then, to better balance the exploration and exploitation, the parameters are adjusted
as follows:

Pa1new = (cos(πt/T) + 1)/2 (46)

Pa2new = (t/T − 1)2/10 + 0.2 (47)

Figure 6. Parameter adjustment: INOA improves parameters Pa1new and Pa2new in the forag-
ing/storage and the caching/recovery phases as trigonometric and quadratic functions, respectively,
to better balance the exploration and exploitation.

3.2.4. Improved Sine–Cosine Strategy

The speed at which the nutcracker finds the food source affects the convergence veloc-
ity of the algorithm. By introducing the sine–cosine strategy and utilizing the oscillating
characteristics of sine and cosine to search for food sources, the global exploration speed of
the algorithm can be effectively improved. The sine–cosine algorithm formula is as follows:

Xt+1
i,j =


Xt

i,j + z1 sin(z2)|z3Xbest,j
t − Xt

i,j|, z4 > 0.5

Xt
i,j + z1 cos(z2)|z3Xbest,j

t − Xt
i,j|, z4 ≤ 0.5

(48)

where z1 = 2(1 − t/T), z2 ∈ [0, 2π], z3 ∈ [0, 2], and z4 ∈ [0, 1].
However, this algorithm has a weak local search capability; therefore, the following

improvements are made on it:
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Xt+1
i,j =


z1 sin(z2) + Xbest,j

t, z4 > 0.5

z1 cos(z2) + Xbest,j
t, z4 ≤ 0.5

(49)

To guarantee both the global exploration in the early stage and the local exploitation
in the later stage, the sine–cosine strategy is finally modified as follows:

Xt+1
i,j =

{
Equation (48), i f t/T < 0.3
Equation (49), otherwise

(50)

By performing the aforementioned improvements, the flowchart of INOA is displayed
in Figure 7, and the main steps are as follows:

Step 1: Set the size of the nutcracker population as N and initialize it using the logistic
chaotic mapping.

Step 2: Apply the lens imaging inverse learning strategy to the initialized nutcracker
population and select better elite initialization solutions through fitness comparison.

Step 3: Create p and q as random values between 0 and 1. If p < q, update the solution
using the foraging and storing strategy and optimize the parameter Pa1.

Step 4: If p ≥ q, update the solution using the caching search and recovery strategy
and optimize the parameter Pa2.

Step 5: Integrate the improved sine–cosine strategy to improve the algorithm’s abilities
of balancing global exploration and local exploitation.

Step 6: Find the best fitness solution through iterations.
At this point, by applying the proposed INOA, the trajectory points in an optimal path

for UAVs can be obtained.

Figure 7. The flowchat of INOA.
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4. Path Fitting
To improve the smoothness of the optimal path and ensure the stability of a UAV flight,

it is necessary to fit the path. Cubic spline interpolation was used in this study to construct
a smooth curve on a given set of data points such that the curve was a cubic polynomial
on each segment. For a set of ordered data points (x0, y0, z0), (x1, y1, z1), ..., (xn, yn, zn), the
cubic spline curve is defined as the cubic polynomial Sijk(x, y) between each pair of adjacent
points (xi, yi, zi) and (xi+1, yi+1, zi+1). The entire curve is composed of these polynomials
spliced together. Each polynomial can be written as follows:

Sijk(x, y) = aijk + bijk(x − xi) + cijk(y − yj)

+dijk(x − xi)
2 + eijk(x − xi)(y − yj) + fijk(y − yj)

2

+gijk(x − xi)
3 + hijk(x − xi)

2(y − yj)

+iijk(x − xi)(y − yj)
2 + jijk(y − yj)

3

(51)

where aijk, bijk,. . . , jijk represent the coefficients of the polynomial.
Forming a system of linear equations through interpolation conditions and the con-

tinuity of the first and the second derivatives, we can obtain all the coefficients of the
polynomials by solving this system. Then, the interpolation function is constructed in the
entire three-dimensional space, thereby ensuring that the connection between trajectory
points is a smooth curve.

5. Simulation Results and Analysis
In this section, we report simulations of the proposed INOA, including those based on

the test set, applications in multi-UAV path planning, and comparative studies, conducted
on the MATLAB R2020b environment to comprehensively demonstrate the merits of INOA.

5.1. Simulation Based on Test Set

The effectiveness of the proposed INOA was confirmed through the CEC2020 test suite.
The CEC2020 test suite is a set of standard test functions used to evaluate and compare
the performance of optimization algorithms, which was proposed at the 2020 congress on
evolutionary computation (CEC), and it consists of a total of 10 functions.

To show the superiority of INOA, it was compared to NOA, Harris hawks optimization
(HHO), and sea horse optimization (SHO). The population size was set to 50, the maximum
number of iterations to 500, and the dimensionality to 20. The algorithms were run 30 times,
and the average values were taken for the simulation. The simulation results are shown in
Figure 8. It is seen that INOA achieved the best results on all 10 functions during the entire
search process, except for functions F2 and F6, where the global search performance does
not outperform but still keeps pace with NOA in the early stage.

Figure 8. Cont.
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Figure 8. Simulation based on CEC2020: INOA obtains the best results on all 10 functions.

5.2. Simulation for Multi-UAV Path Planning

To further verify the effectiveness and applicability of INOA in multi-UAV path
planning, simulation scenarios are designed for the following four different flight situations.

In the first scenario, we set the number of UAVs as 6, with 20 waypoints for each.
Suppose that there are 2 no-fly zones, 3 mountains, and 2 radar threats in the flying
environment. The start points of the UAVs were set as (0, 0, 0), (0, 5, 0), (5, 0, 0), (5, 5, 0),
(0, 10, 0), and (10, 0, 0), respectively. The end points were (90, 90, 100), (90, 100, 100), (100, 90,
100), (100, 100, 90), (85, 85, 100), and (90, 85, 100), respectively. In the second scenario, based
on the first one, the number of mountains increased to 6. In the third scenario, building
upon the first one, the number of radar threats increased to 4.

To enhance the persuasiveness of the algorithm, the fourth scenario considered a more
complex situation, in which the number of UAVs was set as 8, with 20 waypoints for each.
The start points for each UAV were set as (0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5) , (5, 0, 0), (5, 0, 5),
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(5, 5, 0), and (5, 5, 5), while the end points were (95, 95, 100), (95, 95, 95), (95, 100, 95), (95,
100, 100), (100, 95, 95), (100, 95, 100), (100, 100, 95), and (100, 100, 100). Additionally, the
number of mountains and radar threats increased to 6 and 4, respectively.

The parameter setting for the problem description is presented in Table 1. In the
simulation, we set the population size as 60 and allow for a maximum of 100 iterations.

Table 1. Parameter setting for the problem description.

Parameter Symbol Value Unit

Minimum path segment distance lmin 500 m

Safety distance usd 100 m

Maximum yaw angle αmax 60 ◦

Maximum pitch angle βmax 45 ◦

Figures 9–16 show the path planning results in all scenarios. It can be seen that INOA
always performs well for multi-UAV path planning tasks. Whether there exists an increase
in the mountainous terrain or radar threats does not affect the performance of INOA in
complex scenarios such as the fourth scenario. As the safe operating space for multiple
UAVs is further compressed, the difficulty of finding feasible paths for multiple UAVs
greatly increases. Nevertheless, it is evident that INOA can effectively overcome these
challenges and successfully find the optimal paths.

To address the advantages of the proposed INOA, a comparative analysis was per-
formed between PSO, GWO, NOA, and INOA based on the first scenario. The parameters
of PSO can be found in [12], and those of other algorithms are properly selected and shown
in Table 2. To avoid randomness, all algorithms were run 30 times.

Figure 9. The result of multi-UAV path planning in the first scenario with 6 UAVs, 3 mountains,
2 radars, and 2 no-fly zones.
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Figure 10. Top–down view of multi-UAV path planning in the first scenario with 6 UAVs, 3 mountains,
2 radars, and 2 no-fly zones.

Figure 11. The result of multi-UAV path planning in the second scenario with 6 UAVs, 6 mountains,
2 radars, and 2 no-fly zones: compared with the first scenario, the number of mountains increases
to 6.
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Figure 12. Top–down view of multi-UAV path planning in the second scenario with 6 UAVs,
6 mountains, 2 radars, and 2 no-fly zones: compared with the first scenario, the number of mountains
increases to 6.

Figure 13. The result of multi-UAV path planning in the third scenario with 6 UAVs, 3 mountains,
4 radars, and 2 no-fly zones: compared with the first scenario, the number of radar threats increases
to 4.
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Figure 14. Top–down view of multi-UAV path planning in the third scenario with 6 UAVs, 3 moun-
tains, 4 radars, and 2 no-fly zones: compared with the first scenario, the number of radar threats
increases to 4.

Figure 15. The result of multi-UAV path planning in the fourth scenario with 8 UAVs, 6 mountains,
4 radars, and 2 no-fly zones: compared with the first scenario, the numbers of UAVs, mountains, and
radars all increased.
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Figure 16. Top–down view of multi-UAV path planning in the fourth scenario with 8 UAVs, 6 moun-
tains, 4 radars, and 2 no-fly zones: compared with the first scenario, the numbers of UAVs, mountains,
and radars are all increased.

Table 2. Parameters in all algorithms.

Algorithm Parameter Value

PSO w 1.2
c1 2
c2 2
L 0
U 100

GWO L 0
U 100

NOA L 0
U 100

INOA δ 0.05
Prp 0.2
L 0
U 100

The comparison of fitness values is displayed in Figure 17, and the corresponding
statics are given in Table 3. As shown in them, due to its lack of a mechanism to escape
local optima, PSO is trapped in a local optimal solution and cannot escape, resulting in
the least ideal performance. GWO lacks convergence velocity and does not converge to
the global optimal solution within the number of iterations. NOA converges quickly and
has strong multi-objective optimization capabilities such that it is able to find high-quality
solutions in a relatively small number of iterations, showing obvious advantages over the
other two algorithms, but there is still room for improvement. Based on it, INOA further
increases the search efficiency by obtaining a higher-fitness initial solution through logistic
mapping; then, it improves the quality of the initial solution through lens imaging inverse
learning and subsequently enhances convergence speed and precision through parameter
adjustment and the improved sine and cosine strategy. As a result, INOA can apparently
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improve the capability of both global search and local exploitation, strongly confirming its
effectiveness in multi-UAV path planning.

Figure 17. Fitness comparison: INOA achieves the best fitness compared with PSO, GWO, and NOA,
with the improved search efficiency.

Table 3. Fitness statistics.

Algorithm Maximum
Fitness

Minimum
Fitness Average Fitness Standard

Deviation
Confidence

Interval (95%)

NOA 759.5 743.0 752.1 5.8 (750.0, 754.2)

INOA 741.3 733.3 737.8 5.2 (735.9, 739.6)

GWO 759.9 749.1 756.1 8.8 (752.9, 759.2)

PSO 899.0 977.1 951.7 37.8 (938.2, 965.2)

6. Conclusions
The multi-UAV path planning problem faces many challenges. It was effectively

modeled in this study with constraints such as path length, segment distance, smoothness,
altitude, collision with mountains, inter-UAV collisions, radar detection, and no-fly zones,
being converted into a multi-objective restricted optimization problem. To solve this
problem, INOA is proposed with a more fit elite initialization population through logistic
chaotic mapping initialization and a lens imaging inverse learning strategy. Furthermore,
it has a balanced global search capability with a local exploitation capability through
parameter adjustments and the integration of an improved sine–cosine search strategy.
Simulation results on multi-UAV path planning showed that INOA significantly surpasses
other algorithms with regard to convergence velocity and solution precision.

INOA addresses global path planning and can design a feasible general route for
each UAV in practical applications. However, from the perspective of absolute safety, the
research on the local planning of UAVs is necessary but not adequate enough. Further
research will delve into local planning algorithms. The synthesis of these two methods
would be applied into the real-world flight of UAVs with a more satisfactory performance.
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UAV Unmanned aerial vehicle
DQN Deep q-learning
DDPG Deep deterministic policy gradient
PPO Proximal policy optimization
MDP Markov decision process
D3QN Dueling double deep Q-network
ACO Ant colony algorithm
PSO Particle swarm optimization
GA Genetic algorithm
GWO Grey wolf optimizer
NOA Nutcracker optimization algorithm
HGJO Hybrid strategy-based golden jackal optimizer
SSA Sparrow search algorithm
GSO Golden search optimization
DMSPSO Dynamic multi-swarm PSO
CLPSO Comprehensive learning PSO
INOA Improved nutcracker optimization algorithm
CEC Congress on evolutionary computation
HHO Harris hawks optimization
SHO Sea horse optimization
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