
Academic Editor: Anastasios Dimou

Received: 1 April 2025

Revised: 24 April 2025

Accepted: 8 May 2025

Published: 9 May 2025

Citation: Wang, L.; Cheng, Y.; Jiang,

B.; Zhang, Y.; Zhu, J.; Tan, X.

Adaptability Study of an Unmanned

Aerial Vehicle Actuator Fault

Detection Model for Different Task

Scenarios. Drones 2025, 9, 360.

https://doi.org/10.3390/

drones9050360

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Adaptability Study of an Unmanned Aerial Vehicle Actuator
Fault Detection Model for Different Task Scenarios
Lulu Wang, Yuehua Cheng * , Bin Jiang , Yanhua Zhang, Jiajian Zhu and Xiaoyang Tan

College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
wanglulu@nuaa.edu.cn (L.W.); binjiang@nuaa.edu.cn (B.J.); xixi82823@nuaa.edu.cn (Y.Z.);
zhujiajian@nuaa.edu.cn (J.Z.); x.tan@nuaa.edu.cn (X.T.)
* Correspondence: chengyuehua@nuaa.edu.cn

Abstract: Unmanned aerial vehicles (UAVs) may encounter actuator faults in diverse
flight scenarios, requiring robust fault detection models that can adapt to varying data
distributions. To address this challenge, this paper proposes an approach that integrates
Domain-Adversarial Neural Networks (DANNs) with a Mixture of Experts (MoE) frame-
work. By employing domain-adversarial learning, the method extracts domain-invariant
features, mitigating distribution discrepancies between source and target domains. The
MoE architecture dynamically selects specialized expert models based on task-specific
data characteristics, improving adaptability to multimodal environments. This integra-
tion enhances fault detection accuracy and robustness while maintaining efficiency under
constrained computational resources. To validate the proposed model, we conducted
flight experiments, demonstrating its superior performance in actuator fault detection
compared to conventional deep learning methods. The results highlight the potential
of MoE-enhanced domain adaptation for real-time UAV fault detection in dynamic and
uncertain environments.

Keywords: unmanned aerial vehicles; actuator fault detection; domain-adversarial neural
networks; mixture of experts

1. Introduction
Unmanned aerial vehicles (UAVs), particularly fixed-wing models, are widely utilized

in surveillance, mapping, and other applications due to their intelligence, efficiency, and
long-range capabilities [1–4]. Actuator faults in control surfaces, such as ailerons, eleva-
tors, and rudders, can cause abnormal fluctuations in flight parameters, compromising
stability and risking system failures. Efficient and accurate fault detection is thus critical to
enhancing UAV reliability and safety in dynamic environments.

Recent advances in fault detection have significantly shaped the field, particularly
through data-driven and transfer learning approaches. Data-driven methods leverage
historical and real-time data to model system-fault correlations, offering high accuracy.
For instance, multi-sensor systems integrating visual, acoustic, and thermal data enable
anomaly detection in dynamic settings [5,6], while extreme learning machines (ELMs)
provide rapid structural damage identification via vibration analysis [7,8]. In UAV applica-
tions, semi-supervised support vector machines (SVMs) and hybrid deep neural networks
(HDNNs) with multi-time-window CNN-BiLSTM improve anomaly and hazard identifi-
cation [9,10]. However, the aforementioned data-driven fault detection methods typically
rely on a large amount of labeled data and assume that the training and testing data distri-
butions are consistent [11,12]. The diversity of UAV mission environments and operational

Drones 2025, 9, 360 https://doi.org/10.3390/drones9050360

https://doi.org/10.3390/drones9050360
https://doi.org/10.3390/drones9050360
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-1985-0198
https://orcid.org/0000-0002-9153-4360
https://doi.org/10.3390/drones9050360
https://www.mdpi.com/article/10.3390/drones9050360?type=check_update&version=2

Drones 2025, 9, 360 2 of 22

conditions leads to significant differences between the training and testing data distribu-
tions. These distribution shifts pose major challenges for UAV fault detection in dynamic
environments [13]. Traditional data-driven methods often lack the ability to transfer and
generalize effectively when facing new environments and tasks, limiting their capacity to
accurately identify potential faults and reducing the reliability of the detection system [14].

To address distribution shifts, transfer learning—particularly domain adaptation—
extracts domain-invariant features to enable cross-domain knowledge transfer [15,16].
Notable methods include Res-BPNN with multi-layer MK-MMD for aeroengine monitor-
ing [17], federated neural networks for sensor fault detection [18], and 1D convolutional
networks enhanced with adaptive batch normalization and Grey Wolf Optimization for
multirotor UAV diagnostics [19]. Liu et al. [20] employed ensemble transfer learning to
aggregate multi-UAV data, mitigating single-source data limitations, but its static ensemble
approach lacks dynamic adaptability to diverse flight conditions. Additionally, Maximum
Mean Discrepancy (MMD)-based methods struggle to align complex, nonlinear distribu-
tions. While effective, these approaches often rely on computationally intensive models or
struggle with multimodal data heterogeneity.

To overcome these adaptability challenges, Domain-Adversarial Neural Networks
(DANNs) provide a robust domain adaptation solution by learning domain-invariant
features through adversarial training [21]. In UAV actuator fault detection, a DANN’s
primary advantages include aligning feature distributions between labeled source do-
mains and unlabeled target domains, significantly reducing reliance on extensive labeled
fault data—a critical benefit, given their scarcity in UAV applications. By pitting a do-
main classifier against a task classifier, a DANN forces the feature extractor to produce
domain-indistinguishable features, mitigating environmental variations like wind-induced
distribution shifts. This has proven effective in noisy conditions, such as gear and bearing
diagnostics [22,23], making a DANN suitable for UAV cross-domain challenges. The moti-
vation for selecting a DANN lies in its computational efficiency compared to multi-layer
MMD, integrating adversarial training within a single neural network to minimize over-
head. Moreover, a DANN’s ability to generalize without target domain labels aligns with
UAV real-time fault detection needs in untested environments.

Despite these advances, UAV actuator fault detection remains underexplored, partic-
ularly in addressing multimodal data distributions, fault–effect confusion, and computa-
tional constraints. First, varying environmental conditions cause significant distribution
shifts, which existing methods inadequately address. Second, the contradiction between
instantaneous fault onset (e.g., stuck faults causing gradual heading changes) and sustained
effects (e.g., loose faults inducing oscillations) complicates feature extraction, often leading
to confusion with normal fluctuations. Third, achieving high cross-domain accuracy under
limited computational resources is rarely prioritized, reducing reliability in real-time UAV
applications. These challenges necessitate a fault detection approach that simultaneously
handles multimodal data heterogeneity, distinguishes fault effects from environmental
variations, and meets the computational constraints of onboard systems.

To address these gaps and overcome the limitations of the DANN’s simple classifiers,
which struggle to distinguish multimodal data patterns, this study proposes a fault de-
tection method integrating the DANN with a Mixture of Experts (MoE) framework. This
approach leverages the DANN’s ability to extract domain-invariant features to mitigate
distribution shifts, while the MoE’s gating mechanism dynamically selects specialized
expert networks to enhance adaptability to multimodal data distributions and resolve
fault–effect confusion [24]. Unlike Liu et al.’s static ensemble approach [20], which lacks
flexibility in variable flight scenarios, the MoE’s dynamic expert selection significantly
improves fault detection performance, particularly in distinguishing instantaneous and

Drones 2025, 9, 360 3 of 22

sustained fault effects. Furthermore, the MoE’s sparse activation reduces computational
load, ensuring efficiency in resource-constrained UAV systems. Flight experiments validate
the method’s superior fault detection rate (FDR) and false alarm rate (FAR), demonstrating
its robustness and practical value.

The main contributions of this paper are as follows:
(1) This paper proposes a method combining the MoE model and a DANN for UAV

actuator fault detection. By employing domain-adversarial learning, the method extracts
domain-invariant features to address data distribution discrepancies. Additionally, it
integrates a gating mechanism to dynamically select the optimal expert network, thereby
improving detection accuracy and robustness while overcoming the limitations of single
classifiers in handling multimodal data.

(2) The effectiveness of the proposed method is validated through flight experiments
using real flight data. The results demonstrate that the method achieves precise actuator
fault detection in multi-task environments, showcasing strong practical value and reliability.

The remainder of this paper is organized as follows: Section 2 discusses the impact of
environmental factors on UAV actuator fault detection. Section 3 introduces the proposed
domain adaptation method enhanced by the MoE model. Section 4 presents experimental
results to verify the effectiveness of the method. Finally, Section 5 concludes the paper.

2. Problem Description
2.1. Description of Different Task Scenarios

This study focuses on fixed-wing unmanned aerial vehicles (FW-UAVs), which rely
on control surfaces such as ailerons, elevators, and rudders, making them particularly
susceptible to actuator faults under varying environmental conditions.

Wind direction and wind speed are significant environmental factors that influence
UAV flight dynamics—especially under actuator fault conditions, where their interference
becomes more pronounced. In low-wind conditions, actuator faults may cause noticeable
changes in trajectory. However, in moderate to strong winds, their effects can be masked by
natural flight fluctuations caused by turbulence, increasing the likelihood of false alarms
or missed detections. This poses a challenge for fault detection models, as sensor data
collected under such conditions can exhibit patterns similar to those induced by actuator
faults.

To formally describe these environmental influences, wind speed and direction are
represented as a two-dimensional vector: w = [v, θ]T . The UAV motion is governed by a
nonlinear six-degree-of-freedom (6-DOF) model based on the Newton–Euler equations:

.
x(t) = f (x(t), u(t), w(t)), (1)

where x(t) is the UAV’s state vector (e.g., position, velocity, pitch, roll, yaw), u(t) is the
control input (e.g., thrust, aileron, rudder), and w(t) represents wind-related environmental
inputs. This equation models how actuator faults alter u(t), affecting x(t), which is key for
fault detection in Section 2.2.

Figure 1 illustrates the simulated flight trajectories under different wind speeds: the
trajectory remains stable in no wind conditions, slightly deviates under light winds, and
significantly deviates under middle winds, requiring dynamic adjustments. Trajectories
are plotted in a 2D coordinate system (x, y) with the UAV’s starting position at (0, 0), where
negative y-values indicate positions south of the origin, and positive y-values indicate
positions north of the origin.

Drones 2025, 9, 360 4 of 22

Drones 2025, 9, 360 4 of 22

negative y-values indicate positions south of the origin, and positive y-values indicate
positions north of the origin.

These trajectories were obtained through numerical simulations using a nonlinear
six-degree-of-freedom (6-DOF) UAV dynamic model based on Newton–Euler equations.
The UAV was commanded to maintain a constant heading and altitude throughout the
simulation, with no actuator faults injected. To isolate the impact of wind, all control
parameters and initial conditions were held constant across different scenarios. Wind was
introduced as a steady external disturbance vector. Three wind conditions were
simulated: no wind (0 m/s), light wind (2 m/s), and middle wind (5 m/s), with a fixed
direction. Each trajectory corresponds to the UAV’s response under a specific wind
condition over a fixed simulation time. These results highlight the challenge for fault
detection models in distinguishing between normal wind-induced deviations and those
caused by actuator faults, which is critical to reducing false alarms and missed detections.

Figure 1. Simulated flight trajectories of UAVs under different wind speeds.

The changes in wind speed and direction are reflected in the input features of the
fault detection model through sensor data. There exists a nonlinear mapping relationship
between the sensor data and the flight state and environmental factors ()w t :

=() ((), ())z t g x t w t , (2)

where, ()z t represents the extracted feature vector obtained by mapping the raw sensor
measurements ()x t and environment factors ()w t into a compact feature space using
the neural network-based feature extractor ⋅()g .

2.2. Characteristics of Actuator Fault in UAVs

Actuator faults are a critical issue in UAV systems, directly affecting the control input
()u t , which in turn alters the state vector ()x t . This study focuses on two typical actuator

faults in control surfaces: stuck faults and loose faults.
(1) Stuck fault: The actuator becomes fixed at a specific position, rendering the control

surface immovable. For instance, a rudder may lock at a certain deflection angle, causing
()u t to exhibit a constant deviation, leading to sustained changes in ()x t , such as an

unintended yaw rate or trajectory drift.
(2) Loose fault: Due to a failure in the hinge torque, the control surface oscillates freely

under aerodynamic forces. In this case, ()u t shows erratic fluctuations, resulting in high-
frequency disturbances in ()x t , such as rapid oscillations in pitch or roll angles.

These faults occur abruptly, representing sudden actuator failures. However, due to
the UAV’s aerodynamic characteristics (e.g., inertia, damping, and aerodynamic forces),
the impact on ()x t is sustained rather than transient. For example, a stuck fault may
gradually alter the heading, while a loose fault induces continuous oscillations that blend
with normal flight variations.

Figure 1. Simulated flight trajectories of UAVs under different wind speeds.

These trajectories were obtained through numerical simulations using a nonlinear
six-degree-of-freedom (6-DOF) UAV dynamic model based on Newton–Euler equations.
The UAV was commanded to maintain a constant heading and altitude throughout the
simulation, with no actuator faults injected. To isolate the impact of wind, all control
parameters and initial conditions were held constant across different scenarios. Wind was
introduced as a steady external disturbance vector. Three wind conditions were simulated:
no wind (0 m/s), light wind (2 m/s), and middle wind (5 m/s), with a fixed direction.
Each trajectory corresponds to the UAV’s response under a specific wind condition over
a fixed simulation time. These results highlight the challenge for fault detection models
in distinguishing between normal wind-induced deviations and those caused by actuator
faults, which is critical to reducing false alarms and missed detections.

The changes in wind speed and direction are reflected in the input features of the
fault detection model through sensor data. There exists a nonlinear mapping relationship
between the sensor data and the flight state and environmental factors w(t):

z(t) = g(x(t), w(t)), (2)

where, z(t) represents the extracted feature vector obtained by mapping the raw sensor
measurements x(t) and environment factors w(t) into a compact feature space using the
neural network-based feature extractor g(·).

2.2. Characteristics of Actuator Fault in UAVs

Actuator faults are a critical issue in UAV systems, directly affecting the control input
u(t), which in turn alters the state vector x(t). This study focuses on two typical actuator
faults in control surfaces: stuck faults and loose faults.

(1) Stuck fault: The actuator becomes fixed at a specific position, rendering the control
surface immovable. For instance, a rudder may lock at a certain deflection angle, causing
u(t) to exhibit a constant deviation, leading to sustained changes in x(t), such as an
unintended yaw rate or trajectory drift.

(2) Loose fault: Due to a failure in the hinge torque, the control surface oscillates
freely under aerodynamic forces. In this case, u(t) shows erratic fluctuations, resulting in
high-frequency disturbances in x(t), such as rapid oscillations in pitch or roll angles.

These faults occur abruptly, representing sudden actuator failures. However, due to
the UAV’s aerodynamic characteristics (e.g., inertia, damping, and aerodynamic forces), the
impact on x(t) is sustained rather than transient. For example, a stuck fault may gradually
alter the heading, while a loose fault induces continuous oscillations that blend with normal
flight variations.

Fault detection requires extracting features from sensor data. The input to the fault
detection model is the extracted feature set x(t), which includes features extracted from

Drones 2025, 9, 360 5 of 22

sensor data. These features are closely related to environmental factors. The features of the
model input x f are obtained by mapping the sensor data and environmental factors:

x f = φ(z(t), w(t)), (3)

where φ(·) is the feature extraction function, which maps the sensor data and environmental
factors to the feature space.

However, feature extraction faces the following difficulties:
(1) Fault–effect confusion: The aerodynamic smoothing makes it challenging to distin-

guish fault-induced changes in x(t) from normal fluctuations. For example, the heading
deviation from a stuck fault may resemble a wind effect, while the oscillations from a loose
fault may be mistaken for turbulence.

(2) Contradiction between instantaneous onset and sustained effects: The abrupt onset
of faults leads to sustained effects, requiring the model to capture both the initial anomaly
and its prolonged impact, increasing the complexity of feature extraction.

These characteristics necessitate a fault detection method capable of accurately identi-
fying subtle and sustained fault patterns.

2.3. Challenges of Fault Detection Models in Different Task Scenarios

Changes in wind speed and wind direction can lead to data distribution shifts, which
is a core challenge faced by many traditional fault detection models.

(1) The training data are collected in a specific environment, while testing scenarios
often differ, leading to significant distribution shifts. Figures 2 and 3 illustrate such shifts in
pitch and heading angles during normal flights under varying wind conditions. Figure 2 (11
September 2024, no wind) shows stable posture and navigation with small, low-frequency
fluctuations. In contrast, Figure 3 (1 September 2024, strong wind) presents irregular, high-
amplitude oscillations, indicating wind-induced instability. These differences highlight
the challenge of ensuring robust generalization in fault detection models across changing
conditions. Specifically, such distribution shifts can cause the model to misinterpret wind-
induced variations as faults, increasing the risk of false positives or missed detections.
This underscores the need for advanced fault detection methods that can adapt to diverse
environmental conditions while maintaining high accuracy and reliability.

Drones 2025, 9, 360 6 of 22

(a) (b)

Figure 2. Second takeoff and landing on 11 September 2024 (Sampling rate: 100 Hz): (a) Pitch angle;
(b) Heading angle.

(a) (b)

Figure 3. Second takeoff and landing on 1 September 2024 (Sampling rate: 100 Hz): (a) Pitch angle;
(b) Heading angle.

(a) (b)

(c) (d)

Figure 4. Comparison between normal data and fault data under strong wind conditions (sampling
rate: 100 Hz): (a) Normal roll angle under strong wind conditions; (b) Roll angle under fault and no
wind conditions; (c) Normal heading angle under strong wind conditions; (d) Heading angle under
fault and no wind conditions;.

3. UAV Actuator Fault Detection Based on Improved
Domain Adaptation

To address the issues of data distribution inconsistency and misjudgment in UAV
actuator fault detection, this paper proposes a method that integrates domain adaptation
with an MoE framework. By extracting domain-invariant features and dynamically
adapting to multimodal data, this approach enhances both the accuracy and robustness
of fault detection across diverse task scenarios.

Figure 2. Second takeoff and landing on 11 September 2024 (Sampling rate: 100 Hz): (a) Pitch angle;
(b) Heading angle.

(2) Performance degradation of a single classifier model: In strong wind conditions,
fluctuations in flight attitude data are often misjudged as faults, degrading model perfor-
mance. As shown in Figure 4, normal roll and heading angles under strong wind exhibit
high-frequency, irregular fluctuations due to wind interference, resembling the oscillations
caused by loose faults under no-wind conditions. Specifically, subfigures (a) and (b) com-
pare roll angles in strong wind (normal) and no wind (loose fault), both showing rapid,
high-frequency oscillations with similar amplitudes. Similarly, subfigures (c) and (d) reveal
that heading angle variations under strong wind mimic the erratic fluctuation patterns

Drones 2025, 9, 360 6 of 22

of loose faults, particularly in their frequency and irregularity. These similarities make it
difficult to distinguish normal variations from actual faults, leading to higher misclassifica-
tion rates and underscoring the limitations of single-classifier models in complex, variable
environments.

Drones 2025, 9, 360 6 of 22

(a) (b)

Figure 2. Second takeoff and landing on 11 September 2024 (Sampling rate: 100 Hz): (a) Pitch angle;
(b) Heading angle.

(a) (b)

Figure 3. Second takeoff and landing on 1 September 2024 (Sampling rate: 100 Hz): (a) Pitch angle;
(b) Heading angle.

(a) (b)

(c) (d)

Figure 4. Comparison between normal data and fault data under strong wind conditions (sampling
rate: 100 Hz): (a) Normal roll angle under strong wind conditions; (b) Roll angle under fault and no
wind conditions; (c) Normal heading angle under strong wind conditions; (d) Heading angle under
fault and no wind conditions;.

3. UAV Actuator Fault Detection Based on Improved
Domain Adaptation

To address the issues of data distribution inconsistency and misjudgment in UAV
actuator fault detection, this paper proposes a method that integrates domain adaptation
with an MoE framework. By extracting domain-invariant features and dynamically
adapting to multimodal data, this approach enhances both the accuracy and robustness
of fault detection across diverse task scenarios.

Figure 3. Second takeoff and landing on 1 September 2024 (Sampling rate: 100 Hz): (a) Pitch angle;
(b) Heading angle.

Drones 2025, 9, 360 6 of 22

(a) (b)

Figure 2. Second takeoff and landing on 11 September 2024 (Sampling rate: 100 Hz): (a) Pitch angle;
(b) Heading angle.

(a) (b)

Figure 3. Second takeoff and landing on 1 September 2024 (Sampling rate: 100 Hz): (a) Pitch angle;
(b) Heading angle.

(a) (b)

(c) (d)

Figure 4. Comparison between normal data and fault data under strong wind conditions (sampling
rate: 100 Hz): (a) Normal roll angle under strong wind conditions; (b) Roll angle under fault and no
wind conditions; (c) Normal heading angle under strong wind conditions; (d) Heading angle under
fault and no wind conditions;.

3. UAV Actuator Fault Detection Based on Improved
Domain Adaptation

To address the issues of data distribution inconsistency and misjudgment in UAV
actuator fault detection, this paper proposes a method that integrates domain adaptation
with an MoE framework. By extracting domain-invariant features and dynamically
adapting to multimodal data, this approach enhances both the accuracy and robustness
of fault detection across diverse task scenarios.

Figure 4. Comparison between normal data and fault data under strong wind conditions (sampling
rate: 100 Hz): (a) Normal roll angle under strong wind conditions; (b) Roll angle under fault and no
wind conditions; (c) Normal heading angle under strong wind conditions; (d) Heading angle under
fault and no wind conditions.

3. UAV Actuator Fault Detection Based on Improved Domain Adaptation
To address the issues of data distribution inconsistency and misjudgment in UAV

actuator fault detection, this paper proposes a method that integrates domain adaptation
with an MoE framework. By extracting domain-invariant features and dynamically adapt-
ing to multimodal data, this approach enhances both the accuracy and robustness of fault
detection across diverse task scenarios.

As illustrated in Figure 5, the proposed framework begins by feeding the UAV sensor
data into a shared feature extractor. The extracted features are then passed to a gating
network, which assigns soft weights to determine how the input is routed to multiple
expert models. Each expert is implemented as a DANN, allowing it to learn features that
are both task-relevant and invariant across different domains. The outputs of these experts
are finally aggregated based on the weights assigned by the gating network, enabling the
model to make adaptive and reliable fault detection decisions.

Drones 2025, 9, 360 7 of 22

Drones 2025, 9, 360 7 of 22

As illustrated in Figure 5, the proposed framework begins by feeding the UAV sensor
data into a shared feature extractor. The extracted features are then passed to a gating
network, which assigns soft weights to determine how the input is routed to multiple
expert models. Each expert is implemented as a DANN, allowing it to learn features that
are both task-relevant and invariant across different domains. The outputs of these experts
are finally aggregated based on the weights assigned by the gating network, enabling the
model to make adaptive and reliable fault detection decisions.

The method leverages a DANN within the MoE framework to align feature
distributions between source and target domains while employing a gating mechanism to
dynamically select optimal expert networks for specific data modalities. The following
subsections elaborate on the formal problem description, the MoE architecture, and its
training process.

Figure 5. MoE model algorithm diagram. Diagram of the data flow in the fault detection framework,
illustrating the complete process from sensor data collection, to preprocessing, to feature extraction,
to classification, with arrows indicating real-time data progression.

3.1. The Formal Description of the Domain Adaptation Problem

In UAV multi-task scenarios, due to environmental factors such as wind speed and
wind direction, there is often a significant distribution shift between the training set
(source domain) and the test set (target domain), which leads to a performance drop of
traditional fault detection models in the target domain. To address this, this paper
introduces domain adaptation methods, aiming to optimize the model to reduce the
distribution shift between the source and target domains. By aligning the feature
distributions across domains, the model becomes better suited for generalization to the

Figure 5. MoE model algorithm diagram. Diagram of the data flow in the fault detection framework,
illustrating the complete process from sensor data collection, to preprocessing, to feature extraction,
to classification, with arrows indicating real-time data progression.

The method leverages a DANN within the MoE framework to align feature distri-
butions between source and target domains while employing a gating mechanism to
dynamically select optimal expert networks for specific data modalities. The following
subsections elaborate on the formal problem description, the MoE architecture, and its
training process.

3.1. The Formal Description of the Domain Adaptation Problem

In UAV multi-task scenarios, due to environmental factors such as wind speed and
wind direction, there is often a significant distribution shift between the training set (source
domain) and the test set (target domain), which leads to a performance drop of traditional
fault detection models in the target domain. To address this, this paper introduces domain
adaptation methods, aiming to optimize the model to reduce the distribution shift between
the source and target domains. By aligning the feature distributions across domains, the
model becomes better suited for generalization to the target domain. Figure 6 visually
represents this domain adaptation process. The following sections will describe the domain
adaptation problem from a formal perspective.

Drones 2025, 9, 360 8 of 22

Drones 2025, 9, 360 8 of 22

target domain. Figure 6 visually represents this domain adaptation process. The following
sections will describe the domain adaptation problem from a formal perspective.

Figure 6. Domain adaptation diagram.

Define the input set as X and the binary labels as = {0,1}Y . On X , a domain is
defined as a pair < >,D f , where D is a distribution function that describes the
probability of each sample in X , and f is a labeling function →: [0,1]f X .

Given M source domains, the joint distribution of the data is represented as
Equation (4). Specifically, ()D x denotes the probability of input samples ∈x X , and

→() : {0,1}f x X is the true labeling function assigning binary fault labels (0 for normal, 1
for fault) to x . (,)P x y is the joint probability distribution of input x and label y ,
consistent with the Bayesian formulation.

Considering ≠ ≤ ≠ ≤(,) (,),1i jS S
P x y P x y i j M , it indicates that the data distributions

differ between domains. The differences in data distribution are caused by ≠i jS S
D D

while ()f x remains unchanged across domains.

= =(,) () (|) () ()P x y P x P y x D x f x (4)

For a new scenario defined as the target domain < >,TD f , it is necessary to design
an algorithm to learn a classifier → ∈: ,h X Y h H (where H is a hypothetical space) that
approximates f . Define the discrepancy between h and f in the target domain as the

risk: ε = − ~(, ;) () ()
TT x Dh f D h x f x ; then the goal is to find ∈ ∈min (, ;)Th H h f D ,

enabling the learning of a classifier with good performance in the target domain. When
the target domain data approximate the source domain distribution, the model can
reliably predict whether a failure has occurred.

The core of domain adaptation lies in reducing the distribution discrepancy between
the source and target domains. To address this issue, an intuitive approach is to introduce
a shared feature space. By designing a mapping f , the data from both domains are
projected into this shared feature space. Through optimizing the feature extractor, the
distributions of the two domains are made as consistent as possible. In this shared feature
space, a classifier h is constructed to effectively enhance the model’s performance on the
target domain. The target risk ε ()T h of the classifier h in this feature space can be

expressed as Equation (5):

ε ε λ Δ≤ + + ˆˆ() () ((), ())T S H H H S f T fh h d D G D G , (5)

where ε̂ ()S h is the empirical error of h in the source domain, λH is the minimum error

of the hypothesis class H when the source and target domains are perfectly aligned,

Δ
ˆ

H Hd is the estimated distribution discrepancy between the source and target domains in

the feature space, measured via the symmetric difference hypothesis class ΔH H , and

Figure 6. Domain adaptation diagram.

Define the input set as X and the binary labels as Y = {0, 1}. On X, a domain is
defined as a pair < D, f >, where D is a distribution function that describes the probability
of each sample in X, and f is a labeling function f : X → [0, 1] .

Given M source domains, the joint distribution of the data is represented as
Equation (4). Specifically, D(x) denotes the probability of input samples x ∈ X, and
f (x) : X → {0, 1} is the true labeling function assigning binary fault labels (0 for normal, 1

for fault) to x. P(x, y) is the joint probability distribution of input x and label y, consistent
with the Bayesian formulation.

Considering PSi (x, y) ̸= PSj(x, y), 1 ≤ i ̸= j ≤ M, it indicates that the data distribu-
tions differ between domains. The differences in data distribution are caused by DSi ̸= DSj

while f (x) remains unchanged across domains.

P(x, y) = P(x)P(y|x) = D(x) f (x) (4)

For a new scenario defined as the target domain < DT , f >, it is necessary to design
an algorithm to learn a classifier h : X → Y, h ∈ H (where H is a hypothetical space) that
approximates f . Define the discrepancy between h and f in the target domain as the risk:
ε(h, f ; DT) = Ex∼DT |h(x)− f (x)|; then the goal is to find minh ∈ H ∈ (h, f ; DT), enabling
the learning of a classifier with good performance in the target domain. When the target
domain data approximate the source domain distribution, the model can reliably predict
whether a failure has occurred.

The core of domain adaptation lies in reducing the distribution discrepancy between
the source and target domains. To address this issue, an intuitive approach is to introduce a
shared feature space. By designing a mapping f , the data from both domains are projected
into this shared feature space. Through optimizing the feature extractor, the distributions of
the two domains are made as consistent as possible. In this shared feature space, a classifier
h is constructed to effectively enhance the model’s performance on the target domain. The
target risk εT(h) of the classifier h in this feature space can be expressed as Equation (5):

εT(h) ≤ ε̂S(h) + λH + d̂H∆H(DS(G f), DT(G f)), (5)

where ε̂S(h) is the empirical error of h in the source domain, λH is the minimum error of
the hypothesis class H when the source and target domains are perfectly aligned, d̂H∆H

is the estimated distribution discrepancy between the source and target domains in the
feature space, measured via the symmetric difference hypothesis class H∆H, and DS(G f)

and DT(G f) are the feature distributions of the source and target domains, respectively,
after mapping through the feature extractor G f .

Drones 2025, 9, 360 9 of 22

It can be observed that the third term can be optimized by adjusting G f . When the
source domain data and target domain data cannot be distinguished in the feature space,
the distance between the two datasets should be very small.

3.2. The Mixture of Expert Models for Multimodal Data Processing

To address the challenges of heterogeneous data and limited computational resources
in multi-task scenarios, we propose an improved domain adaptation method based on
the MoE model. This method utilizes multiple sub-expert networks to optimize the data
characteristics of different task scenarios, significantly improving model performance in
the target domain. The input data distribution D(x) is modeled as a mixture:

D(x) =
n

∑
i=1

P(mi)P(x|mi) , (6)

where mi(for i = 1, 2, . . . , n) represents distinct data modalities or task scenarios, P(mi) is
the prior probability of modality mi, and P(x|mi) is the conditional distribution of input x
given modality mi.

Although the MoE model improves performance by dynamically selecting specialized
expert models based on task-specific data characteristics, it is crucial to consider the
computational trade-offs, particularly in UAV systems with limited onboard computing
power. The MoE model addresses this by using a gating mechanism that activates only a
subset of expert models relevant to the current input. This selective activation significantly
reduces the number of active parameters and operations per inference step.

A representative configuration involves an MoE architecture with four expert net-
works, where the gating mechanism selects only two experts for each input. As a result,
only 50% of the expert model computations are engaged during a forward pass. Unlike
fully connected or ensemble models, where all model parameters are involved in every
forward pass, the MoE model avoids unnecessary computations by focusing resources on
the most relevant components.

This design enables a more efficient use of computational resources, which is particu-
larly beneficial for real-time UAV fault detection. A detailed comparison of inference times
between the MoE model and baseline approaches is provided in the experimental section,
further supporting the computational efficiency of our method.

3.2.1. Gated Unit

The MoE builds a sparse expert network, where only a small number of network
parameters are activated at a time to achieve targeted processing for different modalities.
The model output is a weighted sum of expert predictions, as shown in Equation (7):

y =
m

∑
i=1

R(x)iEi(x), (7)

where Ei(x) is the output of the i-th expert network for input data x and R(x) is the weight
distribution generated by the Router (gating network). The Router corresponds to P(mi) in
Equation (6), determining which model parameters participate in processing based on the
input data characteristics x ∼ P(x|mi) . It is primarily composed of a sparse network that
generates weights R(x), representing the contributions of different experts when processing
the input data.

The core structure of the Router is composed of a learnable parameter matrix W and
activation functions. During training, the Router directs different types of data to appro-
priate expert models based on their specializations. To prevent the Router from always

Drones 2025, 9, 360 10 of 22

selecting the same expert, a noisy Top-K gating strategy is applied [25], which improves
load balancing by adding controlled noise to encourage expert diversity and mitigate expert
collapse—an issue often encountered in deterministic gating strategies. Specifically, noise
is added to the linear output H(x), retaining only the top k values (k ≥ 2), followed by the
activation function to compute the Router’s output. The Router’s formulation is given as
Equation (8):

R(x) = So f tmax(KeepTopK(H(x), k))
H(x)i = (x ·Wg)i + standardNormal() · So f tplus((x ·Wnoise)i)

KeepTopK(ν, k)i =

{
νi if νi is one of the top K value in v,
−∞ otherwise.

, (8)

where Wg and Wnoise are linear layers for processing data and training noise respectively.
Softmax(x) and Softplus(x) are two types of activation functions, while standardNormal()
samples noise from a standard normal distribution.

3.2.2. Expert Unit

The expert module employs a DANN to gradually focus on processing specific types
of data while maintaining sparsity for activated experts, thus improving both training
and inference efficiency. The core of the DANN in achieving domain adaptation is to
learn indistinguishable feature representations [1,26], aligning the feature distributions
between the source domain (training scenario) and the target domain (test scenario), thereby
enhancing the performance of tasks in the target domain. The algorithm process is shown
in Figure 7.

Drones 2025, 9, 360 10 of 22

network that generates weights ()R x , representing the contributions of different experts
when processing the input data.

The core structure of the Router is composed of a learnable parameter matrix W and
activation functions. During training, the Router directs different types of data to
appropriate expert models based on their specializations. To prevent the Router from
always selecting the same expert, a noisy Top-K gating strategy is applied [25], which
improves load balancing by adding controlled noise to encourage expert diversity and
mitigate expert collapse—an issue often encountered in deterministic gating strategies.
Specifically, noise is added to the linear output ()H x , retaining only the top k values (k ≥
2), followed by the activation function to compute the Router’s output. The Router’s
formulation is given as Equation (8):

ν ν
ν

=
= ⋅ + ⋅ ⋅

= ∞

() (((),))
() () () (())

 if is one of the top value in ,
(,)

- otherwise.

i g i noise i

i i
i

R x Softmax KeepTopK H x k
H x x W standardNormal Softplus x W

K v
KeepTopK k

,
(8)

where gW and noiseW are linear layers for processing data and training noise

respectively. Softmax(x) and Softplus(x) are two types of activation functions, while
standardNormal() samples noise from a standard normal distribution.

3.2.2. Expert Unit

The expert module employs a DANN to gradually focus on processing specific types
of data while maintaining sparsity for activated experts, thus improving both training and
inference efficiency. The core of the DANN in achieving domain adaptation is to learn
indistinguishable feature representations [1,26], aligning the feature distributions
between the source domain (training scenario) and the target domain (test scenario),
thereby enhancing the performance of tasks in the target domain. The algorithm process
is shown in Figure 7.

Figure 7. DANN algorithm process.

In this implementation, the feature extractor fG is designed as a Long Short-Term

Memory (LSTM) network, which is well-suited for capturing temporal dependencies in

Figure 7. DANN algorithm process.

In this implementation, the feature extractor G f is designed as a Long Short-Term
Memory (LSTM) network, which is well-suited for capturing temporal dependencies in
UAV sensor data. The LSTM processes sequential input data to extract domain-invariant
features robust to variations across different flight conditions. The adversarial mechanism
of a DANN involves a competition between the feature extractor and the domain discrimi-
nator. The domain discriminator Gd, implemented as a single-layer linear network, aims
to accurately distinguish between the source and target domains based on the features

Drones 2025, 9, 360 11 of 22

extracted by G f . Meanwhile, the label classifier Gy, also implemented as a single-layer
linear network, predicts fault labels from the same extracted features.

For the fault detection problem, let θ f , θy, and θd represent the parameters of the
feature extractor G f , the label classifier Gy and the domain discriminator Gd, respectively.
The DANN optimizes θ f by maximizing the domain discriminator loss Ld to confuse Gd,
while minimizing Ld to train θd, as shown in Equation (9):

Li
d(θ f , θd) = Ld(Gd(G f (xi; θ f); θd), di) = log

1
Gd(G f (xi))di

, (9)

where xi is the input sample, di ∈ {0, 1} is the domain label (0 for source, 1 for target),
and Gd(G f (xi))di

is the probability that Gd predicts the correct domain. Equation (9)
optimizes θd to better distinguish between source and target domain features. Meanwhile,
G f minimizes the source domain classification loss Ly to improve θy, as described in
Equation (10):

Li
y(θ f , θy) = Ly(Gy(G f (xi; θ f); θy), yi) = log

1
Gy(G f (xi))yi

(10)

In this case, yi ∈ {0, 1} is the fault label (0 for normal,1 for fault), and Gy(G f (xi))yi
is the predicted probability of the true fault label. Equation (10) ensures that the model
accurately detects faults in the source domain. Finally, the DANN combines these objectives
in Equation (11):

L(θ f , θy, θd) =
1
n

n

∑
i=1

Li
y(θ f , θy)− λ

(
1
n

n

∑
i=1

Li
d(θ f , θd) +

1
n′

n′

∑
j=n+1

Li
d(θ f , θd)

)
, (11)

where n samples come from the source domain, n′ samples come from the target domain,
and there are a total of N samples. λ ∈ (0,+∞) is the weighting coefficient balances the
classification and domain adaptation objectives. Equation (11) uses adversarial training
to enable G f to produce domain-invariant features while maintaining fault detection
capability, improving the robustness of UAV actuator fault detection in diverse conditions.

To implement domain adversarial training, the total loss is alternately optimized, and
parameters are updated using gradient descent as follows:

(θ̂ f , θ̂y) = argmin
θ f ,θy

L(θ f , θy, θ̂d), (12)

θ̂d = argmax
θd

L(θ̂ f , θ̂y, θd) (13)

This adversarial process ensures that each expert extracts features that are robust
across domains, enabling the MoE framework to effectively handle distribution shifts while
maintaining specialization for specific data modalities.

3.2.3. Training Process

In the training process of the MoE model, the data pass sequentially through the gating
network and multiple expert models, ultimately producing the model output, which is
then used to compute the loss function. At the initial stage, all model parameters, including
the Router and mmm expert models, are randomly initialized. The input data are first
processed by the Router, which dynamically computes the weight distribution for each
expert using the noisy Top-K gating strategy described in Section 3.2.1. Only the k experts
with the highest weights are activated, and these experts perform feature extraction and

Drones 2025, 9, 360 12 of 22

classification. The final prediction is obtained by weighting the outputs of the activated
experts according to the Router’s weights, as shown in Equation (7). During training, the
loss function consists of two parts: the classification loss and the domain adversarial loss,
as shown in Equation (14):

Ltotal = Lclassification + λ · Ldomain, (14)

where Lclassification measures the accuracy of fault predictions, while Ldomain aligns the
feature distributions across domains, with λ balance the two objectives.

The training process employs the gradient descent to update the parameters of the
Router and the expert models:

θRouter ← θRouter − η · ∇θRouter Ltotal

θExpert ← θExpert − η · ∇θExpert Ltotal
, (15)

where θRouter and θExpert represent the parameters of the gating network and expert net-
works, respectively. η is the learning rate, and ∇θRouter Ltotal and ∇θExpert Ltotal denote the
gradients of the total loss Ltotal with respect to these parameters. The total loss Ltotal , defined
in Equation (14), combines the classification loss Lclassi f ication and the domain adversarial
loss Ldomain, weighted by the coefficient λ.

Through the Router’s Top-K gating strategy, each expert focuses on processing specific
data types, enhancing the accuracy of fault detection. The noise augmentation mechanism
further improves the model’s robustness by preventing overfitting to particular experts.
Additionally, sparse activation reduces computational complexity, making the approach
efficient for resource-constrained environments.

The integration of the DANN and the MoE offers significant advantages over stan-
dalone methods. The DANN ensures the model’s generalization capability by aligning
feature distributions across different environments, while the MoE further enhances this
capability by dynamically processing multimodal data through expert networks. This syner-
gistic effect improves adaptability to diverse flight conditions and optimizes fault detection
performance by addressing domain distribution discrepancies and data heterogeneity.

4. Flight Experiment Validation
4.1. Flight Experimental System

To evaluate the effectiveness of the proposed method, a comprehensive flight test
system was developed using a FW-UAV, as illustrated in Figure 8. The experimental setup
is divided into two primary components: the airborne system and the ground system,
interconnected through a digital radio link for seamless communication. The airborne
system comprises the fixed-wing UAV, an industrial computer, a flight controller, and a
fault simulation device, enabling real-time data collection and fault injection during flight.
On the ground, the system includes a fault monitoring station and a flight control ground
station, which together facilitate real-time monitoring, data analysis, and operational
control. This integrated setup provides a robust platform for validating the proposed
actuator fault detection method under realistic flight conditions.

Drones 2025, 9, 360 13 of 22

Drones 2025, 9, 360 13 of 22

station, which together facilitate real-time monitoring, data analysis, and operational
control. This integrated setup provides a robust platform for validating the proposed
actuator fault detection method under realistic flight conditions.

Figure 8. Flight test system.

4.2. Flight Simulation and Data Selection

In the experiments, a fixed-wing UAV equipped with aerodynamic control surfaces
was used, with two types of actuator faults (stuck and loose) simulated on the control
surfaces, as illustrated in Figure 9. The stuck fault is characterized by the control surface
being fixed at a certain angle, indicating a complete actuator failure, while the loose fault
is characterized by the failure of hinge torque, causing the control surface to oscillate
violently under airflow, indicative of a partial failure. These faults were implemented as
follows: the stuck fault was realized by fixing the PWM signal of the servo at the moment
of fault injection. For the loose fault, Rudder 1 was used as an example, employing two
servos: one for deflection and another for controlling the tension of a cotton thread. Under
normal conditions, the tensioning servo kept the thread taut to ensure proper rudder
response; upon fault injection, the servo reversed to loosen the thread, triggering violent
oscillations in Rudder 1.

To ensure the repeatability and reliability of fault simulation, calibration was
conducted before formal testing. For the stuck fault, PWM signals were validated over
multiple trials to remain within ±1% of the target value, ensuring consistent fault behavior.
For the loose fault, the tension of the cotton thread was calibrated by adjusting the servo
angle, with repeated tests confirming consistent oscillation patterns under airflow.
Onboard sensors (IMU and GPS) were calibrated for accurate data collection: the IMU
underwent static and dynamic calibration to correct for bias and temperature drift, while
the GPS was calibrated against known reference points to minimize positioning errors.
The ground station monitoring system was calibrated by validating telemetry data against

Figure 8. Flight test system.

4.2. Flight Simulation and Data Selection

In the experiments, a fixed-wing UAV equipped with aerodynamic control surfaces
was used, with two types of actuator faults (stuck and loose) simulated on the control
surfaces, as illustrated in Figure 9. The stuck fault is characterized by the control surface
being fixed at a certain angle, indicating a complete actuator failure, while the loose fault is
characterized by the failure of hinge torque, causing the control surface to oscillate violently
under airflow, indicative of a partial failure. These faults were implemented as follows:
the stuck fault was realized by fixing the PWM signal of the servo at the moment of fault
injection. For the loose fault, Rudder 1 was used as an example, employing two servos:
one for deflection and another for controlling the tension of a cotton thread. Under normal
conditions, the tensioning servo kept the thread taut to ensure proper rudder response;
upon fault injection, the servo reversed to loosen the thread, triggering violent oscillations
in Rudder 1.

Drones 2025, 9, 360 14 of 22

known control inputs (e.g., pre-defined roll, pitch, yaw commands) and expected flight
responses in a controlled test, ensuring accurate real-time fault recognition. These
measures ensured consistent fault injection and detection, providing reliable data for
DANN-based fault diagnosis across source and target domains.

(a) (b)

Figure 9. Fault schematic diagram: (a) Stuck fault; (b) Loose fault.

The flight experiments were designed to evaluate the DANN-based MoE framework
for actuator fault detection in UAVs, focusing on cross-domain fault diagnosis under
diverse conditions. Conducted over 8 days from 29 July to 11 September 2024, at altitudes
of 150–200 m, the real-world tests involved wind speeds categorized as 1ξ (<1 m/s, no
wind), 2ξ (1–3 m/s, light wind), 3ξ (3–5 m/s, middle wind), and 4ξ (5–8 m/s strong
wind), as detailed in Tables 1 and 2, which lists test dates, wind speed levels, and the
number of stuck and loose fault injections. Data covered normal, loose fault, and stuck
fault states across typical flight scenarios like cruising and turning. Flight status data
(acceleration, angular velocity, position) were collected at 100 Hz using IMU and GPS
sensors. This setup, with varied wind speeds and scenarios, supported robust validation
of the DANN-based fault detection framework in multi-task, cross-domain contexts.

The flight data collected from these experiments, including acceleration, angular
velocity, and position, were subsequently processed to extract features for training and
evaluating the DANN-based MoE framework. In summary, the experimental setup and
calibration procedures ensured the collection of a comprehensive dataset under varied
conditions, fully prepared for feature extraction, training, and evaluation in the next
phase.

Table 1. Fault injection types and injection locations.

Fault Injection Types Fault Injection Locations
stuck fault Aileron 2, Aileron 3, Aileron 4
loose fault Aileron 1

Table 2. Experiment dates, wind speed levels, and fault injection counts.

Wind Speed Level Experiment Dates
Fault Injection Count

Loose Fault Stuck Fault
1ξ (<1 m/s, no wind) 8.1, 9.11 81 200

2ξ (1–3 m/s, light wind) 7.30, 8.2 56 162

3ξ (3–5 m/s, middle wind) 8.31, 9.2 136 76

4ξ (5–8 m/s, strong wind) 7.29, 9.1 57 208

Figure 9. Fault schematic diagram: (a) Stuck fault; (b) Loose fault.

To ensure the repeatability and reliability of fault simulation, calibration was con-
ducted before formal testing. For the stuck fault, PWM signals were validated over multiple
trials to remain within ±1% of the target value, ensuring consistent fault behavior. For the

Drones 2025, 9, 360 14 of 22

loose fault, the tension of the cotton thread was calibrated by adjusting the servo angle, with
repeated tests confirming consistent oscillation patterns under airflow. Onboard sensors
(IMU and GPS) were calibrated for accurate data collection: the IMU underwent static and
dynamic calibration to correct for bias and temperature drift, while the GPS was calibrated
against known reference points to minimize positioning errors. The ground station moni-
toring system was calibrated by validating telemetry data against known control inputs
(e.g., pre-defined roll, pitch, yaw commands) and expected flight responses in a controlled
test, ensuring accurate real-time fault recognition. These measures ensured consistent fault
injection and detection, providing reliable data for DANN-based fault diagnosis across
source and target domains.

The flight experiments were designed to evaluate the DANN-based MoE framework
for actuator fault detection in UAVs, focusing on cross-domain fault diagnosis under
diverse conditions. Conducted over 8 days from 29 July to 11 September 2024, at altitudes
of 150–200 m, the real-world tests involved wind speeds categorized as ξ1 (<1 m/s, no
wind), ξ2 (1–3 m/s, light wind), ξ3 (3–5 m/s, middle wind), and ξ4 (5–8 m/s strong wind),
as detailed in Tables 1 and 2, which lists test dates, wind speed levels, and the number of
stuck and loose fault injections. Data covered normal, loose fault, and stuck fault states
across typical flight scenarios like cruising and turning. Flight status data (acceleration,
angular velocity, position) were collected at 100 Hz using IMU and GPS sensors. This setup,
with varied wind speeds and scenarios, supported robust validation of the DANN-based
fault detection framework in multi-task, cross-domain contexts.

Table 1. Fault injection types and injection locations.

Fault Injection Types Fault Injection Locations

stuck fault Aileron 2, Aileron 3, Aileron 4
loose fault Aileron 1

Table 2. Experiment dates, wind speed levels, and fault injection counts.

Wind Speed Level Experiment Dates
Fault Injection Count

Loose Fault Stuck Fault

ξ1 (<1 m/s, no wind) 8.1, 9.11 81 200
ξ2 (1–3 m/s, light wind) 7.30, 8.2 56 162

ξ3 (3–5 m/s, middle wind) 8.31, 9.2 136 76
ξ4 (5–8 m/s, strong wind) 7.29, 9.1 57 208

The flight data collected from these experiments, including acceleration, angular
velocity, and position, were subsequently processed to extract features for training and
evaluating the DANN-based MoE framework. In summary, the experimental setup and
calibration procedures ensured the collection of a comprehensive dataset under varied
conditions, fully prepared for feature extraction, training, and evaluation in the next phase.

4.3. Experimental Data Processing

To enable efficient real-time processing, we selected 16 feature variables from over
40 recorded flight parameters, focusing on those most relevant to actuator fault detection
based on prior research. These include attitude angles (roll, pitch, heading, yaw), angular
rates (roll, pitch, yaw), airspeed, altitude, control inputs (roll, pitch, yaw, throttle), and
control surface deflections (aileron, elevator, rudder). The selection focuses on variables
particularly responsive to actuator faults, including conditions like stuck or loose control
surfaces, which commonly lead to deviations in attitude or mismatches between intended

Drones 2025, 9, 360 15 of 22

and actual control actions. Previous studies have demonstrated the effectiveness of using
attitude angles and control inputs for fault diagnosis in UAVs [27–29].

To highlight the dynamic effects of faults under varying environmental conditions,
we visualize six key variables—pitch angle, roll angle, yaw angle, and their respective
pitch control, roll control, and yaw control—under no-wind and strong wind conditions, as
shown in Figures 10 and 11. Figure 10 illustrates the flight parameters and control inputs
under no-wind conditions, while Figure 11 depicts the same under strong wind conditions.
Under strong wind conditions, the normal pitch angle may exhibit significant oscillations
due to wind interference, closely resembling the oscillation patterns of a loose fault—for
instance, the normal pitch angle fluctuations may mimic the high-frequency oscillations
of a loose fault under strong wind influence, posing challenges for fault detection; stuck
faults lead to a sustained deviation in the yaw angle. In no-wind conditions, the amplitude
of oscillations and deviations caused by faults is reduced, making the distinction between
normal and fault data more apparent. These state variables have different magnitudes or
dimensions, so normalization is required to balance the influence of each parameter. The
data for anomaly detection tasks may contain outliers that deviate significantly from the
normal data, which could affect the normalization of normal data. To preserve the anomaly
patterns after normalization, this approach uses robust normalization to process the data.
The formal definition is as follows:

x∗ =
x− xmedia

x0.75 − x0.25
, (16)

where x and x∗ represent the data before and after normalization, respectively. xmedia

represents the median, x0.75 is the 75th percentile, x0.25 is the 25th percentile. After the input
data is normalized through the neural network, the dimensions lose their significance.

Drones 2025, 9, 360 15 of 22

4.3. Experimental Data Processing

To enable efficient real-time processing, we selected 16 feature variables from over
40 recorded flight parameters, focusing on those most relevant to actuator fault detection
based on prior research. These include attitude angles (roll, pitch, heading, yaw), angular
rates (roll, pitch, yaw), airspeed, altitude, control inputs (roll, pitch, yaw, throttle), and
control surface deflections (aileron, elevator, rudder). The selection focuses on variables
particularly responsive to actuator faults, including conditions like stuck or loose control
surfaces, which commonly lead to deviations in attitude or mismatches between intended
and actual control actions. Previous studies have demonstrated the effectiveness of using
attitude angles and control inputs for fault diagnosis in UAVs [27–29].

To highlight the dynamic effects of faults under varying environmental conditions,
we visualize six key variables—pitch angle, roll angle, yaw angle, and their respective
pitch control, roll control, and yaw control—under no-wind and strong wind conditions,
as shown in Figures 10 and 11. Figure 10 illustrates the flight parameters and control
inputs under no-wind conditions, while Figure 11 depicts the same under strong wind
conditions. Under strong wind conditions, the normal pitch angle may exhibit significant
oscillations due to wind interference, closely resembling the oscillation patterns of a loose
fault—for instance, the normal pitch angle fluctuations may mimic the high-frequency
oscillations of a loose fault under strong wind influence, posing challenges for fault
detection; stuck faults lead to a sustained deviation in the yaw angle. In no-wind
conditions, the amplitude of oscillations and deviations caused by faults is reduced,
making the distinction between normal and fault data more apparent. These state
variables have different magnitudes or dimensions, so normalization is required to
balance the influence of each parameter. The data for anomaly detection tasks may contain
outliers that deviate significantly from the normal data, which could affect the
normalization of normal data. To preserve the anomaly patterns after normalization, this
approach uses robust normalization to process the data. The formal definition is as
follows:

−
=

−
*

0.75 0.25

mediax x
x

x x
, (16)

where x and *x represent the data before and after normalization, respectively. mediax

represents the median, 0.75x is the 75th percentile, 0.25x is the 25th percentile. After the

input data is normalized through the neural network, the dimensions lose their
significance.

Figure 10. No-wind conditions: flight parameters and control inputs. Figure 10. No-wind conditions: flight parameters and control inputs.

To ensure reproducibility and performance optimization, we configured key hyper-
parameters during the training process, which is detailed in Section 3.2.3. The training
involves feeding UAV sensor data into the model, optimizing the combined loss (classifica-
tion and domain adversarial) via gradient descent, and dynamically selecting experts using
the noisy Top-K gating strategy. These hyperparameters are closely tied to data processing
methods (e.g., sliding window size, as shown in Figure 12) and determine the model’s
adaptability to diverse task scenarios. Table 3 summarizes the key hyperparameters, their
values, and selection rationales.

Drones 2025, 9, 360 16 of 22
Drones 2025, 9, 360 16 of 22

Figure 11. Strong wind conditions: flight parameters and control inputs.

To ensure reproducibility and performance optimization, we configured key
hyperparameters during the training process, which is detailed in Section 3.2.3. The
training involves feeding UAV sensor data into the model, optimizing the combined loss
(classification and domain adversarial) via gradient descent, and dynamically selecting
experts using the noisy Top-K gating strategy. These hyperparameters are closely tied to
data processing methods (e.g., sliding window size, as shown in Figure 12) and determine
the model’s adaptability to diverse task scenarios. Table 3 summarizes the key
hyperparameters, their values, and selection rationales.

The training process involves source domain data {(,)}n
t tx y with labels and target

domain data '{ }n
tx . The testing data consist of target domain data ''{(,)}n

t tx y , where n ,
'n , and ''n represent the sample sizes of the source domain, the partially used target

domain for training, and the remaining target domain, respectively.
According to the sliding window method for processing trajectory data mentioned

above, the samples of the source domain and target domain are divided, and the resulting
sample quantities are shown in Table 4.

The accuracy of fault detection models is typically measured using the Fault
Detection Rate (FDR) and False Alarm Rate (FAR) as evaluation metrics. FDR reflects the
model’s ability to correctly detect fault samples, with a value closer to 1 indicating better
performance. The FAR indicates the probability that the model incorrectly classifies
normal samples as faults, with a value closer to 0 indicating better performance.

Table 3. Hyperparameter settings.

Hyperparameter Value Rationale

λ 1.0
Balances fault classification and domain adaptation objectives to prevent over-

alignment.

Window size 24
Captures dynamics of stuck and loose faults, determined through empirical testing to

balance detection accuracy and computational efficiency.

Number of experts 3 Covers primary wind speed conditions, avoiding unnecessary computational
complexity.

Top-K (Training) 2
Promotes collaborative learning across multimodal data, enhancing model robustness

to environmental changes.
Top-K (Testing) 1 Optimizes inference speed for real-time fault detection needs.

Figure 11. Strong wind conditions: flight parameters and control inputs.

Drones 2025, 9, 360 17 of 22

Figure 12. Sliding window processing of trajectory data.

Table 4. Sample set information.

Task Scenario Domain Category Normal Sample
Quantity

Fault Sample
Quantity

1
Source domain: ξ ξ ξ+ +1 2 3

 427,603 34,406
Target domain: ξ 4

 12,328 /

2
Source domain: ξ ξ ξ+ +1 2 4

 539,293 56,778
Target domain: ξ 3

 15,235 /

3
Source domain: ξ ξ ξ+ +1 3 4

 401,945 41,872
Target domain: ξ 2

 8328 /

4
Source domain: ξ ξ ξ+ +2 3 4

 404,988 36,868
Target domain: ξ 1

 11,081 /

4.4. Experimental Results and Analysis

To verify the effectiveness of the method proposed in this paper, we conducted
ablation experiments as well as comparative experiments with traditional methods.

4.4.1. Ablation Study

To verify the effectiveness of the proposed method, we conducted ablation
experiments comparing traditional LSTM, a standalone DANN, and a DANN integrated
within the MoE framework (DANN-MoE). In the experimental process, the MoE model
activates two expert modules (Top-2) during the training phase to collaboratively
optimize parameters and adapt to multimodal data distributions. In the testing phase, the
strategy switches to Top-1, dynamically selecting the most suitable expert module based
on the input, balancing inference efficiency and accuracy.

The experiments were conducted with four different random seed values for
training, and detection results were calculated for each method. The statistical metrics of
the experimental results, composed of the mean and standard deviation, are presented in
Table 4. Ablation experiments demonstrate that DANN-MoE exhibits the best
performance in the fault detection task, maintaining both a high FDR and a low FAR,
significantly outperforming LSTM and standalone DANN methods. This indicates that
the introduction of the MoE architecture effectively enhances the model’s detection
accuracy and robustness.

Across the task scenarios evaluated in Table 4, DANN-MoE consistently outperforms
standalone DANN and LSTM models. This improvement is driven by the DANN’s ability
to handle environmental variations, reducing domain-specific biases, and the MoE’s
capacity to differentiate multimodal fault patterns. In scenarios with mixed environmental
fluctuations and fault types, the MoE’s expert networks reduce misclassifications by
distinguishing subtle fault-induced anomalies from normal variations—a challenge
where the DANN alone struggles. For instance, in the task ξ ξ ξ ξ→1 3 4 2+ + , the source

domain contains a large number of samples under different wind speed conditions,
enabling the model to comprehensively learn cross-domain features. Through the

Figure 12. Sliding window processing of trajectory data.

Table 3. Hyperparameter settings.

Hyperparameter Value Rationale

λ 1.0 Balances fault classification and domain adaptation objectives to prevent
over-alignment.

Window size 24 Captures dynamics of stuck and loose faults, determined through empirical
testing to balance detection accuracy and computational efficiency.

Number of experts 3 Covers primary wind speed conditions, avoiding unnecessary
computational complexity.

Top-K (Training) 2 Promotes collaborative learning across multimodal data, enhancing model
robustness to environmental changes.

Top-K (Testing) 1 Optimizes inference speed for real-time fault detection needs.

The training process involves source domain data {(xt, yt)}n with labels and target
domain data {xt}n′ . The testing data consist of target domain data {(xt, yt)}n′′ , where n, n′,
and n′′ represent the sample sizes of the source domain, the partially used target domain
for training, and the remaining target domain, respectively.

According to the sliding window method for processing trajectory data mentioned
above, the samples of the source domain and target domain are divided, and the resulting
sample quantities are shown in Table 4.

The accuracy of fault detection models is typically measured using the Fault Detection
Rate (FDR) and False Alarm Rate (FAR) as evaluation metrics. FDR reflects the model’s abil-
ity to correctly detect fault samples, with a value closer to 1 indicating better performance.
The FAR indicates the probability that the model incorrectly classifies normal samples as
faults, with a value closer to 0 indicating better performance.

Drones 2025, 9, 360 17 of 22

Table 4. Sample set information.

Task Scenario Domain Category Normal Sample Quantity Fault Sample Quantity

1
Source domain: ξ1 + ξ2 + ξ3 427,603 34,406

Target domain: ξ4 12,328 /

2
Source domain: ξ1 + ξ2 + ξ4 539,293 56,778

Target domain: ξ3 15,235 /

3
Source domain: ξ1 + ξ3 + ξ4 401,945 41,872

Target domain: ξ2 8328 /

4
Source domain: ξ2 + ξ3 + ξ4 404,988 36,868

Target domain: ξ1 11,081 /

4.4. Experimental Results and Analysis

To verify the effectiveness of the method proposed in this paper, we conducted ablation
experiments as well as comparative experiments with traditional methods.

4.4.1. Ablation Study

To verify the effectiveness of the proposed method, we conducted ablation experiments
comparing traditional LSTM, a standalone DANN, and a DANN integrated within the
MoE framework (DANN-MoE). In the experimental process, the MoE model activates two
expert modules (Top-2) during the training phase to collaboratively optimize parameters
and adapt to multimodal data distributions. In the testing phase, the strategy switches to
Top-1, dynamically selecting the most suitable expert module based on the input, balancing
inference efficiency and accuracy.

The experiments were conducted with four different random seed values for training,
and detection results were calculated for each method. The statistical metrics of the
experimental results, composed of the mean and standard deviation, are presented in
Table 4. Ablation experiments demonstrate that DANN-MoE exhibits the best performance
in the fault detection task, maintaining both a high FDR and a low FAR, significantly
outperforming LSTM and standalone DANN methods. This indicates that the introduction
of the MoE architecture effectively enhances the model’s detection accuracy and robustness.

Across the task scenarios evaluated in Table 4, DANN-MoE consistently outperforms
standalone DANN and LSTM models. This improvement is driven by the DANN’s ability
to handle environmental variations, reducing domain-specific biases, and the MoE’s ca-
pacity to differentiate multimodal fault patterns. In scenarios with mixed environmental
fluctuations and fault types, the MoE’s expert networks reduce misclassifications by distin-
guishing subtle fault-induced anomalies from normal variations—a challenge where the
DANN alone struggles. For instance, in the task ξ1 + ξ3 + ξ4 → ξ2 , the source domain
contains a large number of samples under different wind speed conditions, enabling the
model to comprehensively learn cross-domain features. Through the adversarial training
mechanism of the DANN, the feature extractor Gf captures robust domain-invariant fea-
tures, enhancing the target domain’s generalization ability and achieving higher accuracy
and lower false alarm rates. The MoE’s Top-K gating strategy further optimizes the decision
boundary by dynamically selecting the most suitable expert networks for multimodal data,
reducing misclassifications.

In our experiment, we set up a total of three experts in the DANN-MoE framework and
activated the Top-1 expert during testing. To provide a more intuitive analysis, we visualize
the features extracted by the feature extractor using t-distributed stochastic neighbor
embedding (T-SNE) [30]. Figure 13a shows that, in Task Scenario 2, the features extracted
by the standalone DANN exhibit a high degree of overlap between the target domain

Drones 2025, 9, 360 18 of 22

and the source domain, with blue points often overlaying red points. This indicates that
the DANN successfully aligns the feature distributions of the source and target domains
through domain-adversarial learning, achieving effective domain adaptation. Figure 13b
presents the feature distribution of DANN-MoE, where the target and source domains’
features remain highly overlapped, while the expert division further enhances the model’s
ability to handle different modal data. Similarly, Figure 14a,b illustrate the results for Task
Scenario 3, where the DANN’s feature distribution also shows significant overlap between
the target and source domains, and DANN-MoE, through expert division, maintains this
alignment while further optimizing model performance. This high degree of feature overlap
demonstrates the effectiveness of domain adaptation, and the expert division in DANN-
MoE enhances the model’s adaptability to the target domain, as validated by the significant
improvements in fault detection accuracy and robustness shown in Table 5.

Drones 2025, 9, 360 19 of 22

(a) (b)

Figure 13. t-SNE Ffeature visualization (Task scenario 2): (a) DANN; (b) DANN-MoE.

(a) (b)

Figure 14. t-SNE feature visualization (Task scenario 3): (a) DANN; (b) DANN-MoE.

Table 6. Comparison of computational resources and inference time.

Indicator DANN DANN-MoE Relative Differences
Mean inference time (ms) 0.61 0.63 3.28%

Memory usage (GB) 0.96 1.07 11.46%

4.4.2. Comparison to Other Methods

In this section, the proposed DANN-MoE model is compared with several
established fault detection methods, including Support Vector Machine (SVM),
Convolutional Neural Network (CNN), Deep Domain Confusion (DDC), and Multi-layer
Maximum Mean Discrepancy (MMDA), as outlined in Table 7. These methods were
evaluated across the same four task scenarios from Section 4.4.1, with each tested using
four random seeds for consistency. The results, shown in Table 8, measure FDR and FAR,
with all methods fine-tuned for a fair comparison.

DANN-MoE consistently outperforms these baselines. For example, in Task Scenario
3, it achieves an FDR of 93.42% and an FAR of 6.21%, surpassing SVM’s 83.76% FDR and
14.43% FAR, and CNN’s 79.18% FDR and 15.63% FAR. It also beats domain adaptation
methods like DDC (87.28% FDR) and MMDA (89.18% FDR), while keeping the FAR lower.
This shows its strength in accurately detecting faults and minimizing false alarms across
varied conditions.

Traditional methods like SVM and CNN, which do not adapt to shifting data
distributions, struggle in complex scenarios. In Task Scenario 1, their FARs reach around
50%, while DANN-MoE reduces this to 26.40%. This gap highlights its ability to handle
environmental changes effectively. However, compared to a standalone DANN (35.11%

Figure 13. T-SNE Ffeature visualization (Task scenario 2): (a) DANN; (b) DANN-MoE.

Drones 2025, 9, x FOR PEER REVIEW 19 of 22

(a) (b)

Figure 13. t-SNE Ffeature visualization (Task scenario 2): (a) DANN; (b) DANN-MoE.

(a) (b)

Figure 14. t-SNE feature visualization (Task scenario 3): (a) DANN; (b) DANN-MoE.

Table 6. Comparison of computational resources and inference time.

Indicator DANN DANN-MoE Relative Differences
Mean inference time (ms) 0.61 0.63 3.28%

Memory usage (GB) 0.96 1.07 11.46%

4.4.2. Comparison to Other Methods

In this section, the proposed DANN-MoE model is compared with several
established fault detection methods, including Support Vector Machine (SVM),
Convolutional Neural Network (CNN), Deep Domain Confusion (DDC), and Multi-layer
Maximum Mean Discrepancy (MMDA), as outlined in Table 7. These methods were
evaluated across the same four task scenarios from Section 4.4.1, with each tested using
four random seeds for consistency. The results, shown in Table 8, measure FDR and FAR,
with all methods fine-tuned for a fair comparison.

DANN-MoE consistently outperforms these baselines. For example, in Task Scenario
3, it achieves an FDR of 93.42% and an FAR of 6.21%, surpassing SVM’s 83.76% FDR and
14.43% FAR, and CNN’s 79.18% FDR and 15.63% FAR. It also beats domain adaptation
methods like DDC (87.28% FDR) and MMDA (89.18% FDR), while keeping the FAR lower.
This shows its strength in accurately detecting faults and minimizing false alarms across
varied conditions.

Traditional methods like SVM and CNN, which do not adapt to shifting data
distributions, struggle in complex scenarios. In Task Scenario 1, their FARs reach around
50%, while DANN-MoE reduces this to 26.40%. This gap highlights its ability to handle
environmental changes effectively. However, compared to a standalone DANN (35.11%

Figure 14. T-SNE feature visualization (Task scenario 3): (a) DANN; (b) DANN-MoE.

Table 6 presents the inference time and memory usage of the DANN and DANN-
MoE. DANN-MoE’s mean inference time increases by only 3.28% compared to DANN,
ensuring real-time diagnostic capability. Regarding memory usage, DANN-MoE’s 1.07 GB
is only 11.46% higher than the DANN’s 0.96 GB, remaining well below the 16 GB available
on onboard computers. This method exhibits minimal increases in inference time and
memory usage, verifying its efficiency and real-time diagnostic capability under limited
computational resources.

Drones 2025, 9, 360 19 of 22

Table 5. Fault detection results.

Task Scenario Method FDR (%) FAR (%)

1
LSTM 59.98 ± 2.13 51.79 ± 2.76

DANN 75.59 ± 1.19 35.11 ± 2.07
DANN+MOE 80.55 ± 1.15 26.40 ± 1.65

2
LSTM 83.72 ± 1.04 13.83 ± 2.10

DANN 88.17 ± 1.52 10.46 ± 1.43
DANN+MOE 93.26 ± 0.98 8.21 ± 0.97

3
LSTM 83.63 ± 1.54 15.68 ± 2.13

DANN 90.63 ± 1.37 8.32 ± 1.12
DANN+MOE 93.42 ± 1.16 6.21 ± 1.01

4
LSTM 82.74 ± 2.29 34.93 ± 1.89

DANN 87.32 ± 1.37 14.28 ± 2.02
DANN+MOE 90.91 ± 1.05 11.01 ± 1.17

Table 6. Comparison of computational resources and inference time.

Indicator DANN DANN-MoE Relative Differences

Mean inference time (ms) 0.61 0.63 3.28%
Memory usage (GB) 0.96 1.07 11.46%

4.4.2. Comparison to Other Methods

In this section, the proposed DANN-MoE model is compared with several established
fault detection methods, including Support Vector Machine (SVM), Convolutional Neu-
ral Network (CNN), Deep Domain Confusion (DDC), and Multi-layer Maximum Mean
Discrepancy (MMDA), as outlined in Table 7. These methods were evaluated across the
same four task scenarios from Section 4.4.1, with each tested using four random seeds
for consistency. The results, shown in Table 8, measure FDR and FAR, with all methods
fine-tuned for a fair comparison.

Table 7. Information of various methods.

Methods Domain Adaptation Methods Details

SVM None Traditional machine learning method: support vector machine
CNN None Ordinary convolution neural network

DDC MMD An adaptative MMD criterion metric is added to the previous
layer of the classifier

MMDA MMD Multilayer MMD domain adaptation

DANN-MoE consistently outperforms these baselines. For example, in Task Scenario 3,
it achieves an FDR of 93.42% and an FAR of 6.21%, surpassing SVM’s 83.76% FDR and
14.43% FAR, and CNN’s 79.18% FDR and 15.63% FAR. It also beats domain adaptation
methods like DDC (87.28% FDR) and MMDA (89.18% FDR), while keeping the FAR lower.
This shows its strength in accurately detecting faults and minimizing false alarms across
varied conditions.

Traditional methods like SVM and CNN, which do not adapt to shifting data distri-
butions, struggle in complex scenarios. In Task Scenario 1, their FARs reach around 50%,
while DANN-MoE reduces this to 26.40%. This gap highlights its ability to handle environ-
mental changes effectively. However, compared to a standalone DANN (35.11% FAR), the
improvement is smaller, possibly due to challenges with the strong winds in ξ4.

Drones 2025, 9, 360 20 of 22

When compared to CNN and SVM, which rely on fixed features or large labeled
datasets, DANN-MoE proves more adaptable and robust, especially in changing environ-
ments. The results show that methods like SVM and CNN are less effective at handling
diverse tasks, while the DANN aligns features across scenarios, and the MoE refines
decisions with specialized experts. This combination leads to better overall performance.

Table 8. Experimental results of different methods in different tasks.

Methods Indicator Task Scenario 1 Task Scenario 2 Task Scenario 3 Task Scenario 4

SVM
FDR (%) 58.89 ± 2.71 81.04 ± 2.11 83.76 ± 1.21 79.76 ± 1.48
FAR (%) 50.65 ± 2.54 14.73 ± 1.64 14.43 ± 1.75 32.98 ± 2.62

CNN
FDR (%) 55.68 ± 1.30 79.68 ± 1.23 79.18 ± 1.15 75.92 ± 1.31
FAR (%) 50.46 ± 1.63 16.54 ± 1.94 15.63 ± 2.32 35.65 ± 2.04

DDC
FDR (%) 73.23 ± 1.20 89.91 ± 1.43 87.28 ± 2.18 85.34 ± 1.52
FAR (%) 33.17 ± 1.29 11.04 ± 2.35 14.57 ± 1.79 13.53 ± 2.17

MMDA
FDR (%) 75.46 ± 1.90 89.73 ± 1.68 89.18 ± 1.97 84.11 ± 1.72
FAR (%) 39.61 ± 1.89 14.90 ± 1.75 10.84 ± 1.64 10.26 ± 1.06

LSTM
FDR (%) 59.98 ± 2.13 83.72 ± 1.04 83.63 ± 1.54 82.74 ± 2.29
FAR (%) 51.79 ± 2.76 13.83 ± 2.10 15.68 ± 2.13 34.93 ± 1.89

DANN
FDR (%) 75.59 ± 1.19 88.17 ± 1.52 90.63 ± 1.37 87.32 ± 1.37
FAR (%) 35.11 ± 2.07 10.46 ± 1.43 8.32 ± 1.12 14.28 ± 2.02

DANN-MoE (ours) FDR (%) 80.55 ± 1.15 93.26 ± 0.98 93.42 ± 1.16 90.91 ± 1.21
FAR (%) 26.40 ± 1.17 8.21 ± 0.97 6.21 ± 1.01 11.01 ± 1.05

An interesting observation can be made in Task Scenario 1, where the DANN-MoE
model shows a relatively lower FAR reduction compared to other task scenarios. This could
be attributed to the greater difficulty in adapting to this specific scenario, possibly due to
significant differences between this dataset and other datasets. The DANN framework,
while effective in aligning features across different tasks, may face challenges in scenar-
ios with large data distribution discrepancies. This is likely due to the flight data from
ξ4 exhibiting a substantial distribution difference compared to other wind speed levels,
which complicates the feature extractor’s ability to align the source and target domain
distributions.

Overall, the findings underline the effectiveness of the DANN-MoE approach in UAV
actuator fault detection. By combining domain adaptation and expert-based decision-
making, our method not only improves detection accuracy but also significantly reduces
false alarms, making it a more reliable solution for real-world applications.

5. Conclusions
This study introduces a fault detection method for UAVs by combining a DANN

with an MoE framework, effectively addressing data distribution shifts and adaptability
challenges in diverse flight environments. The DANN component ensures robust gener-
alization by extracting domain-invariant features, while the MoE enhances performance
through dynamic handling of multimodal data. Flight experiments across various task
scenarios demonstrate that the proposed method consistently outperforms traditional ap-
proaches like LSTM and a standalone DANN, achieving higher fault detection accuracy
and lower false alarm rates. It also maintains computational efficiency, making it suitable
for resource-constrained UAV systems. Future research could explore applying this method
to other UAV types, such as multirotor drones, optimizing computational efficiency further,
and addressing more complex environmental conditions with larger distribution shifts.

Drones 2025, 9, 360 21 of 22

Author Contributions: Conceptualization, L.W. and Y.C.; methodology, L.W. and X.T.; software,
L.W. and J.Z.; validation, Y.Z. and X.T.; formal analysis, L.W. and Y.Z.; investigation, B.J. and J.Z.;
resources, Y.C. and B.J.; data curation, J.Z.; writing—original draft preparation, L.W.; writing—
review and editing, B.J. and Y.C.; visualization, J.Z. and X.T.; supervision, Y.C. and Y.Z.; project
administration, Y.C.; funding acquisition, B.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Integration
Project, No. U22B6001) and the Postgraduate Research & Practice Innovation Program of NUAA
(No. xcxjh20240301).

Data Availability Statement: The data are not publicly available due to restrictions, e.g., their
containing information that could compromise the privacy of research participants.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive

review. Drones 2022, 6, 147. [CrossRef]
2. Utsav, A.; Abhishek, A.; Suraj, P.; Badhai, R.K. An IoT-Based UAV Network for Military Applications. In Proceedings of the 2021

Sixth International Conference on Wireless Communications, Signal Processing and Networking, Chennai, India, 25–27 March
2021; pp. 122–125.

3. Restás, A. Drone applications fighting COVID-19 pandemic: Towards good practices. Drones 2022, 6, 15. [CrossRef]
4. Sibanda, M.; Mutanga, O.; Chimonyo, V.G.P.; Clulow, A.D.; Shoko, C.; Mazvimavi, D.; Dube, T.; Mabhaudhi, T. Application of

drone technologies in surface water resources monitoring and assessment: A systematic review of progress, challenges, and
opportunities in the Global South. Drones 2021, 5, 84. [CrossRef]

5. Waikat, J.; Jelidi, A.; Lic, S.; Sopidis, G.; Kähler, O.; Maly, A.; Pestana, J.; Fuhrmann, F.; Belavić, F. First measurement campaign by
a multi-sensor robot for the lifecycle monitoring of transformers. Energies 2024, 17, 1152. [CrossRef]

6. Kong, L.; Peng, X.; Chen, Y.; Wang, P.; Xu, M. Multi-sensor measurement and data fusion technology for manufacturing process
monitoring: A literature review. Int. J. Extreme Manuf. 2020, 2, 022001. [CrossRef]

7. Bacanin, N.; Stoean, C.; Zivkovic, M.; Jovanovic, D.; Antonijevic, M.; Mladenovic, D. Multi-Swarm Algorithm for Extreme
Learning Machine Optimization. Sensors 2022, 22, 4204. [CrossRef]

8. Rosmaliati, R.; Putra, O.V.; Hafidz, I.; Priyadi, A.; Taufik, T.; Purnomo, M.H. Implementation of Extreme Learning Machine to
Predict Distribution Power Transformer Lifetime. Int. Rev. Electr. Eng. 2022, 17, 536. [CrossRef]

9. Pan, D.; Nie, L.; Kang, W.; Song, Z. UAV Anomaly Detection Using Active Learning and Improved S3VM Model. In Proceedings
of the 2020 International Conference on Sensing, Measurement, and Data Analytics in the Era of Artificial Intelligence (SMD 2020),
Xi’an, China, 15–17 October 2020.

10. Zhou, D.; Zhuang, X.; Zuo, H.F. A hybrid deep neural network based on multi-time window convolutional bidirectional LSTM
for civil aircraft APU hazard identification. Chin. J. Aeronaut. 2022, 35, 344–361. [CrossRef]

11. Li, X.; Hu, Y.; Zheng, J.; Li, M.; Ma, W. Central moment discrepancy-based domain adaptation for intelligent bearing fault
diagnosis. Neurocomputing 2021, 429, 12–24. [CrossRef]

12. Zhang, S.; Su, L.; Gu, J.; Li, K.; Zhou, L.; Pecht, M. Rotating machinery fault detection and diagnosis based on deep domain
adaptation: A survey. Chin. J. Aeronaut. 2023, 36, 45–74. [CrossRef]

13. Liang, S.; Zhang, S.; Huang, Y.; Zheng, X.; Cheng, J.; Wu, S. Data-driven fault diagnosis of FW-UAVs with consideration of
multiple operation conditions. ISA Trans. 2022, 126, 472–485. [CrossRef]

14. Ren, C.; Jiang, B.; Lu, N.; Simani, S.; Gao, F. Meta-learning with distributional similarity preference for few-shot fault diagnosis
under varying working conditions. IEEE Trans. Cybern. 2024, 54, 2746–2756. [CrossRef] [PubMed]

15. Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Universal domain adaptation in fault diagnostics with hybrid weighted deep adversarial
learning. IEEE Trans. Ind. Inform. 2021, 17, 7957–7967. [CrossRef]

16. Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 2011, 22,
199–210. [CrossRef]

17. Zhou, X.; Fu, X.; Zhao, M.; Zhong, S. Regression model for civil aero-engine gas path parameter deviation based on deep
domain-adaptation with Res-BP neural network. Chin. J. Aeronaut. 2021, 34, 79–90. [CrossRef]

18. Chen, H.; Chai, Z.; Jiang, B.; Huang, B. Data-driven fault detection for dynamic systems with performance degradation: A unified
transfer learning framework. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [CrossRef]

https://doi.org/10.3390/drones6060147
https://doi.org/10.3390/drones6010015
https://doi.org/10.3390/drones5030084
https://doi.org/10.3390/en17051152
https://doi.org/10.1088/2631-7990/ab7ae6
https://doi.org/10.3390/s22114204
https://doi.org/10.15866/iree.v17i5.22021
https://doi.org/10.1016/j.cja.2021.03.031
https://doi.org/10.1016/j.neucom.2020.11.063
https://doi.org/10.1016/j.cja.2021.10.006
https://doi.org/10.1016/j.isatra.2021.07.043
https://doi.org/10.1109/TCYB.2023.3338768
https://www.ncbi.nlm.nih.gov/pubmed/38133984
https://doi.org/10.1109/TII.2021.3064377
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1016/j.cja.2020.08.051
https://doi.org/10.1109/TIM.2020.3033943

Drones 2025, 9, 360 22 of 22

19. Yang, P.; Li, W.; Wen, C.; Liu, P. Fault diagnosis method of multi-rotor UAV based on one-dimensional convolutional neural
network with adaptive batch normalization algorithm. Meas. Sci. Technol. 2024, 35, 025102. [CrossRef]

20. Liu, D.; Wang, N.; Guo, K.; Wang, B. Ensemble transfer learning based cross-domain UAV actuator fault detection. IEEE Sens. J.
2023, 23, 16363–16372. [CrossRef]

21. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial
training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35.

22. Chen, Z.; He, G.; Li, J.; Liao, Y.; Gryllias, K.; Li, W. Domain adversarial transfer network for cross-domain fault diagnosis of rotary
machinery. IEEE Trans. Instrum. Meas. 2020, 69, 8702–8712. [CrossRef]

23. Wu, Z.; Jiang, H.; Liu, S.; Yang, C. A Gaussian-guided adversarial adaptation transfer network for rolling bearing fault diagnosis.
Adv. Eng. Inform. 2022, 53, 101651. [CrossRef]

24. Jacobs, R.A.; Jordan, M.I.; Nowlan, S.J.; Hinton, G.E. Adaptive mixtures of local experts. Neural Comput. 1991, 3, 79–87. [CrossRef]
[PubMed]

25. Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.; Hinton, G.; Dean, J. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv 2017, arXiv:1701.06538.

26. Zhao, H.; Zhang, S.; Wu, G.; Moura, J.M.; Costeira, J.P.; Gordon, G.J. Adversarial Multiple Source Domain Adaptation. In
Proceedings of the 32nd Conference on Neural Information Processing Systems, Montréal, QC, Canada, 2–8 December 2018.

27. Yang, P.; Geng, H.; Wen, C.; Liu, P. An intelligent quadrotor fault diagnosis method based on novel deep residual shrinkage
network. Drones 2021, 5, 133. [CrossRef]

28. Guo, D.; Zhong, M.; Ji, H.; Liu, Y.; Yang, R. A hybrid feature model and deep learning-based fault diagnosis for unmanned aerial
vehicle sensors. Neurocomputing 2018, 319, 155–163. [CrossRef]

29. Bronz, M.; Baskaya, E.; Delahaye, D.; Puechmore, S. Real-Time Fault Detection on Small Fixed-Wing UAVs Using Machine
Learning. In Proceedings of the 39th Digital Avionics Systems Conference, San Antonio, TX, USA, 11–15 October 2020.

30. Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1361-6501/ad0611
https://doi.org/10.1109/JSEN.2023.3280571
https://doi.org/10.1109/TIM.2020.2995441
https://doi.org/10.1016/j.aei.2022.101651
https://doi.org/10.1162/neco.1991.3.1.79
https://www.ncbi.nlm.nih.gov/pubmed/31141872
https://doi.org/10.3390/drones5040133
https://doi.org/10.1016/j.neucom.2018.08.046

	Introduction
	Problem Description
	Description of Different Task Scenarios
	Characteristics of Actuator Fault in UAVs
	Challenges of Fault Detection Models in Different Task Scenarios

	UAV Actuator Fault Detection Based on Improved Domain Adaptation
	The Formal Description of the Domain Adaptation Problem
	The Mixture of Expert Models for Multimodal Data Processing
	Gated Unit
	Expert Unit
	Training Process

	Flight Experiment Validation
	Flight Experimental System
	Flight Simulation and Data Selection
	Experimental Data Processing
	Experimental Results and Analysis
	Ablation Study
	Comparison to Other Methods

	Conclusions
	References

