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Abstract: Machine learning (ML), as an artificial intelligence tool, has acquired significant progress
in data-driven research in Earth sciences. Land Surface Models (LSMs) are important components of
the climate models, which help to capture the water, energy, and momentum exchange between the
land surface and the atmosphere, providing lower boundary conditions to the atmospheric models.
The objectives of this review paper are to highlight the areas of improvement in land modeling using
ML and discuss the crucial ML techniques in detail. Literature searches were conducted using the
relevant key words to obtain an extensive list of articles. The bibliographic lists of these articles were
also considered. To date, ML-based techniques have been able to upgrade the performance of LSMs
and reduce uncertainties by improving evapotranspiration and heat fluxes estimation, parameter
optimization, better crop yield prediction, and model benchmarking. Widely used ML techniques
used for these purposes include Artificial Neural Networks and Random Forests. We conclude that
further improvements in land modeling are possible in terms of high-resolution data preparation,
parameter calibration, uncertainty reduction, efficient model performance, and data assimilation
using ML. In addition to the traditional techniques, convolutional neural networks, long short-term
memory, and other deep learning methods can be implemented.

Keywords: machine learning; land surface; land-atmosphere interactions; parameterizations; model un-
certainty

1. Introduction

Machine learning (ML) and artificial intelligence (AI) progressively impact society,
supported by significant enhancement of big data, computational efficiency, easily available
data storage, and uninterrupted connectivity. ML algorithms are being increasingly applied
in Earth and Environmental modeling studies as a result of growing resources of extensive
data sets, easy computation, and upgraded ML algorithms. Some well-explored areas with
ML applications in Earth Science are climate modeling [1,2], hydrologic modeling [3,4],
remote sensing [5,6], etc. Land Surface models (LSMs) are the components of climate
models, which simulate land surface processes, such as the partitioning and consumption of
energy, moisture, momentum, and carbon. The understanding of land surface feedback on
the meteorological and climatological features have gained attention in recent years [7–9].
The land provides forcing from the surface to the atmosphere via energy balance, surface
heating (supplying buoyancy for convection), and surface roughness (generating eddies
that modulate atmospheric boundary layer). Land-surface interactions are communicated
through vegetation and soil moisture. LSMs are crucial to understand and predict the
dynamics of the land surface and its involvement within the Earth system. The complex
processes that interconnect different components of the terrestrial system, and the depth
of convolution present in all of those processes, make the LSMs less amenable. With
the advancement of land surface observation systems, such as the Global Observing
System of World Meteorological Organization (WMO) and FLUXNET around the world,
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improved estimates of land surface radiation, ecology, hydrology, biology are now possible.
However, representing the land-surface interactions properly in the model still remains
a challenge. Specifically, in the areas of complex terrain and strong surface-atmosphere
coupling. Major components of an LSM include (1) atmospheric forcing, (2) physical,
chemical, and biological processes, (3) parameters, and (4) outputs.

The adoption of ML in land surface modeling has so far been gradual, but the related
fields are now highly emerging. ML-based methods can create viable, complementary
avenues toward knowledge discovery in land modeling. ML is often categorized into
traditional methods and deep learning (DL) based methods. While traditional methods
include random forests (RF), support vector machines (SVM), classification and regression
trees (CART); DL techniques include Deep Learning Artificial Neural Network (DL-ANN),
Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN) etc. Overall, ML
models have repeatedly outperformed simpler statistical models and provided improved
generalized solutions to unforeseen circumstances in many applications of Earth Sciences.
The recent growth of big hydrologic data through remote sensing and data compilation
has fostered the development.

The difference between the process-based LSMs and ML models is that the model
structure for LSMs is based on the underlying physical principles that we believe are
valid, whereas ML model structure is completely data-driven. Despite this fundamental
difference, they can complement each other. Two strategies popular in literature in this
regard are: (1) integrating LSMs and ML, (2) introducing physical constraints on ML
models. Strategy (1) Is quite straightforward. One common way to implement it is to
ensure the application of pure ML models only when the climatology is similar to the
training data; otherwise, in case of rare events, the combined model relies on the LSM.
In this way, modelers can avoid the uncertainty coming from ML models in the extreme
cases while making the model less computationally expensive in general application. On
the other hand, (2) acknowledges that data-driven algorithms often fail to satisfy the well-
known physics law constraints as they are not generally enforced with those. They tend
to violate constraints on individual samples while optimizing the overall performance.
LSM outputs can be used to pose constraints on the ML models to overcome this. Recently,
interrogative studies have also been invoked to interpret ML models to ask questions like-
(1) how trustworthy are ML models? or (2) how to interpret the processes that drive ML
model systems?

The objectives of this review paper are (1) to feature the areas of improvement in
land modeling using ML and (2) discuss the most important ML techniques in detail,
and (3) suggest future directions for further improvements. To achieve these goals, we
searched literature in google scholar database using a combination of the relevant key
words: ‘machine learning’, ‘land surface modeling’, ‘crop modeling’, ‘evapotranspiration
estimation’, ‘parameters and uncertainty’ etc. Moreover, the bibliographic lists of these
articles were also considered to create an extensive list of articles. The most relevant 83
articles are cited and discussed in this paper.

This study demonstrates the potential of ML to propel LSMs and vice versa. Critically,
this review paper provides information about (1) the importance of LSMs in different
applications (2) the difficulties and limitations of traditional LSMs. (3) application of ML
in LSMs in past literature. (4) concise and simple technical overview of ML for LSMs.
(5) potential directions where ML can contribute to solving challenges in modeling land
surface processes. The results from this study have implications for creating inexpensive,
improved and tractable land surface models with less and quantifiable uncertainty. This in
turn will help to construct upgraded coupled climate models to provide more realistic and
refined future projections.

2. LSMs: Importance, Then and Now

As mentioned in the introduction, LSMs are numerical models that simulate land
surface processes, such as absorption and partitioning of radiation, water, and carbon
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between the land surface and atmosphere. Provided with meteorological forcing as inputs
(from an atmospheric model either in ‘coupled’ mode or an ‘uncoupled’ mode), they
estimate latent heat fluxes (LH), sensible heat fluxes (SH), carbon fluxes, surface runoff,
deep drainage, reflected solar and emitted longwave radiation as output [10,11]. While LH
and SH control the boundary layer properties and precipitation; net carbon flux influences
the atmospheric CO2 content. These estimates play a critical role in determining the effects
of human-modified land surface and human emissions on changes in the climate. LSMs are
perhaps the most efficient tools to predict how the continuously evolving earth surface will
modify the hydroclimate in coming years and centuries. The extents of modeling activities
with LSMs include multiple interlinked disciplines (such as atmospheric modeling, crop
modeling, and hydrologic modeling) relevant to this overarching problem.

LSMs were originally developed by the atmospheric modeling community who
needed physical boundary conditions consisting of energy and moisture partitioning,
albedo, and surface roughness to indicate the impact of the surface on the atmospheric
processes. Richardson [12], in 1922, first mentioned the importance of stomatal conduc-
tance on weather processes. Early studies, such as Charney et al. [13] used albedo as
a proxy for vegetation and started investigating the effects of deforestation in terms of
it. Starting from the 1980s, scientists started understanding the land surface-atmosphere
interactions [14,15]. Garatt et al. [16] summarized the importance of land surface in climate
modeling in a review paper. He discussed different boundary layer schemes and the results
from global climate model (GCM) sensitivity studies using these schemes. He concluded
that the regional and global climate is significantly influenced by albedo, surface moisture
and roughness, and the inclusion of vegetation. However, till then, it was not clear how
much spatial detail of the surface is sufficient to accurately represent the lower boundary
conditions. For that decade, improvements of LSMs were driven by the need to understand
the effects of deforestation in various parts of the world. In the 2000s, scientists started to
visualize the importance of land in the context of sub-seasonal to seasonal forecasting. The
land surface was identified as a slowly varying component of the earth system, which has
a major role in modulating the atmospheric response at a longer timescale than weather
prediction. Koster et al. papers [7,17], in connection with the Global Land-Atmosphere
Coupling Experiment (GLACE), identified soil moisture as an important factor altering
evaporation and precipitation. They also highlighted the regions where strong coupling
between soil moisture and precipitation exists. For the first time, they introduced the
concept of ‘coupling strength’ to quantify such coupling, which is still being widely used
in land-atmosphere interaction studies. However, while modeling these interactions, there
exists a huge variation among the global models, attributable to the uncertainties in terres-
trial and atmospheric branches, and the models fail to represent the land-surface coupling
accurately [18]. Specifically, they found systematic biases in near-surface temperature,
humidity, and precipitation, which contribute to the uncertainty. Seneviratne et al. [19]
summarized the findings related to soil moisture-precipitation relations in a review paper
and concluded that the relationship between soil moisture and precipitation is evident in
observations and models. However, significant uncertainty remains in quantifying those in
terms of the strength of coupling, and persistence characteristics. These studies indicate
the need for further improvement in land surface models. The need for LSMs to quantify
such biogeophysical and biogeochemical feedbacks to the climate system has formed the
basis of their recent development efforts.

At present, LSMs have expanded from their initial simple biophysical configura-
tions [20] to include representations of stomatal functioning [21], scaling information
from leaf to canopy [22], soil moisture dynamic and surface hydrology [23,24], crop pro-
cesses [25,26], land surface heterogeneity [27], dynamic vegetation [28,29], urban envi-
ronment [30], land cover management [31,32], plant demographic processes and plant
hydraulics [33], groundwater dynamics [34], soil microbial dynamics [35], leaf mesophyll
process, nitrogen, phosphorus, carbon cycling and their mutual interactions [36]. The
incorporation of processes in LSMs is driven by the need for extensive user communities,
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including ecologists, crop modelers, atmospheric scientists, biogeochemists, hydrologists,
who explore interactions between different components of the system. Some widely used
LSMs across the globe include Interaction Soil-Biosphere-Atmosphere (ISBA, [36]), The
Community Land Model (CLM, [31]), JSBACH [37], Joint UK Land Environment Simu-
lator (JULES, [38]), LPJ-GUESS [39], Noah-MP [40]. Along with the increasing capability
of representing processes, LSMs are enhancing their spatial resolution as well, with the
improvement in resolution of the atmospheric models. As the scope of LSMs broadens
with the support of computational advancements, the questions of cognitive uncertainty
and unresolved heterogeneity emerges as a challenge.

3. Complexity and Limitations of LSMs: Prospect of ML

The diversity of the interconnected processes in the terrestrial system, and the levels
of entanglement present in these processes, pose a hurdle to build tractable land mod-
els. The propensity of scientists to focus on their own specific area of interest and the
reality that the earth system is indeed complex are both responsible for this complex na-
ture. Often, this reaches a point where no individuals are able to completely understand
all aspects of any particular model, and the development teams strive to meet all the
requirements placed on modern LSMs [11]. Even though, large uncertainty remains in
our understanding and modeling of the interactions between atmospheric and terrestrial
branches of the hydrologic cycle due to the non-trivial mechanisms at the land surface.
Figure 1 illustrates the convoluted and connected processes in a typical LSM. The major
parts, such as, atmosphere, hydrology, urban processes, agriculture; and plant physiology,
soil biogeochemistry, soil physics related to each of those, are interlinked in an LSM. These
major components are further segregated into smaller yet complicated processes. For
example, agriculture includes fertilizer and pesticides usage, biomass burning, harvesting,
irrigation, tillage, residual treatment etc. (Figure 1). The interactions are defined by the
exchange of information between different parts of the model. However, some of the
processes are still oversimplified in modeling. As such, most of the LSMs classify plant
species into plant functional types (PFTs), within which the parameters are undifferentiated.
Simulations consisting of a limited number of PFTs ignore biodiversity within a simulation
grid. This may lead to uncertainty in the strength of climate responses when coupled to
a climate model. Furthermore, understanding the combined effects of major greenhouse
gases, such as Carbon dioxide, Methane, and Nitrogen dioxide on global warming are still
at early stages due to constraints in the measurements of multiple gases. Limited models
have the capacity to simulate such effects, which requires realistic carbon and nitrogen
cycling processes.

LSMs are often applied at large spatial scales aimed to simulate the interactions
between climate and land surface. Nonetheless, validation data for these models are
obtained from flux tower sites. This geographical gap usually limits the accuracy of
the models. Microbes may play fundamental roles in altering biogeochemical cycling as
‘ecosystem engineers’ [41]. However, very few LSMs include the effects of such organisms
in an explicit manner. This limits our ability to estimate the climatic impacts of changes
in soil biological community composition and diversity. In addition, the unavailability
of high-resolution land-surface data affects the LSMs in capturing the effects of spatial
heterogeneity. The development of high-accuracy fine resolution data is important for the
interpretation of observations and model simulations.

Some of the limitations of LSMs can be highly benefited from the enormous informa-
tion currently available from satellite data. However, extracting useful knowledge from
terabytes of data provided by observation and LMS simulations is challenging. In contrast,
ML models are simple in nature in terms of structure and easy to simulate the output
once trained properly. Figure 2 illustrates the general structure of a multilayer perceptron
model, which is a commonly used feedforward ANN type ML model and uses supervised
learning techniques for training. Compared to LSMs (Figure 1), the structure is much
simpler and furthermore, the model parameters are data driven. ML techniques can help
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and complement LSMs in several ways, including surrogate modeling, physics-guided
machine learning, parameter estimation, and data assimilation to reduce the uncertainties
and generate useful knowledge from large amounts of observational data. Some of the ML
applications in land modeling are described in the next section.

Earth 2021, 2, FOR PEER REVIEW 5 
 

 

 
Figure 1. Interconnected complex processes included in a typical LSM. Adapted and modified 
from Fisher et al. [11]. 

LSMs are often applied at large spatial scales aimed to simulate the interactions be-
tween climate and land surface. Nonetheless, validation data for these models are ob-
tained from flux tower sites. This geographical gap usually limits the accuracy of the mod-
els. Microbes may play fundamental roles in altering biogeochemical cycling as ‘ecosys-
tem engineers’ [41]. However, very few LSMs include the effects of such organisms in an 
explicit manner. This limits our ability to estimate the climatic impacts of changes in soil 
biological community composition and diversity. In addition, the unavailability of high-
resolution land-surface data affects the LSMs in capturing the effects of spatial heteroge-
neity. The development of high-accuracy fine resolution data is important for the inter-
pretation of observations and model simulations. 

Some of the limitations of LSMs can be highly benefited from the enormous infor-
mation currently available from satellite data. However, extracting useful knowledge 
from terabytes of data provided by observation and LMS simulations is challenging. In 
contrast, ML models are simple in nature in terms of structure and easy to simulate the 
output once trained properly. Figure 2 illustrates the general structure of a multilayer per-
ceptron model, which is a commonly used feedforward ANN type ML model and uses 
supervised learning techniques for training. Compared to LSMs (Figure 1), the structure 
is much simpler and furthermore, the model parameters are data driven. ML techniques 
can help and complement LSMs in several ways, including surrogate modeling, physics-
guided machine learning, parameter estimation, and data assimilation to reduce the un-
certainties and generate useful knowledge from large amounts of observational data. 
Some of the ML applications in land modeling are described in the next section. 

Figure 1. Interconnected complex processes included in a typical LSM. Adapted and modified from Fisher et al. [11].

Earth 2021, 2, FOR PEER REVIEW 6 
 

 

 
Figure 2. General structure of a multilayer perceptron model. 

4. Major Applications of Machine Learning in Land Surface Modeling 
4.1. Estimation of Evapotranspiration 

Evapotranspiration (ET) is perhaps the most discussed variable in the land surface 
modeling since it is a major part of both water and energy (in the form of LH) balance. It 
is also a critical factor in the carbon cycle, acting as a trade-off between photosynthesis 
and transpiration. Since direct measurement of global terrestrial ET is implausible, one of 
the central uses of LSMs is providing ET estimates using other comprehensively measured 
hydrometeorological variables. Some noteworthy applications regarding ET estimation 
are listed below. 

Alemohammad et al. [42] developed an ANN approach to estimate monthly LH, SH, 
and gross primary productivity (GPP) at a global scale for 8 years at 1ox1o resolution using 
remotely sensed solar-induced fluorescence (SIF) measurements in addition to conven-
tional precipitation, temperature, soil moisture, snow cover and net radiation (Rn) as in-
puts. When compared to eddy covariance measurements from FLUXNET, their method 
‘WECANN’ outperformed traditional surface fluxes products provided by Global Land 
Evaporation Amsterdam Model (GLEAM), Moderate Resolution Imaging Spectroradiom-
eter (MODIS) and European Centre for Medium-Range Weather Forecasts (ECMWF). The 
ML retrievals also demonstrated capability to represent the extents of several extreme 
drought and heat events. They were also able to analyze the effects of extreme climatic 
events on surface turbulent fluxes and GPP. Prior to this study, neural networks were 
primarily applied to satellite observations to estimate LH [43]. Some studies also applied 
generalized neural networks and artificial intelligence models at a local-regional scale [44–
47]. However, these techniques, when applied to the global scale, often failed to predict 
extremes and perform outside their calibration range [48]. 

A major limitation of traditional ML methods in Earth Science, as pointed out by 
Zhao et al. [49], was the issue of not conserving the surface energy budget, leading to 
unrealistic predictions of various surface fluxes causing problems in implementation with 
a coupled atmospheric model. Physics-based models, although complicated, tend to have 
superior interpretability [50]. To overcome this, [49] developed the first ‘physics-con-
strained’ ML model for ET estimation, which applied ML techniques while keeping the 
energy conservation equations valid, to provide a global ET estimate. Their hybrid model 
was able to learn the nonlinear relations from the data while obeying the physical laws. 
The study was significantly robust as they used 82 eddy covariance sites from FLUXNET 

Figure 2. General structure of a multilayer perceptron model.



Earth 2021, 2 179

4. Major Applications of Machine Learning in Land Surface Modeling
4.1. Estimation of Evapotranspiration

Evapotranspiration (ET) is perhaps the most discussed variable in the land surface
modeling since it is a major part of both water and energy (in the form of LH) balance. It is
also a critical factor in the carbon cycle, acting as a trade-off between photosynthesis and
transpiration. Since direct measurement of global terrestrial ET is implausible, one of the
central uses of LSMs is providing ET estimates using other comprehensively measured
hydrometeorological variables. Some noteworthy applications regarding ET estimation are
listed below.

Alemohammad et al. [42] developed an ANN approach to estimate monthly LH, SH,
and gross primary productivity (GPP) at a global scale for 8 years at 1◦ × 1◦ resolution
using remotely sensed solar-induced fluorescence (SIF) measurements in addition to con-
ventional precipitation, temperature, soil moisture, snow cover and net radiation (Rn) as
inputs. When compared to eddy covariance measurements from FLUXNET, their method
‘WECANN’ outperformed traditional surface fluxes products provided by Global Land
Evaporation Amsterdam Model (GLEAM), Moderate Resolution Imaging Spectroradiome-
ter (MODIS) and European Centre for Medium-Range Weather Forecasts (ECMWF). The
ML retrievals also demonstrated capability to represent the extents of several extreme
drought and heat events. They were also able to analyze the effects of extreme climatic
events on surface turbulent fluxes and GPP. Prior to this study, neural networks were
primarily applied to satellite observations to estimate LH [43]. Some studies also ap-
plied generalized neural networks and artificial intelligence models at a local-regional
scale [44–47]. However, these techniques, when applied to the global scale, often failed to
predict extremes and perform outside their calibration range [48].

A major limitation of traditional ML methods in Earth Science, as pointed out by
Zhao et al. [49], was the issue of not conserving the surface energy budget, leading to
unrealistic predictions of various surface fluxes causing problems in implementation with
a coupled atmospheric model. Physics-based models, although complicated, tend to
have superior interpretability [50]. To overcome this, [49] developed the first ‘physics-
constrained’ ML model for ET estimation, which applied ML techniques while keeping the
energy conservation equations valid, to provide a global ET estimate. Their hybrid model
was able to learn the nonlinear relations from the data while obeying the physical laws.
The study was significantly robust as they used 82 eddy covariance sites from FLUXNET
with nine different PFTs and implemented a feedforward ANN escorted by that. This kind
of modeling can enhance the capability to simulate ET during extreme climatic conditions
like heatwaves and droughts.

Another study, Pan et al. [51], recently attempted to estimate global terrestrial ET
(GTET) using two machine learning algorithms, RF, and Model Tree Ensemble and pre-
dicted its annual mean, interannual variability, and trends. They concluded that the
utilization of satellite retrievals and deep-learning methods, and model-data fusion ad-
vances the predictive understanding of GTET. Critically, the ML methodology provided
similar results to remote sensing-based products indicating a significant increasing trend
in GTET.

4.2. Parameter Estimation and Uncertainty Assessment

LSMs are not properly equipped to accurately simulate the real world and lead to
significant uncertainty when trying to capture the land-atmosphere interactions. One major
reason behind this is the use of parameterizations for complex processes such as ET estima-
tion, which includes an abundance of soil and vegetation parameters. For example, current
global LSMs have over 20 parameters that are linked to just ET estimation [52]. Other
sources of uncertainty in the LSMs include internal variability and forcing uncertainty.

Chaney et al. [52] provided global parameter estimates at 5 km spatial resolution
for the Noah LSM using 85 eddy covariance sites in the global FLUXNET network and
linked the most sensitive parameters to local environmental characteristics using an ML
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algorithm—extremely randomized trees (Extra-trees). They concluded that FLUXNET
could be potentially used to tune the parameters of LSM. The calibration led to a significant
enhancement in model performance in terms of Kling-Gupta Efficiency increasing from 0.54
to 0.71. Furthermore, their leave-one-out cross validation method revealed the potential to
relate calibrated model parameters to local environmental conditions.

Uncertainty quantification of LSMs is closely related to the parameter optimization
problem. As such, it is far-fetched to obtain the accurate set of sensitive parameters for
all observable variables, and different combinations of parameters may show similar skill
to reproduce observations, also termed as ‘equifinality’ in hydrology [53]. An alternative
method is to construct the probability density function of parameters, explaining the
uncertainty in parameter estimation. Swada [54] applied ML techniques for parameter
optimization and uncertainty assessment with global satellite observations. The technique
was to create an ML model, which emulates the relationship between model parameters
and LSM outputs and is computationally cheaper than LSM. They applied this technique,
involving ML and Markov Chain Monte Carlo (MCMC), to EcoHydro-SiB (a modified
version of [20]) model over a part of the Sahel region in Africa, and was successful in
obtaining the nonparametric posterior distribution of four unknown parameters and
enhanced the soil moisture and vegetation dynamics simulation skill of the LSM. The
addition of ML techniques made optimization 50,000 times faster. They highlighted the
importance of selecting suitable prior, consideration of error in meteorological forcing, and
inclusion of satellite observations in the modeling chain.

In a recent study, Dagon et al. [55] investigated the biogeophysical parameter space of
CLM5 and determined the sensitivity of parameters to get insight into the role of parameter
choices on the overall model uncertainty. They implemented an ML approach to globally
calibrate six parameters of CLM5, selected by a sensitivity analysis, to the observations
of water and carbon fluxes. Specifically, they trained their feedforward ANNs to emulate
CLM5 outputs given parameters as predictors. The trained ML models were able to
estimate global optimal parameter values and quantify the contribution of parameter
uncertainty to the overall uncertainty in LSM simulated GPP and LH. Moreover, they were
able to inspect several interpretation methods to better understand the inner workings of
the ANN as emulators of CLM.

4.3. Crop Yield Prediction

Crop yield is often predicted leveraging the physics based LSMs. Early and reliable
crop yield forecasts are critical for farmers and decision-makers in food security policymak-
ing, planning, and trade. Agriculture is greatly affected by weather and climate, and hence,
large-scale crop growth simulations under a changing climate in a regional and global scale
remains a priority. At the same time, the climate is affected by the extension of agricultural
practices due to land-atmosphere interactions. The majority of the studies implemented a
‘hybrid’ approach, combining process-based modeling and ML, to provide a better yield
estimate than those could provide individually.

Everingham et al. [56] provided a framework to combine RF (their ML technique)
and APSIM (a process-based crop model) to predict the annual variation of sugarcane
yield in Australia. Biomass indices, an output from the crop model, were identified to
be critical as a predictor for the ML model for the next month’s yield prediction. They
also considered observed rainfall, temperature, radiation, and seasonal climate indices
as input features for ML algorithms. This is an example of ML aiding the investigation
of the relative importance of several predictors. Feng et al. [57] implemented a similar
approach, with addition of climate extreme indices, to refine the prediction of wheat yield in
Australia. They compared the performance of a process-based model ASPIM with several
combinations of the process-based model and ML models, such as ASPIM+ multiple linear
regression (MLR) and ASPIM+ MLR+ RF. They reported an additional improvement of
19% in the yield prediction accuracy as compared to ASPIM+MLR and 33% as compared
to APSIM alone when the RF was included in the modeling chain.
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Schlund et al. [58] developed a two-step approach to constrain the projected GPP
at the end of the 21st century in the Representative Concentration Pathway 8.5 scenario
with ML. They fed observational data into the ML algorithms that have been trained on
Coupled Model Intercomparison Project (CMIP5) data to learn the relationships between
present-day carbon estimates and the future scenario GPP (target variables). Their ML
model showed superior performance to the CMIP5 ensemble mean. It also predicted an
increasing GPP in the high latitudes. Folberth et al. [59] built novel crop meta-models
from coarser GCMs to derive estimates of crop yield at a high spatial resolution without
requiring the crop model set up at high-resolution. ML methods used in this study were
RF and gradient boosting regression tree (GBRT). They were able to go to 0.25◦ from 0.5◦

and the results showed high accuracy (R2 > 0.96) in predicting maize yields, ET and crop
available water.

In a recent study, Shahhosseini et al. [60] showed that adding physics-based crop
model variables as input features to ML models can improve the performance of ML
models by 29% on average in the US Corn Belt. They compared the performances of
several ML models such as RF, linear regression (LR), least absolute shrinkage and selection
operator (LASSO) regression, Light Gradient Boost (LightGBM), Extreme Gradient Boost
(XGBoost), and also an ensemble of them to investigate their added value individually and
in combination. This study also assessed the relative importance of various variables from
the process-based models as input features to different ML models. As such, they included
phenology related variables, crop-related variables, and soil-related variables separately to
investigate their individual added value in model predictions. The results indicated that
the soil-water related variables were most important for crop yield prediction over the US
corn belt.

4.4. Hybrid Simulation of Land-Surface Variables Other Than ET

Soil moisture, turbulent momentum, and heat flux are some of the critical variables of
land-atmosphere interactions apart from ET. Pelissier et al. [61] combined Noah LSM and
an ML technique to improve the prediction of top-layer soil moisture at nine AmeriFlux
tower sites. They were able to obtain a 3-fold decrease in error metric. In particular, they
highlighted the potential of learning structural error of a model using a hybrid model at
a point-scale. However, they indicated that building a global scale model will need the
inclusion of remote sensing data and account for uncertainty propagation through LSMs. In
another study, ML was found better than the Monin-Obukhov similarity theory to predict
momentum and heat fluxes [62]. The main objective of this paper was to substitute the
Monin-Obukhov similarity theory for calculating fluxes in the LSM named ‘Veg3d’. This
technique of replacing a parameterization with an ML scheme has been extensively used
in climate models [63,64]. [62] also showed that the results of ANN involved LSMs were
equivalent, if not superior, to the conventional method. They indicated that implementation
of an ML technique might save 5% of a central processing unit (CPU) time of a regional
climate model, and this can be further improved by replacing all uncertain components
of the climate models with neural network subroutines. This is a further impetus to
implement ML methods for efficient prediction.

4.5. Benchmarking the LSMs

As the LSMs become increasingly complex and observational data volumes rapidly
expand, there is a growing need for frequent and intensive testing and evaluating the mod-
els to fully utilize the richness of large Earth System data sets like satellite or FLUXNET
measurements. Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsT-
MIP) [65,66] and Land Model Testbed (LMT) [67] are two such initiatives that incorporated
ML techniques for this purpose. Schwalm et al. [68] quantified divergence as the spread in
output from multiple models and an observational constraint. Considering inter-model
spread as a measure of the approximations in physical and biogeochemical processes in the
models, the ML experiments highlighted the uncertainties in the structures of the carbon
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pools and advised against the hard parametric limits on ecosystem function. Their results
confirmed that model intercomparison projects like MsMTIP ensemble provide a proper
framework to link model skill to structure, excluding confounding factors while taking into
account inter-model spread. RF helped to find model structural characteristics, which serve
as important factors of skill for several MsTIP variables. LMT, with a similar objective,
leveraged existing tools of International Land Model Benchmarking (ILAMB) and was
able to launch thousands of ensemble simulations simultaneously while perturbing the pa-
rameters of LSMs. They developed the ML-based benchmarking workflow to increase the
diagnostic capacity of LMT. New relationship metrics were designed using ML methods to
benchmark the LMT produced ensemble simulations against in-situ measurements of GPP,
ET, and SH. The initiative was an outstanding attempt to accelerate the model development
cycle by means of careful assessment of model fidelity and analysis of model outputs.

5. Techniques of Machine Learning

ML methods are automated or semi-automated techniques of data inference without
any prior assumptions (data-driven). ML techniques can be broadly classified into (1)
supervised learning and (2) unsupervised learning. Supervised learning is based on a
priori specification of output and one or more inputs. In unsupervised learning, there
is only input and no outputs, and the model is aimed to discover patterns in the data.
Most applications in land surface models are based on supervised learning, where neural
networks or other machine learning models are trained to provide a known output from
the model. The supervised ML techniques can be further classified into two categories
of (a) traditional ML methods and (b) DL based methods. In this section, we discuss the
specific ML techniques used by the previously mentioned papers (for different purposes),
with brief details, under these two categories. Our goal was to identify the most popular
ones from these two categories and include further detailed description about those. The
discussion is also summarized in Table 1. Following convention, ANN (traditional) is
considered as networks with single hidden layer and DL-ANNs are the networks with
multiple hidden layers.

Table 1. Widely used ML algorithms used in land surface modeling.

ML Algorithm Category Purpose Reference

Feedforward ANN

Traditional

Provide monthly estimates of GPP, LH and SH at a global scale [42]

ELM and GRNN Obtain ETo from temperature data in southwest China [44]

RT, Bagging, RF and SVM Provide ET estimates in central Florida [46]

SVM and GANN Provide crop ET estimates in China [47]

RF, RT, KRR, RS, ANN Provide CO2, LH, SH, Rn at multiple sites globally [48]

Extra-Trees Obtain global parameter estimates for Noah land model [52]

MCMC Parameter optimization of land model [54]

RF Improving regional crop yield prediction [56,57,59,60]

GBRT Constrain uncertainty in GPP estimates [58]

DL-ANN

Deep learning

Obtain LH estimates over ocean [43]

DL-ANN Constructing physics-constrained ML model [49]

DL-ANN Constructing emulators for land modeling [55]

5.1. Traditional ML Methods

Common traditional ML methods include SVM, CART, bootstrap aggregating (Bag-
ging), Kernel ridge regression (KRR), RF, ANN etc. Alemohammad et al. [42] used a
feedforward ANN as a supervised learning approach to retrieve monthly estimates of GPP,
LE, and SH at a global scale using remotely sensed SIF estimates besides other meteoro-
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logical predictors like precipitation, temperature, soil moisture, snow cover, and Rn. The
ANN consisted of three layers: (1) an input layer connected to input data, (2) one hidden
layer, and (3) an output layer producing LE, SH, and GPP outputs. A number of neurons in
the hidden layer were chosen based on the complexity of the problem. [44] compared the
performance of an extreme learning machine (ELM) technique and generalized regression
neural network (GRNN) model in predicting reference evapotranspiration (ETo). Their
ELM consisted of 50 hidden nodes, which performed better than the GRNN, which is simi-
lar to feedforward neural networks but based on nonlinear regression theory of function
estimation. More specifically, GRNN contains four layers named summation layer, input
layer, pattern layer, and output layer [68]. They were able to reproduce more accurate
ETo estimates than the conventional empirical Hargreaves model. A similar study was
conducted by Gocic et al. [45] over two weather stations in Serbia. [46] compared the super-
vised learning approaches Regression Tree (RT), Bagging, RF, and SVM while predicting
actual ET. An RT model utilizes a decision tree as a predictive model, and target variables
are real values. RTs can be further advanced by gradient boosting (GBRT) [58,59]. ‘Bagging’
is a machine learning ensemble technique. RF is a set of uncorrelated simple regression
trees. In contrast, SVMs are supervised learning models to deal with classification and
regression problems [69]. Some studies have used genetic algorithms to optimize the ANN
(GANN) [47] to predict crop-specific ET estimates.

Apart from these commonly used techniques, KRR [70] and regression splines (RS) [71]
are also used by few studies to estimate ET [48]. Global model parameter estimation in [52]
benefited from Extra-Trees [72]. MCMC has also been used with ML (Gaussian Process
Regression) for parameter optimization [54]. RF is the most commonly used technique for
crop yield estimate [56,57]. To understand the relative importance of predictors, which may
provide information about the usefulness of them at predicting the target variable, ‘feature
importance’ is normally computed internally by these methods. Overall, ANN and RF are
the most widely used traditional ML methods in LSM applications. However, RTs with
improved ‘gradient boosting’ of ‘Bagging’ can be extremely powerful to create data-driven
models for land-surface applications. We discuss RF in further due to its significant vogue
in past literature.

Random Forests (RF)

RF [73–75] are supervised non-parametric ML algorithms, which are ensemble-learning
methods using decision trees as base learners. This is a fast, flexible and robust approach
to high-dimensional data mining that relies on aggregating the results of an ensemble of
simple estimators. Decision trees are intuitive ways to classify objects or label objects by
binary splitting. Variable space is divided into a set of boundaries, and a model is fitted to
each set (which can be a constant in the simplest case). However, overfitting tendency of
such trees can be reduced by an ensemble of randomized trees and that motivates the usage
of ‘bagging’ or RF technique (equipped with some additional randomization techniques
reducing the correlation between the trees). In LSM applications, RF is mostly used within
the context of regression, i.e.; for continuous prediction rather than categorical. Users
generally provide the number of trees in the forest and a criterion to measure the quality
of a split, such as mean square error. Hyperparameters are also provided to improve the
model performance and control overfitting. In general, statistical learning has two main
purposes: (1) prediction and (2) inference. In the case of RF, interpreting the model can be
done either by looking at a single tree in the forest or by examining the relative importance
of independent variables. Overall, RF method is found to be (1) consistent (2) reducing the
bias and variance simultaneously, (3) achieving convergence at high rate and (4) adaptive
to sparsity, which makes it applicable even with noisy predictor variables [74].

RF is often superior to other traditional ML methods like SVM or CART because it
(1) considers an ensemble of decision trees and does not need multiple models like others
(e.g.; SVM) to provide a probabilistic prediction, (2) provides more generalized solution,
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(3) needs no feature scaling (4) can handle high dimensional spaces as well as large number
of training examples.

5.2. Deep Learning (DL) methods

Some commonly used DL methods include DL-ANN, CNN, LSTM, variational auto-
encoders (VAN) and generative adversarial networks (GAN). However, till date, DL-ANNs
are the only deep learning tools used with land modeling. For example, [43] used a neural
network with two hidden layers containing fifteen neurons in total and LH, and SH were
output from the model. Physics guided machine learning models have also used DL-ANN
as the ML technique [49]. DL-ANNs are also useful in constructing emulators of LSMs in
to characterize the uncertainties and parameter optimization [55]. Dew point temperature
is an important parameter to assess surface humidity conditions, critical for agricultural
purposes. Constantin et al. [76] realistically predicted dew point temperatures at sub-daily
scale using other meteorological variables as input to a DL-ANN consisting of three hidden
layers. We discuss ANN and DL in further detail below.

Artificial Neural Networks (ANN)

ANN is the supervised learning approach to approximate relationships between input
and output using interconnecting units called neurons. The development of ANNs was
motivated by the functioning of the human brain. Like the brain, the connections between
neurons decide the function of the network. Multiple inputs given to the neuron are
assigned with different weights, calculated by minimizing a loss function, that collectively
determines the importance of input signals [77]. This part is termed as ‘training’ and
some popular training methods are backpropagation, evolutionary algorithm and gradient
descent. Output signal is produced by the summation block, which adds all of the weighted
inputs algebraically. The input and output layers are called ‘visible layers’ as they are
directly connected to inputs and outputs, respectively. Hidden layers are the layers in the
middle (see Figure 2). ‘Activations’ are the outputs sent to the (i + 1)th layer from the ith

layer, which is calculated based on the transformation functions (such as sigmoidal, tanh,
rectified linear units or ReLU) of combined input from (i − 1)th layer. ‘Width’ is defined
by the number of neurons on a layer and ‘depth’ is defined by the number of layers in
the network.

Deep Learning (DL) is a suite of tools based on carefully designed large ANNs
with multiple hidden layers. Compared to non-deep networks and traditional earlier-
generation ML methods, DL is characterized by an abundance of layers to process the
complex information in big data, addition of unsupervised learning units and effective
regularization techniques. These allow automatic extraction of features from input data.
By contrast, traditional ML models, such CART and SVM, need human construction of
relevant input features for best results, which is often the most tedious step. Many of these
conventional methods are also not suitable for generalization purposes and working with
large data sets that DL can handle. Though DL-ANN are the only DL techniques used
with land modeling so far, LSMs can be further benefitted from some of these techniques
previously in water science, especially hydrology [78,79] and envisage more potential uses
for those in the future. For example, CNN can be used to estimate crop yields by merging
LSM and satellite data. However, DL can face some of the issues like other ML methods,
such as convergence of the learning process dependent on training data, hidden layers
acting as a black box, etc.

In addition to DL techniques, gaussian process emulation can be used for the simple
representation of complex land-surface features and test different potential values of
parameters. High-resolution land cover data can be obtained using Kernel Regression.
Wavelet transform can also be used to quantify the information transfer between different
model components of an LSM.
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6. Possible future directions

Combining the applications of ML in past literature and keeping in mind the still
existing problems in land surface modeling, we provide some future directions to improve
the current status of land modeling leveraging machine learning techniques.

1. ML techniques can be a suitable way to reduce the process complexity of the LSMs.
Currently, the complex interactive processes of the terrestrial system and way they
are represented in conventional LSMs makes them intractable. It is often difficult to
assess the added value of a complex process given its cost of burdening the model.
ML can help in this regard to take a modular approach, where modelers can represent
a complex process in multiple ways and test the model performance easily. This
will help in reducing the structural uncertainty of the models as well. The model
intercomparison projects (e.g.; MsTMIP) are often constrained by the under-sampling
of the potential range of model configurations. Such technique will also help us in
collaborative development of the model, rather than adding processes on a specific
need basis.

2. Processes in the model which have little physics knowledge or complex calculation,
but more data availability, could be replaced by a ML-based surrogate. As mentioned
in Section 4.4, there have been some attempts to predict important land surface
properties by a hybrid modeling approach, but we are still lacking in exploring some
of the more fundamental variables which can be easily provided by ML applications
as the amount of observations increase in recent days. For example, hydrology,
phenology and snow cover fraction. Hydrologic observations are increasing all over
the globe with advanced velocimetry techniques and phenology is easily obtained
now from satellite remote sensing data. Improving these components leveraging ML
will help upgrade the overall LSM performance.

3. Parametric uncertainty can be investigated, and parameters can be better optimized
following Dagon et al. [55]. However, we need to consider longer data records (now
possible with the availability of computing resources) and more output variables.
Good quality globally gridded observations are now available. For example, At-
mospheric CO2 from National Oceanic and Atmospheric Administration (NOAA),
Commonwealth Scientific and Industrial Research Organisation (CSIRO), gridded
FLUXNET from Max Planck Institute for Biogeochemistry (MPI-BCG), river flow
(GRDC), albedo (MODIS), and so on (ILAMB project, etc.).

4. Data assimilation is proved to be an important tool to improve model simulations
at different earth system modeling applications [80,81]; and advancement in ML can
further enhance that. Conventional data assimilation methods include Kalman filter
and variational approaches. These methods have underlying assumptions of normal-
ity, Markovian processes, zero error covariance and similar ML algorithms, being
completely data-driven, may improve the assimilation in terms of speed, accuracy,
and efficiency.

5. There are several avenues for better crop yield prediction. Soil hydrology related
variables such as soil moisture or drought indices (obtained from either remote
sensing, in-situ measurements, or process-based models) can further improve the
ML predictions on crop yield. Precision agriculture is another advanced recent
agricultural technology which includes sensors, robotics, and AI to assemble ‘big data’
which can further be processed with ML models to develop a sustainable agricultural
practice with enhanced yield. We can use such data and the extracted information
to assess the yield variability among regions to make informed decisions [82]. As
such, the yield stability maps, included in the landscape, can provide information
about environment friendly areas and constant low yield areas. We should focus on
intensifying the high yield areas sustainably. On the other hand, low yield zones can
be improved by perennial bioenergy crops and recycling of plant available nutrients.

6. Interpretability of ML models [83] has potential to reveal some of the hidden links
and physics between different parts of the terrestrial hydrology. Relative importance
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of the predictors to predict a specific outcome could be more rigorously analyzed for
similar interpretations.

7. Conclusions

The implementation of ML techniques in earth system modeling has been widely
accepted by many researchers in recent years. Direct application of such techniques,
particularly on LSM, is quite recent. LSM plays an important role in simulating the
feedback and interactions between the land surface and the atmosphere. As we escalate
toward rapid changes in the climate and land use, the future of the terrestrial biosphere
and hydrology remains a global concern. LSMs are the fundamental tools to simulate and
predict the state of the terrestrial surface and play a critical role in optimizing the amount
of carbon dioxide to limit global warming. This provides motivation for improving the
performance of LSMs.

The complex nature of linked land-surface processes makes it difficult to create
a tractable LSM. The interactive components include atmosphere, urban environment,
canopy processes, agriculture, hydrology, soil dynamics, snow physics, soil processes and
so on. Recently with the need for hydrologists, ecologists, biogeochemists, physiologists,
the structure of LSMs is extremely complex. We argue that ML methods can help us achieve
better performance of LSMs, make it efficient and also create a flexible structure of the
models. With the help of ML and adequate data in recent ages, some critical applications
of LSM have already been upgraded.

The main improvements were in the areas of ET estimation, parameter calibration, crop
yield, model benchmarking, and uncertainty quantification. ET estimation is important
in earth system modeling as ET is an important part of both water and energy cycles.
ML methods were able to use satellite data and improve global ET estimates. The major
complexity of the LSMs come from a significant number of parameterized processes within
LSMs. ML surrogates were able to replace some of these processes to improve the model
performance and reduce the uncertainty. Crop yield prediction majorly benefitted from
the ‘hybrid’ model approach where process-based models and ML models were combined
to achieve better yield predictions. Model benchmarking is a relatively newer concept
but an extremely important part of LSM improvement, and ML has been helpful in this
context too.

The widely used ML techniques along with land surface modeling are ANN, RF, and
modified versions of Gradient trees. Supervised learning is often used with the help of
these techniques to improve the LSM performance. Other ML techniques are also often
used along with these, such as genetic algorithms, SVM, GBRT, ‘Bagging,’ MCMC, etc. We
foresee that there is scope to apply the recent DL methods like CNN and LSTM regression
to improve several parts of the land surface modeling, following other applications in
water science and earth system modeling. For example, high-resolution data preparation
and improved data assimilation techniques can leverage these advanced methods.

Additional improvements are possible in the areas of complexity reduction of LSMs,
multiple parameter calibration, structure revision, uncertainty reduction, and sustainable
crop yield estimate. Interpretability of ML models should be carefully investigated to
further explore the underlying physics and processes behind the yet less-known land
surface-related processes.
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