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Abstract: Habitat condition is a vital ecological attribute in wildlife conservation and management
in protected areas, including the Burunge wildlife management areas in Tanzania. Traditional
techniques, including satellite remote sensing and ground-based techniques used to assess habitat
condition, have limitations in terms of costs and low resolution of satellite platforms. The Normalized
Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) have potential for assessing habitat
condition, e.g., forage quantity and quality, vegetation cover and degradation, soil erosion and
salinization, fire, and pollution of vegetation cover. We, therefore, examined how the recently emerged
Unmanned Aerial Vehicle (UAV) platform and the traditional Sentinel-2 differs in indications of
habitat condition using NDVI and GNDVI. We assigned 13 survey plots to random locations in the
major land cover types: three survey plots in grasslands, shrublands, and woodlands, and two in
riverine and mosaics cover types. We used a UAV-mounted, multi-spectral sensor and obtained
Sentinel-2 imagery between February and March 2020. We categorized NDVI and GNDVI values into
habitat condition classes (very good, good, poor, and very poor). We analyzed data using descriptive
statistics and linear regression model in R-software. The results revealed higher sensitivity and
ability of UAV to provide the necessary preliminary diagnostic indications of habitat condition. The
UAV-based NDVI and GNDVI maps showed more details of all classes of habitat conditions than
the Sentinel-2 maps. The linear regressions results showed strong positive correlations between the
two platforms (p < 0.001). The differences were attributed primarily to spatial resolution and minor
atmospheric effects. We recommend further studies to test other vegetation indices.

Keywords: remote sensing; Unmanned Aerial Vehicle; vegetation indices; wildlife habitats; satellite
platforms; ecological monitoring

1. Introduction

Wildlife habitat condition is a cornerstone of conservation and management. Habitat
degradation and loss are a major threat to conservation worldwide manifested by reduction
or loss of requirements such as forage resources (quantity and quality) for wild herbivores.
Forage resources include biomass materials for herbivores in landscapes [1,2], which
may vary considerably in quantity and quality at different spatiotemporal scales across
landscapes [3,4]. However, forage resources are crucial for attracting and sustaining wild
herbivores in protected areas [3,5–7] due to their impact on the survival and reproduction
of wild herbivores [8–11].

Earth 2022, 3, 769–787. https://doi.org/10.3390/earth3030044 https://www.mdpi.com/journal/earth

https://doi.org/10.3390/earth3030044
https://doi.org/10.3390/earth3030044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/earth
https://www.mdpi.com
https://orcid.org/0000-0002-0992-6040
https://orcid.org/0000-0001-8349-4357
https://doi.org/10.3390/earth3030044
https://www.mdpi.com/journal/earth
https://www.mdpi.com/article/10.3390/earth3030044?type=check_update&version=1


Earth 2022, 3 770

The degradation and loss of wildlife habitat in many protected and adjacent areas is
largely attributed to human-induced land use and land cover changes (LULC) [12]. Land
degradation is described as “how one or more land resources (soil, water, vegetation, rocks,
air, climate, and relief) have changed for the worse” [13]. These threats impose significant
challenges to wildlife management, including the increased risk of human–wildlife conflicts
when herbivores stray beyond the protected area boundaries in search of resources [14,15].
This habitat degradation and loss also leads to the over-utilization of the few areas having
the required resources, impairing the ecological integrity and potential utility of entire
protected areas [4,16].

A vital starting point for monitoring wildlife habitat conditions and other ecological
aspects is the status of land cover, which provides information on habitat availability, from
local areas to landscape levels and beyond [17]. Land cover is defined as a biophysical
feature that covers the earth’s surface [14,17,18]. It influences habitat conditions that affect
the abundance, diversity, and distribution of wildlife species [14,17].

Different vegetation indices, including Normalized Difference Vegetation Index (NDVI)
and its advanced version, Green NDVI (GNDVI), have been developed to provide informa-
tion on the status of land cover and trends in land cover changes, such as degradations that
reflect impacts on forage quantity and quality [7,14,17]. However, many studies, including
those that have used the NDVI and GNDVI, have directly focused on one or a few elements
of land degradation or habitat condition in conservation areas, such as vegetation cover
change [17–19], forage quantity and quality [7,9], soil erosion and salinization [14,20,21],
and effects of wildfire and pollutants on vegetation cover [14,22]. None of these studies as-
sessed the preliminary indicative information about the targeted habitats where conditions
seemed abnormal.

Traditional methods used to assess and monitor wildlife habitat conditions include
ground survey techniques and satellite aerial remote sensing platforms. These methods
have well-recognized shortcomings. For example, ground-based techniques are laborious,
costly [23], and challenging in poorly accessible areas. Additionally, freely available satellite
imagery has low spatial resolutions, making this approach unable to detect habitat change
that may be significant to wildlife. Since early detection of changing habitat condition is
essential, clear preliminary signals from an effective platform are vital for timely solutions
to specific environmental problems. For large areas, ground-based quantification of habitat
conditions such as available forage for herbivores is less practical, whereas vegetation
indices such as NDVI are useful [24]. The use of Unmanned Aerial Vehicles (UAVs) to
collect NDVI data at a high resolution (e.g., 0.01 to 0.1 m) may be the solution [23,25].

The most widely used vegetation index for habitat conditions is NDVI. Uses of NDVI
include the study by Carella et al. [26], who monitored the canine distemper virus (CDV)
and habitat fragmentations; Soria et al. [27], who monitored subaquatic vegetation in
lakes; and Shamsudeen et al. [28], who assessed vegetation health. Its strengths lie in its
capability to lessen noise arising from cloud shadows, variations in topographic levels,
and different illumination intensities [29–31]. However, one of its weaknesses is that it
saturates at higher Leaf Area Index (LAI), reducing its ability to distinguish between
high and very high LAI [30,32]. These limitations necessitated a second and advanced
vegetation index, GNDVI, that provides valuable information on complex landscapes [4].
For instance, GNDVI has a high sensitivity to chlorophyll and reduces non-photosynthetic
effects [31,33–36]. Indices such as the Atmospherically Resistant Vegetation Index (ARVI),
which are designed to counteract the challenges that face NDVI, have their own challenges,
for instance, being highly sensitive to the soil reflectance effect; hence, this index is not
appropriate for arid and semi-arid areas [32,37].

The application of a recently emerged UAV aerial remote sensing platform has yet to
be scaled up to assess wildlife habitat in large, protected areas. Many studies, especially in
African countries, have used UAVs in small areas such as farms and in a single or only a
few vegetation cover types (e.g., grassland or forest). For instance, Matese et al. [38] focused
on a vineyard, assessing the variability of vine parameters using UAV-and-Sentinel-based
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NDVI. The authors noted the possible loss of crucial information and misinterpretation
of NDVI from mixed pixels. Sozzi et al. [39], also focused on a few vineyard blocks. The
authors noted a non-transferable finding for blocks with inter-row vegetation growth such
as grass to those with no grass. A recent systematic review by Haula and Agbozo [40]
shows that “UAV adoption in the sub-region is still in its early phase in Africa, with several
implemented cases primarily focusing on healthcare and crop farming”. Although UAVs
are gradually being adopted in research across Africa, from Senegal to South Africa [19,40–43],
none have included multiple land cover types in a single study. Furthermore, no study
has used this technology to address large landscapes with heterogeneous land cover types
within Tanzania. Instead, Tanzanian researchers have narrowly focused on crop yields [44],
detecting chimpanzee nests [45], detecting erosion and topographical changes [46], or
changes in a single wetland and river basin [38]. Therefore, we explored the levels at
which UAV and Sentinel-2 provide crucial preliminary signals of habitat conditions using
NDVI and GNDVI as the indicators. The study was crucial to ascertain the potential of
a recently emerged UAV technology for real-time preliminary signals of detection and
monitoring of habitat conditions in the Burunge Wildlife Management Area (WMA) which
faces many threats, including livestock grazing and cultivation that compete with wild
herbivores [39]. The Burunge WMA has been a protected area in Tanzania since 2003 with
a focus on conserving biodiversity and natural and cultural resources while contributing to
the local livelihoods of the communities [47]. Since it is not as large as the core protected
area of Tarangire and Lake Manyara National Parks that it abuts, UAV technology could
help monitor the habitat conditions within and adjacent to it.

Specifically, we aimed to compare initial, quantitative indicator values of habitat
conditions based on NDVI and GNDVI values derived from the two platforms in each land
cover type. We also aimed to compare the two platforms based on NDVI and GNDVI maps
as spatial-visual distribution patterns of the preliminary habitat condition levels (i.e., very
good, good, poor, and very poor). We ultimately aimed to test if there was a statistically
significant difference between the preliminary indications of habitat conditions based on
the NDVI and GNDVI generated by UAV and Sentinel-2. The levels of habitat condition in
different land cover types reflect the likelihood of habitats attracting wild herbivores. This is
important to enable wildlife managers and ecologists to quickly collect environmental data
over large areas which indicate possible ecological problems. This step can help wildlife
managers to take appropriate habitat improvements and management measures [29], and
plan for the needed resources to monitor and address site-specific or landscape problems
and possible causes. The urgent need for timely and accurate information based on
powerful aerial remote sensing platforms for an appropriate detection and monitoring
any disturbances and changes in landscapes has also been recently reported by Sumari
et al. [48,49].

2. Materials and Methods
2.1. Study Area

The Burunge WMA is a 243 km2 community-based conservation area located at the
interphase between Lake Manyara and Tarangire National Parks in the northern tourism
circuit of Tanzania (Figure 1). The WMA was established in 2003 by ten villages (Minjingu,
Mwada, Vilima Vitatu, Sangaiwe, Magara, Manyara, Maweni, Ngoley, Kakoi, and Olasity).
Each village contributed a portion of its land, guided by land use plans, for conservation
and socio-economic benefits, following the Wildlife Management Areas Regulations of
2002 (Revised in 2012) [50]. The WMA is an ecologically crucial migratory wildlife corridor
for African elephants (Loxodonta africana), wildebeest (Connochaetes taurinus), and zebra
(Equus quagga), and serves as a protected buffer area for many other wildlife species from
the neighboring protected areas.
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Figure 1. A map of Burunge WMA showing its location and surveyed plots in different land cover
types; grassland (7G, 10G and 13G), shrubland (11S, 12S and 29S), woodland (5W, 6W and 09W),
riverine (22R and 26R), and mosaic (08M and 21M).

The Burunge WMA is characterized by woodland, shrubland, grassland, riverine
vegetation, mixed vegetation (termed “mosaic” in this study), water, bare ground, and
agriculture. Agriculture is practiced illegally along the boundary and in small areas within
the WMA. The WMA’s annual rainfall ranges between 400 and 650 mm. The rains fall
in two seasons: the short-rainy season spans between November and February, while
the heavy rainy season is between March and May [51]. The mean annual temperature
ranges between 8 ◦C and 33 ◦C, depending on elevation [52,53]. The WMA’s elevation is
1000 m above sea level (m.a.s.l.). Tarangire River is the only permanent primary source
of freshwater for wildlife and livestock in the Tarangire–Manyara ecosystem [53]. Lakes
Manyara and Burunge in the ecosystem are among the top saline-alkaline lakes in the East
African Rift Valley system [54].
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2.2. Data Collection
2.2.1. Sample Plots and Flight Mission Planning

We stratified the study area based on the existing main land cover types that have been
previously documented [55,56]. These cover types were confirmed on the ground using
expert knowledge and experience aided by high-resolution google earth images. Our study
focused on and selected survey plots in the grassland, shrubland, woodland, riverine, and
mosaic land cover types. The forest cover type located at one extreme narrow end along
Lake Manyara was not selected due to logistic constraints. From the aerial proportions of
land cover types generated by another research component under the same project, we
purposively assigned 13 survey plots to random locations after stratifying the study area
based on the major land cover types: three survey plots in grasslands, shrublands, and
woodlands, and two in riverine and mosaics cover types, respectively (Figure 1).

A hand-held Garmin CSX GPS was used to trace the selected survey plots. We adjusted
survey plots falling in inaccessible areas (due to terrain features or the absence of roads)
by selecting nearby pixels with similar characteristics. We then used Yuneec’s DataPilot
planner for UAV flight mission planning. In each plot, the percentage cover and critical
species composition of three layers (tree, shrub, and grasses/herbaceous) were determined
following Braun-Blanquet [57] by another research component under the same project [58]
(Figure 2). In large landscapes, the percentage cover of plant species in each layer is linked
to the habitat condition in terms of forage cover for herbivores [59].

Figure 2. Researchers updating land cover types of Burunge WMA partly using the ground sampling
scheme re-drawn from Braun-Blanquet [57] and UAV orthoimages under the other concurrent
research component under this project. Some plots were within the UAV flight mission plans for this
output. The “a” is a 4 m2 sub-plot nested within “b”, a 400 m2 sub-plot nested within “c”, 2500 m2

main plot that was randomly placed in a nearly uniform vegetation cover “d”. To the right is a photo
taken in one 2500 m2 large plot demarcated using a tape measure [58].

2.2.2. Acquisition of Satellite Imagery

Sentinel-2 imagery was obtained close to the UAV flight dates (February–March 2020)
to ensure an appropriate match of the values of vegetation indices derived from the two
platforms [4]. We used satellite imagery with minimal cloud cover (<5%) acquired between
the short rains and the commencement of the wet season (February–March 2020) from
the United States Geological Survey web portal (https://www.usgs.gov/, acquired on:
21 February 2020).

The WMA is covered by only two Sentinel-2 tiles, downloaded from the Sentinel-2 ID:
36 MYA (Centroids: Latitude −4.1118 and Longitude 35.2956, acquired on: 21 February
2020) and 36 MZA (Centroids: Latitude −4.1087 and Longitude 36.1956, acquired on:
8 February 2020) (https://scihub.copernicus.eu/). The raw images were pre-processed
in ERDAS Imagine 2015, and the corresponding NDVI and GNDVI extractions were
performed in ArcGIS 10.8, following standard flow and procedures shown in the data
processing Section 2.3 below.

https://www.usgs.gov/
https://scihub.copernicus.eu/
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2.3. Data Processing

This stage followed a systematic flow of steps to generate data from the UAV-orthoimages
and Sentinel-2 imagery for each land cover type for statistical analysis (Figure 3). To test the
detection effectiveness in different land cover types in the Burunge WMA, we employed
the NDVI and GNDVI indices. We compared the two indices by analyzing the UAV images
captured between 26 February and 13 March 2020 with a time-matched Sentinel-2 satellite.

Figure 3. Flow chart demonstrating image processing and data extraction.

2.3.1. UAV-Based Image Acquisition in the Field

Before the actual fieldwork for UAV-based data collection, we registered the UAV
and secured all the necessary permits per the Tanzania Civil Aviation (Remotely Piloted
Aircraft Systems) Regulations, 2018 [60]. We also observed ethics and accessed permits at
the community level and Local Government Authority [60,61].

We used a hexacopter UAV (H520, Yuneec Americas, Santa Clara, CA, USA) outfit-
ted with payloads that included a 5-band multispectral camera (RedEdge3, MicaSense,
Washington, DC, USA) (Figure 4). The RedEdge3 band characteristics facilitated direct
satellite comparisons (Table 1). We accomplished the radiometric calibration through
two means. First, each mission started by capturing a manual image of a standardized
reflectance panel (RP02, MicaSense, Seattle, WA, USA). Second, an upward-facing down-
welling light sensor (DLS-1, MicaSense, Seattle, WA, USA) recorded the lighting conditions
which were incorporated into the metadata of each image capture. All flight missions were
conducted at an altitude of 120 m above ground level (AGL) at a constant speed of 5 m/s
along predefined flight lines, capturing images in an auto-pilot mode at 2 s interval with
75% front and 65% side overlaps. Each image measured approximately 8295 m2 on the
ground, achieving an average ground sampling distance (GSD), and pixel size, of about
8.5 cm. The Regular RGB camera (E90_8.3_4864 × 3648) generated images with an average
GSD of 3.34 cm. All UAV imagery collections were executed within ±2 h of solar noon and
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completed between 24–26 February and 11–13 March 2020. Our study was limited to this
period, similar to the survey by Sozzi et al. [39].

Figure 4. UAV Yuneec H520 (a) and a standard reflectance panel (RP02, MicaSense, Washington, DC,
USA) (b).

Table 1. Band characteristics for the RedEdge3 multispectral camera and the Sentinel-2 multispectral
imagery.

RedEdge3 Sentinel-2

Wavelength (nm) Wavelength (nm)

Band
Name

Band
Number Center Width Band

Number Center Width

Blue 1 475 20 2 490 10
Green 2 560 20 3 560 10
Red 3 668 10 4 665 10

Near Infrared (NIR) 5 842 40 8 842 10
RedEdge 4 717 10 5 705 20

2.3.2. Extraction of NDVI and GNDVI Values from UAV-Based Orthoimages

We used Pix4Dmapper (ver. 4.5.6, Pix4D S.A., Prilly, Switzerland) for the mosaicking
process for multispectral images acquired by UAV remote sensing aerial platform. We
completed three processing steps: (i) initial processing; (ii) point cloud and mesh densifica-
tion, and (iii) generation of Digital Surface Model (DSM), Orthomosaic, and a computation
of indices. The Datum World Geodetic System-WGS 84, and UTM zone 37S, were se-
lected as image geolocation and output Coordinate Systems, respectively, with a standard
geolocation accuracy and auto-detection options.

2.3.3. Processing of Sentinel-2 Imagery and Extracting Vegetation Indices

We corrected the images for geometric and radiometric effects to remove a false
indication of any object [62–66]. The Digital Elevation Model (DEM) at a 30 m resolution,
derived from the Shuttle Radar Topography Mission (SRTM), corrected topographic effects
on images that could affect the spatial distribution of vegetation types [67,68]. We analyzed
the updated images to extract NDVI and GNDVI values based on accepted formulae
(Table 2). We clipped the image locations and sizes from Sentinel-2 that matched the UAV-
based ground sampling plots in ArcGIS 10.8 and extracted the pixels’ corresponding values
for statistical analysis.



Earth 2022, 3 776

Table 2. Vegetation indices used in the study *.

Vegetation Index Formula References

Normalized Difference
Vegetation Index (NDVI) NDVI = NIR−Red

NIR+Red (1) [33,69]

Green NDVI (GNDVI) GNDVI = NIR−Green
NIR+Green (2) [34,35,37].

* Additional vegetation indices explored included EVI (Enhanced Vegetation Index [31,33,41–43,70]), EVI2
(Two Band EVI [33,42,43], RENDVI (Red Edge NDVI [44,45]), and WDRVI (Wide Dynamic Range Vegetation
Index [46]) (Appendix A, Table A1).

2.3.4. Determination of NDVI and GNDVI Classes Using Scale Values

We calculated NDVI and GNDVI values from the multispectral images obtained from
UAV and Sentinel-2 platforms [38] and categorized them into habitat condition classes
(very good, good, poor, and very poor). The matching vegetation index color patterns at
nine levels depicted the habitat condition classes along the color scale divided into 0.1-unit
widths from 0.0 to 1.0. (Table 3). The colors distinguished four categories at specific levels:
very good = 4 levels of green and blue, good = 2 levels of gold and yellow, poor = 2 levels
of red and orange, and very poor= brown (Table 3). The established cut-off points for
each class were generally agreed upon interpretations in line with those from “Agricolus”
(https://www.agricolus.com/en/indici-vegetazione-ndvi-ndmi-istruzioni-luso/) and the
Earth Observing System (EOS). We modified the color scale patterns based on published
resources [23,71].

Table 3. Ranges of NDVI and GNDVI values for habitats condition classes.

Class Colour NDVI GNDVI

Very Good

>0.9 > 0.8

>0.8–0.9 >0.7–0.8

>0.7–0.8 >0.6–0.7

>0.6–0.7 >0.5–0.6

Good
>0.5–0.6 >0.4–0.5

>0.4–0.5 >0.3–0.4

Poor
>0.3–0.4 >0.2–0.3

>0.2–0.3 >0.1–0.2

Very Poor ≤0.2 ≤0.1

2.4. Data Analysis

We checked the normality of data distribution using a Q-Q-test followed by descriptive
statistics and linear regression model (R2) in R-software (version 3.4.1) [72]. We ran a linear
regression model in each land cover to test the statistical strengths of the link between the
UAV and Sentinel-2 derived vegetation indices [38,39,73], as preliminary signals for habitat
conditions. The test has been considered an appropriate spatial measure of any existing
statistical bivariate association of data values between two variables [38].

3. Results
3.1. Comparative Results from UAV-and Sentinel-2 VI Histograms and Basic Statistics

The results in the histograms for NDVI and GNDVI values provide visualized levels
of habitat conditions in each land cover type (Figure 5a,b). The color codes and respective
vegetation index scales depict the different indicative levels of habitat conditions for NDVI
(very good: >0.6–> 0.9; good: >0.4–0.6; poor: >0.2–0.4; and very poor: ≤0.2) and GNDVI
(very good: >0.5–>0.8; good: >0.3–0.5; poor: >0.1–0.3; and very poor: ≤0.1). The UAV-based
histograms indicate higher levels of good condition (>0.4–0.6) and very good condition
(>0.6–0.9) than Sentinel-2 (Figure 5a). Sentinel-2 platform hardly detected the highest level

https://www.agricolus.com/en/indici-vegetazione-ndvi-ndmi-istruzioni-luso/
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(>0.8–0.9) of the very good condition class but did signal habitat at the good condition class
(>0.3–0.5) and the very good class (>0.5–0.8) using GNDVI (Figure 5b).

Figure 5. Frequency distribution of NDVI (a) and GNDVI (b) values to show visualized differences
between UAV and GNDVI in providing preliminary signals of habitat conditions.

There were highly significant differences in mean habitat condition between the two
platforms. Mean NDVI values for habitat condition were 0.09 to 0.20 higher for UAV-
derived imagery for each land cover type compared to the Sentinel-2 platform (Table 4).
We observed a lower coefficient of variation (CV) for UAV-based NDVI values than those
generated using the Sentinel-2 platform for the grassland, mosaic, and woodland land
cover types.

Similarly, mean GNDVI values for habitat condition were 0.02 to 0.07 higher when
calculated from imagery derived from UAVs than those derived from the Sentinel-2 plat-
form (Table 5). Additionally, we observed higher CV values for the UAV data than those
from the Sentinel-2 in the riverine, shrubland, and woodland cover types. On the other
hand, the UAV indicated a slightly lower CV for the GNDVI mean values in grassland and
mosaic land cover types. One-way analysis of variance (ANOVA) using an F-test of the
NDVI and GNDVI mean values derived from both UAV and Sentinel-2 within each land
cover type revealed statistically significant variations between the platforms (p < 0.001).

3.2. Vegetation Index Maps

The vegetation index maps (NDVI and GNDVI) provided a clear spatial distribution
pattern of habitats with very good, good, poor, and very poor condition classes in each
land cover type derived from UAV orthoimages and Sentinel-2 imagery as indicated in
Figure 6 and Supplementary Materials (Figures S1–S10). The UAV-based NDVI and GNDVI
showed more variation and more detail of all the classes of habitat conditions from very
good to very poor (Figure 6). The UAV RGB orthoimage is also more informative than that
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generated from Sentinel-2 imagery. Sentinel-2 did not clearly show the two classes for both
indices: poor class (NDVI, >0.2–0.4; GNDV, >0.1–0.3) and very poor class (NDVI, ≤0.2;
GNDVI, ≤0.1). It did detect the very good class (NDVI, >0.6–0.7; GNDVI, >0.5–0.6).

Table 4. Basic statistics of NDVI values for preliminary indications of habitat conditions in land
cover types.

Land
Cover
Type

Platform Mean SD CV Skewness 25% 75% ANOVA
F-Test

Grassland
UAV 0.50 0.15 0.30 −0.30 0.40 0.60 F(1, 27219) = 10,919, <0.001

Sentinel-2 0.30 0.15 0.49 0.34 0.18 0.40

Mosaic
UAV 0.43 0.11 0.26 0.87 0.35 0.50 F(1, 19164) = 13,191, <0.001

Sentinel-2 0.23 0.12 0.53 0.85 0.13 0.30

Riverine
UAV 0.68 0.13 0.20 −0.98 0.60 0.75 F(1, 22908) = 2444, <0.001

Sentinel-2 0.59 0.11 0.19 −1.80 0.55 0.66

Shrubland
UAV 0.55 0.16 0.30 −0.48 0.45 0.70 F(1, 38517) = 7474, <0.001

Sentinel-2 0.40 0.12 0.29 −0.11 0.32 0.49

Woodland
UAV 0.63 0.18 0.29 −0.85 0.50 0.80 F(1, 20999) = 5824, <0.001

Sentinel-2 0.44 0.15 0.35 −0.82 0.35 0.55

Table 5. Basic statistics of GNDVI values for preliminary indications of habitat conditions in land
cover types.

Land Cover
Type Platform Mean SD CV Skewness 25% 75% ANOVA

F-Test

Grassland
UAV 0.47 0.10 0.22 −0.05 0.40 0.55 F(1, 22607) = 516, p < 0.001

Sentinel-2 0.44 0.13 0.29 −0.05 0.33 0.53

Mosaic
UAV 0.40 0.10 0.25 0.08 0.35 0.45 F(1, 16497) = 74, p < 0.001

Sentinel-2 0.38 0.11 0.28 0.42 0.30 0.46

Riverine
UAV 0.68 0.13 0.20 −0.98 0.60 0.70 F(1, 19878) = 772, p < 0.001

Sentinel-2 0.66 0.07 0.11 −1.70 0.64 0.71

Shrubland
UAV 0.55 0.16 0.30 −0.48 0.45 0.55 F(1, 37748) = 208, p < 0.001

Sentinel-2 0.53 0.09 0.16 −0.23 0.48 0.60

Woodland
UAV 0.63 0.18 0.29 −0.85 0.50 0.70 F(1, 22019) = 263, p < 0.001

Sentinel-2 0.56 0.11 0.19 −0.88 0.50 0.64

3.3. Linear Regression Models for UAV-and Sentinel-2 Vegetation Indices in Land Cover Types

There were strong positive correlations and statistically significant links of the mean
values of NDVI generated using the two platforms for each land cover type (R2 ≥ 0.95,
p < 0.001) (Figure 7). The correlations were even higher for GNDVI values generated using
the two platforms (R2 ≥ 0.97, p < 0.001) (Figure 8).
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Figure 6. Comparative vegetation index maps for NDVI and GNDVI and RGB orthoimages from
grassland. The UAV imagery depicts greater detail, obviously, and also provides a much greater
range of habitat condition, from very poor to very good.
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Figure 7. Linear regression between UAV and Sentinel-2 NDVI mean values of different habitat
condition classes in each land cover type. In all land cover types, p < 0.001.

Figure 8. Linear regression between UAV and Sentinel-2 GNDVI mean values of different habitat
condition classes in each land cover type. In all land cover types, p < 0.001.

4. Discussion
4.1. Comparison Based on Histograms and Basic Statistics of NDVI and GNDVI Values

Our study revealed a higher ability of UAV-based vegetation indices (NDVI and
GNDVI) to provide preliminary signals of habitat conditions across land cover types
compared to indices derived from the Sentinel-2 platform. With UAV-derived imagery, we
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were able to identify a more comprehensive and detailed variation in habitat condition class
(from very poor to very good), for both vegetation indices (NDVI and GNDVI) compared
to Sentinel-2-derived imagery. In particular, the Sentinel-2-based NDVI seldom detected
the habitat in very good condition. The coarser resolution of the satellite imagery results
in pixels with values potentially representing the average of several densities of green
vegetation as well as bare ground, resulting in a preponderance of moderate values (e.g.,
Figure 6). Since GNDVI is less likely to saturate at high LAI [31–33], this may explain
why we observed more instances of very good conditions using this index. Messina
et al. [74] reported similar results in comparing UAV and satellite multispectral imagery in
monitoring an onion crop.

Although GNDVI for both UAV and Sentinel-2 platforms showed some similarities
across land cover types, those from UAV had a broader variation and greater mean values
than the latter (Figure 5b), similar to the results reported by Matese et al. [38]. The wide
range of mean values and varying heights of histograms (i.e., frequencies, %) for NDVI
and GNDVI reflects habitat heterogeneity [74]. Heterogeneity in land cover types due to
varying densities of plant canopies, bare areas, and possibly LAI, are possible explanations
for the observed significant differences in the mean values from the two platforms [4,74].
The ability of UAVs to generate more informative histograms related to habitat conditions
provides more reliable preliminary insights than the Sentinel-2-based histograms. The
results from basic statistics (mean and CV) also showed high statistical differences between
the two platforms.

The UAV’s higher spatial resolution and low flight altitudes above ground level (AGL),
positioning it at a close proximity to plants, were crucial attributes for its observed higher
sensitivity in detecting habitat conditions better than the Sentinel-2-sensor [64–66]. The
differences in the sensors’ spectral properties and atmospheric effects on the vegetation
indices (VIs) derived from each platform were additional factors [64]. For example, Sentinel-
2-derived NDVI is highly affected by atmospheric conditions [4,34], while UAV-derived
VIs are less influenced by atmospheric and solar conditions effects due to the low flight
heights and radiometric calibrations. Furthermore, the UAV platform allows data collection
in diverse weather conditions, including cloud cover that impairs the quality of satellite
imagery and respective vegetation indices [75–77]. On the other hand, data collected from
UAV platforms may be impaired under partly cloudy conditions if the sensor and ground
surface are experiencing different lighting conditions.

4.2. Comparison Based on Vegetation Index Maps

Qualitative analysis of the vegetation index maps reveals that spatial variation in
habitat conditions are more apparent in the UAV-derived NDVI and GNDVI maps than
those derived from the Sentinel-2 imageries. For example, all levels of each habitat condition
class (very good to very poor) were clearly detected by the UAV platform (Figure 6). In
contrast, Sentinel-2 overlooked the poor and very poor classes. These results confirm
that UAV-based VI maps can inform and guide wildlife and rangeland managers on
specific habitat conditions during the surveyed period. For example, places indicated to
have poor and very poor habitat conditions would inform the managers to visit them
for the environmental diagnosis of the actual problem and to take appropriate rangeland
management interventions and practices.

Statistical test confirmed the higher habitat condition detection capability of UAV-
derived NDVI and GNDVIs than Sentinel-2. Similarly, a study conducted in the Kinleith
Forest in New Zealand found the UAV platform was more sensitive in detecting health
conditions of the forest than the satellite platform [75]. In our study, the statistically
significant variations across the classes in each land cover type showed how the UAV-based
NDVI and GNDVI maps can better provide useful preliminary signals on habitat condition.

The detailed qualitative information observed in the UAV-based VI maps improve
managers’ abilities to fulfill near real-time needs in ecological monitoring of wildlife
habitats. Such detailed information showing the spatial extent of each habitat condition
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class can help wildlife managers and ecologists undertake appropriate wildlife habitats
management and improvement. The high-resolution UAV-based patterns can also help
assess habitat distribution patterns [77]. Based on the heterogeneous nature of the studied
land cover types, the distribution patterns of the habitat condition classes revealed in the
index maps reflect the possible abundance, diversity, and distribution patterns of herbivores
moving to and utilizing such areas. Several studies support this argument; the variability
of vegetation indices, including NDVI and GNDVI, has reliably been used as a proxy for
habitat heterogeneity, implying the possible diversity and richness of plant species [78–81].
In turn, habitat heterogeneity in the VI maps suggests the potential richness of mammal
species in the area [82,83]. Habitat conditions with adequate forage influence mammals
to choose and prefer certain areas [59]. In addition, optimal foraging theory emphasizes
that mammals tend to select habitats with a condition that contains the necessary habitat
requirements, including foraging patches that ensure high energy return for herbivores [84].
The much-detailed UAV-derived NDVI and GNDVI show higher potential for success
in monitoring and managing than those derived from the traditional Sentinel-2 platform.
Technologically advanced methods such as the UAV platform are crucial to ensure accurate
and timely detection and monitoring of ecological changes in wildlife habitat condition in
protected and adjacent areas [78,85,86].

4.3. Comparative Insights from Statistical Correlations and Linear Regressions of NDVI and
GNDVI Mean Values Derived by UAV and Sentinel-2

The results revealed strong positive correlations of vegetation indices (NDVI and
GNDVI) and mean values derived from the two platforms as preliminary diagnostic signs
of habitat condition classes (very good, good, poor, and very poor) in all the land cover
types. These results informed the existing link and pattern between the two platforms
regarding the NDVI and GNDVI mean values for each land cover type. The high statistical
significance levels (p < 0.001) generated from linear regressions demonstrated the strong
link between UAV and Sentinel-2, for both NDV and GNDVI in each land cover type. Our
findings are similar to those of Sozzi et al. [39], although these authors used only NDVI. Our
findings were partly attributed to the homogeneity of the habitat condition in the grassland
and a more or less uniform mixture of habitat and conditions in the mosaic cover type.
Similar correlations between NDVI derived from UAV orthoimages and Sentinel-2 imagery
had been recorded in less complex vineyard landscapes of northeastern Italy [24,87].

We have demonstrated the power of vegetation indices derived from very high-
resolution UAV-mounted sensors as vital preliminary diagnostic signs of habitat conditions
in different land cover types. Since the Sentinel-2 has a lower resolution than the UAV-
derived VIs in detecting possible habitat conditions, their integrated applications would
generate much more reliable preliminary information on possible habitat conditions in
large landscapes.

5. Conclusions

Our study showed a higher sensitivity and ability of UAV-derived vegetation indices
(NDVI and GNDVI) than the Sentinel-2 platform for preliminary diagnosis of habitats
condition for wild herbivores. Histograms revealed that the UAV detected all habitat
condition classes (very good, good, poor, and very poor) at a higher magnitude than
Sentinel-2. Spatial distribution patterns of all the classes were more apparent in the UAV-
derived vegetation index maps than in the Sentinel-2 based maps. Furthermore, the positive
correlations and respective linear regressions between the UAV and Sentinel-2 vegetation
indices affirmed a strong link between the two platforms; the former platform outperformed
the latter, partly due to its higher spatial resolution and low flight heights above the ground
level.

The obtained NDVI and GNDVI preliminary signals of any possible abnormalities
regarding habitat conditions would guide wildlife managers and ecologists to quickly get to
those sites for timely interventions. The obtained information is a vital input in the ongoing
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project for developing the UAV-based ecological monitoring protocol for wildlife habitats
in the community wildlife management area. Other potential users of the information
include researchers, decision-makers who need real-time data from rapid assessments, and
ranch managers and ecologists who would save time and other resources.

Since the UAV technology is relatively new, a broad research project using more than
one type and number of UAV is highly needed to test as many vegetation indices as possible
for comparative analysis with satellite platforms and ground-based techniques in different
land cover types. At least three UAVs are recommended per field mission, two being ready
for the operation while the rest would serve as backup.
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Appendix A

Table A1. Other vegetation indices that were explored in the literature.

Vegetation Index Explanations References

Enhanced Vegetation Index (EVI)

Counteracts atmospheric aerosol and saturation effects, and soil
reflectance influence. Its values range between −1 and +1 within
which healthy vegetation/forage falls between 0.20 and 0.80. It has a
low dynamic range in low vegetated drylands; the C1 and C2 are not
needed in UAV-based imagery

[29,31,41–43,70].

Two Band EVI (EVI2)

It avoids signal-to-noise problems and does not need coefficients of
aerosol resistance terms (C1 and C2) as those needed in the EVI;
hence, it also fits UAV-based VIs computations. This index has a low
dynamic range in low vegetated drylands.

[43].

Red Edge NDVI (RENDVI)

As a positive modification of NDVI, it is sensitive to even small
changes in vegetation health and enables estimation of available
green forage. Its values range from −1 to 1; green vegetation is
normally detected from 0.2 to 0.9

[44,45]

Wide Dynamic Range Vegetation
Index (WDRVI)

It utilizes the same spectral bands (red and NIR) as that of NDVI. It is
at least three times more sensitive to moderate-to-high LAI than that
of NDVI; hence, it is also effective in monitoring vegetation states
under such moderate-to-high vegetation cover density. Further
evaluations of the index had been suggested.

[46]

Atmospherically Resistant
Vegetation Index (ARVI)

It’s a modification from NDVI; it minimizes atmospheric effects;
informs on the state of vegetation, and its values range from −1 to 1
similar to NDVI, RENDVI, and EVI. It has been reported that all
vegetation indices designed to reduce atmospheric effect tend to be
highly sensitive to the soil reflectance effect; hence, it is not
appropriate for arid regions where bare soils predominate. It also has
a low dynamic range in low vegetated arid and semi-arid drylands.

[29,88].
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