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Abstract: The concept of artificial intelligence (AI) is the transformation of inanimate objects into
intelligent beings that can reason similarly to humans. Computer systems are capable of imitating
a number of human intelligence functions, such as learning, reasoning, problem solving, speech
recognition, and planning. In this regard, artificial intelligence applications have been developed to
assist corporations and entrepreneurs in making business decisions. Hence, the aim of the study is to
investigate the adoption of AI applications at the Vietnamese organizational level. Using the core
structures of the technology–organization–environment (TOE), the theoretical model was constructed
based on how technical and environmental elements influence companies’ technological innovation
adoption decisions. Ten critical factors related to AI adoption are identified. To test the model,
data were obtained from 193 senior managers who are directly in charge of information systems
in both private and public companies in Vietnam. Subsequently, the Structural Equation Modeling
(SEM) approach was used to analyze the data. The findings indicate that technical compatibility,
relative advantage, technical complexity, technical capability, managerial capability, organizational
readiness, government involvement, market uncertainty, and vendor partnership are significantly
related to AI application adoption. Interestingly, the study results indicated that the relationship
between organization size and AI adoption was not statistically significant. Therefore, the suggested
adoption of the AI application could contribute to the existing research on the adoption of AI through
the TOE. Finally, the significant government law implications and future research directions are
further addressed.

Keywords: artificial intelligence adoption; technology organization environment model; structural
equation model; Vietnam

1. Introduction

The development of artificial intelligence has prompted software and system engi-
neers to devise novel methods for raising revenue, reducing expenses, and enhancing
organizational effectiveness. Today, artificial intelligence (AI) is a significant competi-
tive trend in industry Davenport and Ronanki (2018). AI is defined as “a collection of
tools and technology capable of augmenting and enhancing organizational performance”
Alsheibani et al. (2018). This is accomplished by creating “artificial” systems capable of
resolving complex environmental difficulties, with “intelligence” referring to the emulation
of human intelligence. This intelligence is essential for strategic planning and has been
effectively employed by businesses to gain a competitive advantage over their competitors
Varian (2018). It is widely expected that artificial intelligence (AI) will deliver benefits
such as human augmentation, which should be considered while discussing economic
growth Ransbotham et al. (2017). AI has been used and applied at the federal, industrial,
and personal levels. Furthermore, the Government of the Socialist Republic of Vietnam
set a clear policy for adopting artificial intelligence in the public sector by 2030, which is
gradually gaining traction in the ASEAN region, notably the Vietnam government. Exam-
ining the significance of government bodies taking the initiative and beginning artificial
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intelligence projects in their surroundings that fulfill their business needs. AI is the simu-
lation of various human intelligence processes by computers, notably computer-related
systems Agrawal et al. (2019). According to Alsheibani et al. (2018), “AI refers to both the
intelligence of machines and the branch of computer science devoted to its development”.
While discussing the history of artificial intelligence, Alsheibani et al. (2018) describes it
as the concept of transforming inanimate items into sentient beings capable of reasoning
like humans. Human intelligence functions such as learning, thinking, problem solving,
speech recognition, and planning are all simulated by computer systems. AI has progressed
beyond robotic-like game play and knowledge representation to cognitive automation
Dwivedi et al. (2021). AI is having an ever-increasing impact on corporate enterprises. AI
is the top strategic technology for enterprises, according to Gartner Elliot and Andrews
(2017). Google, Amazon, IBM, and Apple have all employed AI to improve consumer
experiences Brynjolfsson and Mcafee (2017) and productivity Varian (2018) through eas-
ier collaboration Hunter (2018). The global adoption of AI presents a big opportunity
for Vietnamese businesses Nguyen and Tran (2019). Furthermore, the survey predicts
that AI and automation will help the Vietnamese economy to the tune of 1.2 trillion USD
by 2030 Chua and Dobberstein (2021). Despite this excellent demonstration of AI, Soon
Ghee Chua and Dobberstein (2021) study of business leaders indicated that only 6% of
Vietnamese enterprises are consistently investing in AI and automation, compared to more
than 25% in the US. Vietnamese businesses are increasingly lagging behind their worldwide
competitors in the use of AI applications (Towards Purposeful Artificial Intelligence, 2016).
According to a recent Gartner poll Elliot and Andrews (2017), the majority of businesses
are still gathering data on what and how to implement AI. Many companies appear to be
figuring out how to create a business case for AI deployment, as well as the organizational
competencies needed to assess, build, and implement AI solutions, and are confused about
the business applications of AI Ransbotham et al. (2017). As a result, in the Vietnamese
context, a full understanding of AI adoption and associated drivers has yet to be produced.
As a result, the purpose of this research is to acquire a complete understanding of how AI
is being implemented by organizations in Vietnam.

The purpose of this study was to investigate the impact of technological context,
organizational context, and environmental context on the adoption of AI applications.
Data obtained from middle-level AI specialists, Information technology (IT) managers, IT
executives (CIO, CEO), and IT professionals in Vietnam are used to test the study model
and hypothesized linkages. Furthermore, the findings of this study contribute to empirical
research on contextual factors that influence AI application adoption decisions using a
large data set as opposed to a few isolated cases. Given the importance of AI application
adoption in modern organizations and in the future, the findings of this study are also
intended to assist AI application project managers and practitioners in formulating policies
and targeting appropriate contextual factors to support effective AI application adoption.

2. Theoretical Background
2.1. Technology Adoption Perspective

Adopting new technologies is a proven strategy for corporate success Alsheibani et al.
(2018). Previous research has primarily focused on innovative information technology
(IT) or new system adoption at the person and organizational levels Oliveira et al. (2019).
For individuals’ technological acceptance practices, Alsheibani et al. (2018) theory of
reasoned action (TRA) provides profound insight into how a person’s conduct is influenced
and led by their attitudes and norms. Ajzen advances TRA by proposing the theory of
planned behavior (TPB) Ajzen (2012), which asserts that an individual’s behavioral intents
and behaviors are shaped by his or her attitude toward behavior, subjective norms, and
perceived behavioral control. Davis (1985) offers the technology acceptance model (TAM)
based on TRA to discover the factors that influence people’s adoption or rejection of
information technology. It implies that, when users encounter new technology, a variety of
factors impact their decision regarding how and when to use it Davis (1989). Numerous



Economies 2022, 10, 129 3 of 16

research studies have established the validity of TAM and established a link between
behavioral intentions and actual system use Lu et al. (2003). TAM, on the other hand, does
not account for part of an IS’s qualitative elements or societal influences. Thus, Venkatesh
et al. (2016) provide the unified theory of acceptance and use of technology (UTAUT)
to explain users’ intents to use an information system and subsequent usage behavior.
Numerous studies on individual-level IT adoption examine the factors that influence an
individual’s decision to use a certain technology or system, such as Web 2.0 technologies.
Mobile healthcare systems Lumsden and Gutierrez (2013); Mccarthy and Hayes (1981), as
well as electronic banking Picoto et al. (2014). Tornatzky et al. (1990) offer the technology-
organization-environment (TOE) paradigm to describe how technical and environmental
elements influence companies’ technological innovation adoption decisions.

As a result of the TOE, some scholars have begun to investigate the elements that
influence an organization’s IT adoption. For instance, Cristiano et al. (2001) conducted a
survey to ascertain the prevalence of quality function deployment (QFD) in over 400 busi-
nesses in the United States and Japan. They discover that organizational variables such
as motivation, managerial support, and data sources all contribute to the effectiveness
of QFD implementation. Quaddus and Xu (2005) perform a qualitative field study and
find four elements that influence the adoption and spread of knowledge management
systems (KMS) in organizations: organizational culture, managerial support, individual
advantages, and the KMS dream. Co et al. (1998) conduct an analysis of 27 management
variables related to human factors affecting enterprises’ adoption of modern manufactur-
ing technologies (AMT). According to Kosaroglu and Hunt (2009), technical, leadership,
managerial, and administrative capabilities all contribute to the success of new product
development (NPD) projects in the telecommunications’ industry. Oliveira and Martins
(2008) review the research on IT adoption at the organizational level, including the TOE
framework Rogers (1995); Tornatzky et al. (1990) diffusion of innovation (DOI) theory,
Schalkoff (1990) institutional theory, and electronic data interchange (EDI) framework
reviewed by Iacovou et al. (1995).

2.2. The Contexts of AI Adoption

TAM, TPB, and UTAUT have all been extensively used in research on AI adoption.
They are, nonetheless, applicable to particular research. By comparison, the DOI and
the TOE framework are two frequently used theories in organizational-level IT adoption
research Oliveira and Martins (2011); Venkatesh et al. (2003). Rogers (1995) DOI Theory
is one of the earliest social science theories. It originates in communication and is used to
describe how an idea or product gains traction and spreads over time within a particular
demographic or social system. Rogers defines diffusion as the process of disseminating
innovation through time among social system actors Rogers (2010). According to the
thesis, widespread adoption of innovation is necessary for progress and sustainability.
Rogers observes that those who accept an innovation early exhibit distinct characteristics
from those who acquire it later. He divides adopters into five groups: innovators, early
adopters, early majority, late majority, and laggards. Additionally, when it comes to
fostering innovation, methods for different groups of adopters should be distinct.

Several studies are now being conducted to evaluate the uses of artificial intelligence
in specific fields Alsamhi et al. (2018); Macleish (1988); Oliveira and Martins (2011); Wang
et al. (2016). Other works examine the theoretical underpinnings of AI Mitka (2012) as
well as its applications Kouziokas (2017); Xu and Jia (2021). However, a few studies have
been conducted on the adoption of artificial intelligence, particularly at the organizational
level. For instance, Alsheibani et al. (2018) present a study framework for AI adoption,
but this framework is not validated across a sample of enterprises in order to discover
the elements affecting AI adoption. Additionally, their study lacks hypothesis tests and
empirical validation. Due to the pervasive nature of AI and a lack of research on AI
adoption at the organizational level, it is unable to directly build on current theories.
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Adopting AI is a lengthy process that includes not only the procurement of software
and technology but also the establishment of necessary infrastructure and resources over
time. However, there is yet no empirical estimate of AI acceptance. As a result, study
is required to examine the aspects that influence the proclivity of AI to adopt, as well as
an organization’s specific organizational competence and environmental circumstances.
According to the evaluation of studies on AI adoption, the TOE framework is an excellent
starting point for investigating AI adoption not only because it emphasizes the unique
context in which the adoption process occurs, but also because it can be used to evaluate
the elements affecting AI adoption. As a result, this study uses the TOE framework
as its theoretical framework. Additionally, because scholars have combined the TOE
framework and the DOI theory to evaluate IT adoption Oliveira and Martins (2011), this
study takes the same method with AI adoption. As previously stated, the TOE framework
is comprised of three components: the technology context, the organizational context, and
the environmental context.

3. Research Model and Hypotheses

The analysis of the literature suggests that there is a gap in knowledge regarding
the enabling variables that contribute to companies’ adoption of AI, as well as how these
elements interact and influence the choice to deploy AI. Hence, this study presents a
research methodology based on the TOE framework and DOI theory in order to gain an
insight deeper into the success variables influencing AI adoption at the organizational level.
This study categorizes success variables into three categories of artificial intelligence, which
is included technological context, organizational context, and external environment. As
shown in Figure 1, compatibility, relative advantage, and complexity are all factors in the
category of technological features of AI. The organizational context category includes the
following variables: managerial support, organizational size, managerial capability, and
organizational readiness. External environment factors include government involvement,
market uncertainly, competitive pressure, and vendor partnerships. This section proposes
a framework for the modified technology acceptance model to aid in characterizing the
study’s existing research problem and implementing a research model.

Figure 1. Research model.
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3.1. Technological Context

From a technological perspective, technology demonstrates the important components
in AI decision-making. Numerous studies have been conducted on the effect of innovative
traits on the innovation process Chau and Tam (1997); Kwon and Zmud (1987). Although
Rogers (1995) lists five qualities of innovation in DOI theory, namely compatibility, relative
advantage, complexity, trialability, and observability, only the first three are reliably associ-
ated with innovation adoption at the organizational level Tornatzky et al. (1990); Wu et al.
(2007).

Technical Compatibility: technical compatibility is a critical factor in determining
whether an innovation gets adopted Azadegan and Teich (2010); Chong and Bauer (2000);
Dedrick and West (2004); Oliveira et al. (2014). It refers to the extent to which an innovation
and its capacity to deliver value and experience while satisfying the requirements of
potential users are compatible Rogers (1995). Compatibility on a high level can result in
better adoption. Artificial intelligence applications, particularly machine learning, require
vast amounts of data Ding et al. (2015). If AI technology is compatible with existing IT
environments, its installation is likely to be less expensive and time-consuming. As a result,
AI may be more readily adopted. As a result, the following hypothesis is formed.

H1a Technical compatibility is significantly and positively related to AI applications adoption.

Relative Advantage: the relative advantage of an innovation is the degree to which
it is seen as being superior to the strategy it substitutes Yang et al. (2013). Plessis and
Smuts (2021) emphasizes that an organization’s propensity to adopt new technology is
influenced by the perceived advantage of innovation. As a result, new technologies
that provide unambiguous benefits in terms of strategic and operational effectiveness
are more likely to be accepted Greenhalgh et al. (2004). Recently, AI has been used in
customer service chatbots, customer-facing speech and voice services, and automated
network operation El Khatib et al. (2019). These applications help businesses cut operational
expenses, improve service quality, enhance client experiences, and increase efficiency. This
leads to the following hypothesis:

H1b Relative advantage is significantly and positively related to AI applications adoption.

Technical Complexity: the technical complexity of an innovation represents the ex-
tent to which it is considered as being comparatively difficult to comprehend and use
Yang et al. (2013). The complexity of AI stems from its lack of maturity, a lack of techno-
logical competence and IT specialists, as well as its lengthy development period and high
cost. Attewell (1992) observes that enterprises postpone in-house adoption of a complex
technology until they have accumulated sufficient technical knowledge to successfully
deploy and operate it. Currently, AI is relatively new to many businesses, which lack a
good comprehension of AI applications. This leads to the following hypothesis:

H1c Technical complexity is significantly and negatively related to AI applications adoption.

3.2. Organizational Context

Organizational capabilities encompass the leadership, management, and managerial
support resources available to facilitate an innovation’s adoption. These qualities are
typically organization-specific, non-transferable, and ingrained inside an organization.
The resource-based view (RBV) theory can be used to determine which organizational
competencies contribute to AI adoption. According to RBV, corporations gain a competitive
edge by combining economically valued, difficult to copy, and nontransferable resources
Garrison et al. (2015); Hannan and Mcdowell (1984).

Managerial Support: managerial support is crucial for any significant organizational
transformation because it directs resource allocation and service integration Co et al. (1998).
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Scholars have discovered that managerial support is critical for both the implementation of
information systems Müller and Jugdev (2012); Nah et al. (2001); Sanders and Courtney
(1985) and the acceptance of information technology Chong et al. (2009); Kim et al. (2015);
Teo et al. (2006). Elbanna (2013) contends that managerial support must be consistent and
continuous throughout the duration of a project’s implementation, or even the project
would fail. This leads to the following hypothesis:

H2a Managerial support is significantly and positively related to AI applications adoption.

Managerial Capability: the term “managerial capability” refers to a manager’s ability
to influence, motivate, and empower employees to contribute to the organization’s perfor-
mance and success House et al. (2002). It entails decision-making, establishing a strong
workplace and culture, efficiently accomplishing goals and objectives, and cultivating
creativity and innovation. In the area of information technology, managerial competency
encompasses both project coordination and education & training. Firms with good manage-
ment capabilities can overcome these impediments and quickly adopt new technologies.
As a result, the business may quickly implement AI technologies and boost its performance,
gaining a competitive edge. This leads to the following hypothesis:

H2b Managerial capabilities are significantly and positively related to AI applications adoption.

Organization Size: Lin and Lin (2008) the size of an organization has a significant
impact on its ability to accept new innovations. Numerous studies have discovered that
large organizations invest in AI more quickly and at a greater scale than other forms of
investments. We propose that organization size is related to the organizational context,
which has a direct impact on AI adoption. This leads to the following hypothesis:

H2c Organizations size is significantly and positively related to AI applications adoption.

Organizational Readiness: organizational readiness is also important when it comes
to adopting AI. According to a Narrative Science survey, 59 percent of firms that are
proficient in big data also use AI technologies Assael (1995). As previously mentioned, AI
adoption implementations are related not only to the organization’s technical readiness but
also to the skill of its people resources. As a result, we believe that the availability of AI
expertise, data required to train personnel in the use of AI, and technical understanding
promotes the spread of AI. This leads to the following hypothesis:

H2d Organizational readiness are significantly and positively related to AI applications adoption.

3.3. Environmental Context

The role of institutional contexts in defining organizational structure and behaviors
is emphasized by institutional theory Scott (2008). Firms are influenced by their external
environment, according to Hutajulu et al. (2021). As a result, organizational decisions
are influenced not just by rational efficiency goals, but also by social and cultural issues,
as well as concerns about legitimacy. The external environment can both induce and
dissuade enterprises from adopting new technologies. External isomorphic pressures from
the government, competitors, and customers are likely to drive firms to adopt and use AI
Gibbs and Kraemer (2004).

Government Involvement: government involvement is critical in promoting IT in-
novation Wang et al. (2022). The government could implement supportive strategies and
policies to encourage the commercialization of new technology, as well as new rules for
their development. According to Al-Hawamdeh and Alshaer (2022), the adoption of new
technology is a complex process, and the framework established by the government is
extremely important. This leads to the following hypothesis:
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H3a Government involvement is significantly and positively related to AI applications adoption.

Market Uncertainty: market uncertainty factors, such as product demand, market
competition, and consumer loyalty, are beyond the control of enterprises but can have
an impact on their performance Hao et al. (2018). Many AI applications and applications
are still in their infancy at the moment, and there is a scarcity of suitable professional
and technical experts, but AI has already demonstrated significant vitality and provides
enterprises with additional competitive prospects. In addition, some complicated activities,
such as fingerprint identification and fact detection, are only suitable of being performed
by AI programs. This leads to the following hypothesis:

H3b Market uncertainty is significantly and positively related to AI applications adoption.

Competitive Pressure: competitive pressure is a motivator for technological innova-
tion. Adopting new technology is frequently a strategic necessity in order to compete in the
market Dutton (2018); Lippert (2006). Firms’ competitive advantages are not permanent
and long-lasting, but rather transient. According to Porter and Millar (1985), IT innovation
can change industry structure, change competition rules, exploit new approaches to out-
perform rivals, and transform the competitive environment. Firms who successfully use
emerging AI applications to improve their products and services will gain a competitive
advantage over their rivals. This leads to the following hypothesis:

H3c Competitive pressure is significantly and positively related to AI applications adoption.

Vendor Partnership: According to Assael (1995), vendor participation can consider-
ably influence the rate of adoption and diffusion of innovative products. Vendors require a
massive quantity of data to train their AI technologies, which frequently include sensitive
consumer information. As a result, vendors are frequently unable to market AI solutions
that are ready to use; instead, they must collaborate closely with businesses (their clients) to
do AI training both during and after deployment. Partnerships between vendors can have
a significant impact on the AI adoption process. As a result, AI providers can effectively
sell AI applications. This leads to the following hypothesis:

H3d Vendor partnership is significantly and positively related to AI applications adoption.

4. Research Methodology
4.1. Sample and Data Collection

For empirically testing the suggested framework, we first conducted a thorough review
of the literature, followed by a quantitative approach that collected data via a survey. A
detailed analysis of scholarly works on technology readiness and AI was performed. Items
accepted and tested in earlier studies were utilized to assist cumulative research Ahmadi
et al. (2015); Cruz-Jesus et al. (2017); Lai (2017). Items assessing management hurdles and
organizational preparedness factors were created specifically for this study by taking earlier
research into account Picoto et al. (2014); Wright et al. (2017). To the best of our knowledge,
despite the fact that the TOE has been employed in multiple IT adoptions at the company
level, none of the constructs used in these studies were focused on AI adoption. As a result,
a pre-test survey was conducted to check that the items were appropriate for evaluating
framework dimensions in the context of this study.

In order to reach a wide number of possible participants, this study conducted a mail
survey of significant Vietnamese enterprises. To verify content validity, the questionnaire
items were changed based on the results of the expert interviews and polished by thorough
pre-testing. Eleven constructs (Compatibility, Relative advantage, Complexity, Managerial
support, Organization size, Managerial capability, Organizational readiness, Government
involvement, Market uncertainty, Competitive pressure, and Vendor partnership) were
operationalized as indicators of a total of 37 items. To measure these items and collect most
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responses, a 7-point Likert scale ranging from “I strongly agree“ (7 points) to “I strongly
disagree” (1 point) is utilized. Senior managers, particularly those directly in charge of
information systems in both private and public companies in Vietnam, are the intended
participants. The goal was to recruit a representative sample of Vietnamese industry from
a wide range of levels, backgrounds, gender and age groups, and geographical areas.
The usage of the LinkedIn.com database gives advantages such as the ability to reach a
big number of respondents with extremely diversified characteristics such as position,
educational level, and geographical location within Vietnam, allowing the results to be
more generalizable. In total, 500 invitations were sent to all industries in Vietnam. The total
number of LinkedIn responses was 203, with 10 missing data points. By excluding these
responses, the number of valid responses was reduced to 193, which is still suitable as a
valid sample for informing the quantitative analysis Chen (2018).

4.2. Data Analysis

To investigate sample data and assess model fit, this study employs structural equation
modeling (SEM). SEM is a technique for performing high-quality statistical analysis on mul-
tivariate data that was developed in the second generation Chin and Marcolin (1995). SEM is
carried out using Analysis of Moment Structures (AMOS), a covariance-based technique for
analyzing models incorporating variables with measurement error Gefen and Straub (2000). To
analyze factor analysis and idea linkages, the study employs a combination of multivariate and
regression analysis. SmartPLS 3.3 is used in this work to examine the measurement model and
structural model. The measurement model depicts the relationships between constructs (latent
variables) and their indicators (observed variables), whereas the structural model depicts the
latent variables’ potential causal relationships Chin et al. (2003).

5. Results
5.1. The Measurement Model

The measurement model’s adequacy is determined by examining the reliability of
individual items, construct validity, convergent validity, and discriminant validity of the
measuring instrument. In the proposed model, eleven latent constructs (factors) and associ-
ated observable variables (indicators) are measured. Then, a factor analysis is performed to
discover and corroborate the indicators under each construct about AI adoption success
factors. Some signs are eliminated because their factor loadings are too low (0.4) or they
are part of crossing loadings. The KMO coefficient is 0.829 (more than 0.5). The outcome of
Bartlett’s testing (Sig. = 0.000) suggests that the factors analysis is appropriate. From the
37 observation variables, eleven factors are extracted. The extracted variance is 72.168 per-
cent (more than 50%). Confirmatory factor analysis (CFA) results show that all routes
connecting the remaining observable variables and the constructs are significant at p <
0.001. According to Fornell and Larcker (1981), the percentage of extracted variance explains a
model’s construct validity. The overall variance explained by each indicator ranges between
50% and 80%. Table 1 displays the Cronbach’s alpha (CA) value for each construct. They are
all greater than 0.7, the usually accepted cutoff Kline (2013). The internal consistency of the
scales is measured by composite reliability (CR). It is a more precise measure of dependability
Chin and Gopal (1995). For developing appropriate model reliability, the recommended value
of CR is 0.7 Gefen and Straub (2000). All of the CR values for each construct are more than the
threshold. As a result, the model’s build reliability is established. Convergent validity measures
the consistency of many items. The Average Variance Extracted is used to calculate it (AVE).
Table 2 represents the AVE values for each construct. They are all greater than the acceptable
cutoff of 0.50 Fornell and Larcker (1981). This suggests that the latent constructs capture at
least 50% of the measurement variation of the indicators on average Chin and Gopal (1995).
Furthermore, all computed standard loadings are statistically significant at p < 0.001, which is
greater than the allowed magnitude of 0.50 Chin and Marcolin (1995). As a result, the model’s
measurements show significant convergent validity.
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Table 1. Items and descriptive statistics.

Critical Sub-Critical Code CA R-Square Loading

Technological context

Technical compatibility CPA 0.926
CPA1 0.753 0.868 ***
CPA2 0.791 0.890 ***
CPA3 0.837 0.915 ***
CPA4 0.755 0.869 ***

Relative advantage RAD 0.935
RAD1 0.549 0.741 ***
RAD2 0.548 0.740 ***
RAD3 0.695 0.834 ***
RAD4 0.725 0.851 ***

Technical complexity CPL 0.831
CPL1 0.744 0.863 ***
CPL2 0.839 0.916 ***
CPL3 0.733 0.856 ***
CPL4 0.749 0.865 ***

Organizational context

Managerial support MSU 0.808
MSU1 0.708 0.841 ***
MSU2 0.681 0.825 ***
MSU3 0.716 0.846 ***

Managerial capability MCP 0.911
MCP1 0.751 0.866 ***
MCP2 0.812 0.901 ***
MCP3 0.696 0.834 ***

Organization size ORS 0.831
ORS1 0.596 0.702 ***
ORS2 0.689 0.816 ***
ORS3 0.682 0.866 ***

Organizational readiness ORE 0.869
ORE1 0.695 0.834 ***
ORE2 0.725 0.851 ***
ORE3 0.708 0.841 ***
ORE4 0.681 0.825 ***

External environment

Government involvement GIV 0.875
GIV1 0.716 0.689 ***
GIV2 0.602 0.825 ***
GIV3 0.735 0.789 ***

Market uncertainty MUC 0.892
MUC1 0.689 0.737 ***
MUC2 0.682 0.896 ***
MUC3 0.593 0.744 ***

Competitive pressure CPR 0.901
CPR1 0.786 0.769 ***
CPR2 0.753 0.920 ***

Vendor partnership VPA 0.809
VPA1 0.493 0.702 ***
VPA2 0.786 0.887 ***
VPA3 0.753 0.868 ***
VPA4 0.787 0.887 ***

Note: *** indicates significant at 1% level of significance based on t-statistics.
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Table 2. Result of measurement model.

Construct Composite Reliability (CR) Variance Inflation Factor (VIF) Average Variance Extracted (AVE)

Technical compatibility (CPA) 0.926 1.155 0.757
Relative advantage (RAD) 0.936 2.659 0.784
Technical complexity (CPL) 0.841 1.741 0.641
Managerial support (MSU) 0.929 1.275 0.766
Managerial capability (MCP) 0.813 1.546 0.593
Organization size (ORS) 0.901 2.293 0.752
Organizational readiness (ORE) 0.837 1.522 0.633
Government involvement (GIV) 0.871 2.205 0.629
Market uncertainty (MUC) 0.876 2.326 0.701
Competitive pressure (CPR) 0.852 2.490 0.677
Vendor partnership (VPA) 0.904 1.755 0.705

The Fornell–Larcker criterion is used to determine the discriminant validity of con-
structs, which states that the square root of AVE should be greater than the correlations
between the components Fornell and Larcker (1981). As illustrated in Table 2, the square
root of the AVE of each latent construct, which is bolded on the diagonal, is greater than
the correlations between the latent constructs in the corresponding columns and rows. As
a result, the constructs’ discriminant validity is established. Additionally, the inter-item
correlations are all less than 0.90 Bagozzi et al. (1991), demonstrating that each concept is
different. While certain constructs have a marginally low level of construct validity, the
majority of constructions have adequate levels of validity and reliability. Thus, the model’s
constructs’ validity and reliability are established.

Multicollinearity occurs when there is a significant degree of correlation between predictor
variables, resulting in unreliable and unstable regression coefficient estimations. The variance
inflation factor (VIF), which is defined as the amount by which the standard error increases
due to collinearity, is used to diagnose multicollinearity. Examining the correlation table for
indications of multicollinearity amongst the eleven latent variables (Table 2) reveals that all VIF
with latent variable scores are less than the threshold value of 5.0 Tabri and Elliott (2012). VIF
values vary from 1.155 to 2.659, as shown in (Table 3) This indicates that the predictor variables
are not multicollinear.

Table 3. Latent variable correlations.

Construct 1 2 3 4 5 6 7 8 9 10 11

CPA 0.883
RAD 0.720 ** 0.895
CPL 0.311 ** 0.323 ** 0.823
MSU −0.441 ** −0.329 ** −0.108 0.866
MCP 0.192 ** 0.289 ** 0.442 ** 0.018 0.791
ORS 0.512 ** 0.571 ** 0.535 ** −0.211 ** 0.379 ** 0.876
ORE 0.259 ** 0.258 ** 0.545 ** −0.07 0.463 ** 0.411 ** 0.785
GIV 0.541 ** 0.590 ** 0.504 ** −0.144 * 0.404 ** 0.591 ** 0.443 ** 0.802

MUC 0.576 ** 0.669 ** 0.390 ** −0.281 ** 0.270 ** 0.585 ** 0.296 ** 0.544 ** 0.835
CPR 0.644 ** 0.688 ** 0.312 ** −0.264 ** 0.283 ** 0.547 ** 0.286 ** 0.519 ** 0.654 ** 0.819
VPA 0.554 ** 0.568 ** 0.240 ** −0.285 ** 0.208 ** 0.476 ** 0.213 ** 0.379 ** 0.501 ** 0.601 ** 0.839

Note: Bold numbers on the diagonal are the square root of the AVE. ** Correlation is significant at the 0.01 level
(2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

5.2. Assessing the Structural Model and Hypotheses Testing

As validate the hypothesized relationships, an examination of the structural model was
conducted. The structural model was then evaluated using the structural equation model
SEM-PLS. The path coefficients, coefficient of determination, and predictive significance of
the measurement model were evaluated in order to examine and validate it. The method
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of path coefficients encapsulates the relationships between the constructions. As shown
in Table 4, 11 hypotheses (H1a, H1b, H1c, H2a, H2b, H2c, H2d, H3a, H3b, H3c, and H3d)
have significant paths leading to the endogenous variable, whereas two hypotheses (H2c,
and H3c) are rejected (path coefficients < 0.20). R2 is the coefficient of determination and
f2 denotes the size of variation explained by all external constructs in the endogenous
construct. In Leguina (2015), if the results of a value greater than 0.670 are considered
“substantial”, 0.330 are considered “moderate”, and 0.190 are considered “weak”. Our
findings indicate that the R2 value is 0.872, which indicates a high level of prediction
accuracy. Leguina (2015) finally defines f2 values greater than 0.35 as “high”, values
between 0.15 and 0.35 as “medium”, values between 0.02 and 0.15 as “low”, and values less
than 0.02 as “weak”. Our research found that the f2 of (CPA, ORE, MCP, and MSU) is high
and the f2 of OS is weak (less than 0.02); however, the f2 of CPR and GIV is less than 0.02.

Table 4. Hypothesis test results.

Hypothesis Paths Standard Path Coefficient (β) p-Value Results

H1a Technical compatibility —> AI adoption 0.803 *** Support
H1b Relative advantages —> AI adoption 0.157 0.019 ** Support
H1c Complexity —> AI adoption −0.223 *** Support
H2a Managerial support —> AI adoption 0.206 0.011 ** Support
H2b Managerial capability —> AI adoption 0.416 *** Support
H2c Organizational size —> AI adoption −0.028 0.703 Not support
H2d Organizational readiness —> AI adoption 0.758 *** Support
H3a Government involvement —> AI adoption −0.304 *** Support
H3b Market uncertainty —> AI adoption 0.149 0.047 ** Support
H3c Competitive pressures —> AI adoption 0.036 0.519 Not support
H3d Vendor partnerships —> AI adoption 0.113 0.048 ** Support

Note: *** and ** indicates significant at 1% and 5% level of significance based on t-statistics.

6. Discussion

The main aim of the study was to identify the critical factors affecting artificial in-
telligence application to adopt in Vietnam. To achieve the research objective, the study
focused on the TOE framework and DOI theory in order to gain an insight deeper into the
success variables influencing AI adoption at the organizational level. The study employed
Structural Equation Modeling is applied to analyze the data. The results indicate that man-
agerial capability is significantly related to innovation attributes of AI. Stronger managerial
capability creates a better IT environment for AI adoption and reduces the difficulty of
applying AI technologies. These results suggest that organizational size and competitive
pressure do not play a role in the process of AI adoption, but government involvement and
vendor partnership are critical factors for AI adoption. This means that good vendors and
supplier partnerships can help firms adopt AI and government involvement can influence
AI adoption. However, there is no positive relationship between AI adoption and market
uncertainty and competitive pressure, respectively.

Given that conceptual framework for AI acceptance is still in the early stages, one
goal of this study was to investigate AI adoption from an organizational standpoint. In
terms of organizational environment, the data show that managerial support is one of the
most powerful predictors of AI adoption. The findings of this study are consistent with
those of Leach (2021); Zhu and Kraemer (2005), who found that managerial assistance had
a considerable beneficial impact on new technology adoption. Furthermore, our findings
provide additional evidence of the importance that individuals play in AI adoption. The
importance of organizational preparedness implies that technological capabilities such as
technology infrastructure, data structure, and human capital are crucial in determining
whether or not a business adopts AI. According to the findings, organizations with a higher
level of preparation tend to achieve a higher level of AI adoption. Hence, one of the
characteristics of AI adopters is the attempt to develop hybrid capable abilities to support
Artificial Intelligence technologies. In the instance of Vietnamese organizations, this may
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be explained by implying that they may have held sufficient related expertise to overcome
AI obstacles.

Surprisingly, this study discovered that the relationship between organization size
and AI adoption was not statistically significant. These findings contradict those of
Walczak (2018), who discovered that organization size had a favorable effect on AI and
the adoption of innovative innovations. This could be explained by the rise of smaller
technology-inspired start-ups. Furthermore, large organizations may be hampered by
structural inertia as a result of having several levels of bureaucracy. According to the
findings of this study, AI adoption is not a phenomenon dominated by large organiza-
tions. Our findings show that using organization size as a significant factor to better
understand AI adoption is insufficient. This could be explained by the rise of smaller
technology-inspired start-ups.

7. Conclusions

This study is an early investigation of AI applications adoption at the organizational
level, incorporating well-established theories into a novel innovation. Our research pro-
vides a foundation for future research on why and how organizations use AI. It can be used
as a starting point for further study on AI adoption in various industries. This contribution
demonstrated the importance of offering guidance and tools for investigating the topic of
AI adoption. The levels of abstract idea provide an overview of potential study topics. Our
research makes significant contributions from both theoretical and practical perspectives,
as well as offering up exciting future research options. The current study provides different
insights into the underlying components that explain the AI-specific aspects that influence
an organization’s intention to adopt AI. This contribution begins with a definition of AI
from an IS and organizational standpoint. Furthermore, this study adds to the current
body of knowledge about technology adoption. To give an extended framework, this
study blends known theories and in-depth research literature in AI. As the literature study
demonstrated, little research has been conducted to identify what factors lead enterprises
to adopt AI. As a result, this study supports the organizational context and innovative
features that influence AI adoption. The findings confirm that IS theories (TOE and DOI)
as a theoretical underpinning, as embedded in the AI adoption framework, can provide a
more comprehensive understanding of successful AI adoption at the organizational level,
but it has some limitations. First, the study was conducted using data from Vietnamese
managers, which is a tiny sample size compared to the overall firm’s AI application adop-
tion. Therefore, the other elements such as the impact of government laws on AI adoption
may be the subject of future research. Subsequent research should examine these issues
and expand on the findings of this exploratory research to better understand the acceptance
of AI and their real application in Vietnam and other scenarios.
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