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Abstract: This work describes how the combination of the mistakes committed by a group of pre-
service teachers when solving a Fermi problem, with the representation of the temporal analysis
of their resolutions, can offer more in-depth information about their conceptual misconceptions
regarding mathematical and modelling concepts. The combined representation allows knowing
when mistakes occur and provides a powerful tool for instructors to adapt the teaching–learning
processes of mathematics at all levels of education. Our study is based on a recent categorisation of
students’ mistakes, together with the creation of a new representation tool, called MAD+, that can
combine all this information. The macroscopic view provided by the MAD+ diagrams gives insight
into the context in which the mistakes take place and makes the analysis of the resolution of a Fermi
problem more efficient.

Keywords: Fermi problems; mathematical modelling; modelling activity diagrams; mathematics
education; estimation

1. Introduction and Theoretical Framework

In recent years there has been an increasing interest in the introduction of real context
and modelling activities in training at all educational levels [1]. There is widespread agree-
ment in the international education community that applied problems and mathematical
modelling play an important role in education at all levels. The inclusion of real-world
problems in mathematics education has proven to be an effective tool in the education of
future citizens [2]. However, behind this consensus there are also many discussions on how
to integrate mathematical modelling into mathematics teaching and learning processes.
There is still a lack of research and evidence on the effects of integrating modelling tasks
in schools, although some medium and large-scale projects have already been carried
out [3–8]. Rita Borromeo, in her book Learning how to teach mathematical modeling in school
and teacher education [9] shows how important it is for future primary school teachers
to learn how to teach mathematical modelling. This process involves the acquisition of
modelling skills and their associated teaching skills. However, these competencies cannot
be acquired if the associated mathematical competencies are not achieved. That is to say,
those teachers who have conceptual and procedural mathematical errors will see their
ability to apply modelling in their future classes diminished.

Mathematical modelling research studies show that, although there is consensus
that modelling processes have a cyclical character, this way of representing these pro-
cesses do not explicitly show how students perform their work while solving a modelling
task [10–12]. In particular, Ärlebäck’s Modelling Activity Diagrams (MAD) [13] are repre-
sentations that provide a view of the macroscopic behaviour displayed by learners when
solving a Fermi problem. Ärlebäck also states that the cyclic nature of the modelling pro-
cess is somehow artificial and by using his representation the complexity when modelling
can be simplified.
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The process of solving a mathematical modelling task can be represented by different
modelling cycles and some of them include representations of students’ cognitive pro-
cesses [14,15]. However, this information may not be sufficient to observe all the decisions
and mistakes that take place when solving a modelling task. To overcome this limitation,
in this paper we want to use a temporal analysis of students’ resolutions when solving a
Fermi problem paying special attention to the mistakes students make during its resolution
process and to the moment in which they occur.

1.1. Estimation, Mathematical Modelling and Fermi Problems

Hogan and Brezinski [16] refer to numerosity as the estimation of magnitudes and they
state that this involves a single estimation skill. They claim that measurement estimation
should be approached as an independent skill as it does not automatically follow from
general mathematical development. However, Albarracín and Gorgorio [17] stated that
another type of estimation activity is the calculation of quantities in predictive or estimation
activities using models that represent the real situation. The authors defend that, in the
absence of a specific procedure to determine the exact value of a quantity, the situation can
be simplified to an equivalent one that represents it. This may be the case when estimating
the number of objects in a container. In addition, there are real-life situations that do not
require an exact quantity to be estimated, but rather in which an estimate based on a range
of acceptable values can be accepted.

When a situation is simplified, a mathematical model is produced. This allows us to
obtain an approximation that can be somehow valid depending on whether the model
chosen corresponds to reality. In this sense, the result obtained is an estimate of the quantity
requested. In our research study, we use a problem related to this type of activity that links
the estimation of a quantity with the representation of a real situation through a model.

Ärlebäck [13] defines Fermi problems as “Open, non-standard problems requiring the
students to make assumptions about the problem situation and estimate relevant quantities
before engaging in, often, simple calculations” (p. 331). The problem proposed in our work
satisfies this definition and therefore both the results of the literature concerning modelling
tasks and Fermi problems can be applied.

Turning attention now to the studies that have been carried out on modelling skills [18,19],
modelling competencies involve the steps of the modelling process but go beyond this to
“include skills and abilities to perform modelling processes appropriately and goal-oriented as
well as the willingness to put these into action” [20] (p. 117). The focus of our study is centred
on the modelling processes and, even though we can find the use of modelling routes ([21–24]),
we will centre on the Ärlebäck [13] Modelling Activity Diagram framework as we will see in
the following sections.

The reason why we choose Arleback’s [13] approach instead of Borromeo Ferri’s
modelling cycle [22] is that in MAD, the “making model” activity incorporates parts of
both “simplifying the task” and “anathematising” of the modelling cycle. In our particular
problem is hard to separate these two activities. The same happens when considering the
“interpreting” and “validating” activities that in the modelling cycle are clearly separated.
In fact, the basis of Arleback’s contribution is, as in our case, to avoid ambiguity to separate
the mentioned activities.

Different authors have characterised the strategies which appear in the schemes
presented by the students when solving Fermi problems regarding estimation of quan-
tities [17,25,26]. These strategies will be considered in the analysis of the students’ pro-
ductions during the development of this research work. In particular, the concentration
measurements strategy (density), the iteration of a unit strategy and grid distribution model.
As we will see when we analyse the students’ resolutions, there is another model that arises
in this particular case, the surface division model, that is, to divide the surface of the ball pit
by a projection of the ball.
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1.2. Difficulties, Mistakes and Obstacles When Solving a Modelling Task

In the last decades, several authors have worked to identify the difficulties that solvers
have with certain stages of the modelling process during a modelling task. Julie and
Mudaly [27], in an experiment with secondary school students, revealed an absence of
the processes of returning to the real problem situation and checking the suitability of the
solution. Kaiser, Schwarz and Tiedemann [28] found that most of the prospective teachers
of their experiment, who had knowledge about modelling at various levels, did not consider
the validation phase in the modelling process. Biembengut and Faria [29] concluded that
most of the teachers and students of mathematics teacher-training participating in their
study had difficulties not only in reading and understanding the prescribed modelling
task, but also in remembering the mathematical knowledge required to solve it. Socas,
Ruano and Domínguez [30] analysed the mathematical modelling process in terms of the
difficulties and errors of a group of secondary school students. They conclude that a high
number of errors were due to not completing the problem by giving a solution and that,
in addition, a considerable number of errors occurred due to only representing the situation
graphically without knowing how to interpret it in order to answer the given question. Şen
Zeytun, Çetinkaya and Erbaş [31] determined that only some teachers used the original
context to verify their results.

Additionally, in the sense of blockages during a modelling task, Stillman, Brown,
and Galbraith [32] applied the Galbraith et al. [33,34] framework for identifying these
blockages that hinder progress in transitions in the modelling process applied to secondary
school students.

Taking one step further, there exist some attempts to organise, classify or categorise the
origin and kind of mistakes when solving a modelling task. Couch and Haines [35] analyse
the skills of mathematics undergraduate students while studying a course in mathematical
modelling. They are at an intermediate stage between the expert and the novice, whose
modelling capabilities are affected by the limitations of their domain knowledge in both
organisation and content. They identify four areas in which these students still have
difficulties and their answers are classified as follows: difficulty in maintaining the balance
between the real world and the abstract model; choosing an appropriate mathematical
model; deploying appropriate mathematical concepts and procedures to solve the problem;
not relating the model results to the real world.

Große [36] analyses the difficulties with real problems and identifies the following
aspects as the origin of these obstacles: (a) learners do not adequately meet the intra-
mathematical requirements to deal with the problem; (b) students have difficulties in
extracting the relevant information, and (c) learners are overwhelmed by the diversity of
requirements in the sense of the number of phases in a modelling process since in general
terms they are used to doing only repetitive exercises of certain processes.

Klock and Siller [37] developed a categorisation that provides an overall picture of the
difficulties students have in solving a modelling task at each phase of the cycle. They based
their framework on the Maaß [38] classification and all named mistakes, blockages [33,34]
and difficulties [32] were classified.

Most recently, Moreno, Marín and Ramírez-Uclés [39] established a system of mistake
categories in the different phases of the modelling process and the coherence between
them, based on the analysis of the modelling models and the background studies. This
is organised in the competencies of simplifying, mathematising, solving and interpreting.
This categorisation, very similar that the one used by Klock and Siller, has recently been
used in a research study involving pre-service teachers and the resolution of a Fermi
problem [40]. This categorisation will be considered also in the analysis of results presented
in this paper.



Educ. Sci. 2021, 11, 747 4 of 19

1.3. Temporal Analysis of the Resolution Process

As we stated before, the resolution process of a modelling problem is dynamic and
cyclic. The students can shift the task with no completion of the previous phase and they
can repeat the whole process several times before the problem is completely finished [41].

Several authors have determined the different phases in which problem solving reso-
lution, and in particular modelling solving, are organised over time. Schoenfeld [42,43]
analysed the behaviours that solvers develop when working on problems that cannot be
solved simply by remembering and applying known solving patterns. In this way, Schoen-
feld tried to categorise the behaviours in periods of time, during which an individual or a
problem-solving group is engaged in one large task or a closely related body of tasks in the
service of the same goal. These periods are reading or rereading the problem, analysing the
problem, exploring aspects of the problem, planning all or part of a solution, implement-
ing a plan and verifying a solution. The introduction of the time as a variable, together
with the presentation of the periods, helps to understand the non-linear nature of the
problem-solving processes. Goos and Galbraith [44] used a variation of Schoenfeld’s analy-
sis to study the nature of individual and interactive strategies used when learners work
together on solving problems. Additionally, Scott and Stacey [45] followed Schoenfeld’s
methodology to study how students use the strategies in a problem solving situation.

Later, Brown [46] performed a timeline diagram that records the detail of the Schoen-
feld periods and shows the progress of the solution as the students proceed. This dia-
gram allows the researcher to focus more globally on the periods to find cognitive and
meta-cognitive differences in the resolutions made by different students. In addition,
Ärlebäck [13] developed and made use of an adapted version of the representation of the
Schoenfeld periods over time to get a schematic picture of the problem-solving process of
students working on a Fermi problem, the so-called Modelling Activity Diagrams (MAD).
Ärlebäck identifies six modelling sub-activities to be used as codes for the activities done by
students when solving a Fermi problem. These are reading (R), making model (M), estimat-
ing (E), calculating (C), validating (V) and writing (W). Recently, Albarracín, Ärlebäck, Civil
and Gorgorio [11] extended Ärlebäck’s diagrams representing the sub-problems elaborated
by the students to achieve their objective within the activity.

Albarracín et al. [11] affirmed that, although the modelling process involved in arriving
at a solution to a Fermi problem is complex, the extended MAD allows the researcher to
reveal the internal structure of the proposed problem, thus more clearly showing the work
pattern of the students. Cai et al. [47] explained that the modelling cycles unintentionally
hide much of the real work of mathematical modelling. In this line, Albarracín et al. [11]
supported that the extended MAD diagrams can be a helpful tool to visualise some of the
hidden elements, and that “previously seemingly messy and haphazard problem-solving
processes can be understood as highly structured” (p. 228). Thus, MAD diagrams can give
a clue as to where student mistakes may be and why they change of phase or why they
start another modelling cycle.

However, we propose an extension of Ärlebäck’s [13] Modelling Activity Diagrams
that includes the temporal location of the mistakes, by following the classification of
Moreno, Marín and Ramírez-Uclés [39], so that more information about Fermi’s problem-
solving process can be obtained. This extension can be made due to the correspondence
between MAD sub-activities and Moreno, Marín and Ramírez-Uclés categories. According
to these authors, errors cannot always be identified with specific stages of the modelling
cycle and therefore they focus more on the actions made by the students, as reported by
MAD. Figure 1 contains information on how the mistake classification, the MAD sub-
activities and the transitions in the modelling cycle relate to each other. Although we will
go into these relationships in more depth later, we will briefly outline them now.

The (a) Idealising transition on the modelling cycle corresponds to Type 1 mistake and
contains Estimating and Modelling sub-activities in MAD. The (b) Mathematising transition
corresponds to Type 2 mistake and part of the Estimating and Modelling sub-activities in
MAD. The (c) Investigation of the model transition on the modelling cycle corresponds to
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Type 3 mistake and part of the Calculating sub-activity in MAD and the (d) Interpretation
transition on the modelling cycle corresponds to Type 4 mistake and part of the Validating
sub-activity in MAD.

Figure 1. Modeling cycle adapted from Blum [48] and Kaiser [49]. (a) Idealising. (b) Mathematising.
(c) Investigation of the model. (d) Interpretation. T1, T2, T3 and T4 correspond to Moreno, Marín and
Ramírez-Uclés [39] categories. MAD sub-activities are named in violet colour.

As we can observe, MAD sub-activity Modelling incorporates parts of both “Idealising”
and “Mathematising”. As Ärlebäck [13] states, the reason of this fusions is that is often
difficult to separate these two actions. His decision to separate the estimation sub-activity,
which is completely in line with our view, comes from the importance that this action has
in relation to Fermi problems and is therefore analysed separately in his diagrams.

In the same way, the distinction in the error classification of the models chosen by the
students when solving the task and which are reflected in the category Type 2, will allow us
to make a more detailed study, which we will see later in Section 3.

In the works mentioned before, the authors do the coding and graphical representation
of the diagrams manually, which requires an investment of time and effort to find additional
graphical representation tools when analysing the student’s behaviour. Pla-Castells and
García-Fernández [41] presented a tool that simplifies the registration of a problem-solving
session and the representation of the corresponding diagrams. This tool is a computer
application which they call Task Time Tracker (TTT).

The aim of the present research work is to investigate the potential of enhanced
Modelling Activity Diagrams (MAD+) in the detection of obstacles and conceptual and
procedural mistakes made by students when solving Fermi problems. For this purpose,
a tool has been developed that allows these diagrams to be modified, adding a visualisation
layer of the mistakes made by students in each of the phases.

The research question that arises at this point is: “Can MAD diagrams combined
with the temporal representation of mistakes provide more in-depth information on Fermi
problems’ resolution processes?”.

This objective will be addressed through the following questions:

- Can the classification made by Moreno, Marín and Ramírez-Uclés [39] be adapted
to the problem proposed in our research? Additionally, if this is the case, can this
classification be used as the basis to detect students’ mistakes?

- Does the MAD+ diagrams allow us to see which phases are the most conflicting?
What interpretation can we give to the presence of mistakes of a category in the
different phases of the process described in the MAD+?
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2. Materials and Methods

In this section we present the sample of students we work with and the specific Fermi
problem they had to tackle.

2.1. Sample

The study was carried out on 12 third grade prospective teachers of the degree in
Primary School Education of a public university of Spain. It was performed by four groups
of mixed gender students (ages 20 to 21) randomly distributed among the students of the
natural class group, which in the following will be referred to as Groups A, B, C and D,
respectively.

The Fermi problem proposed for this study was distributed as a voluntary assignment
as part of the course activities and was carried out by video conference through a virtual
meeting that was recorded. Students were also asked to submit the written resolution of
the assignment as part of the activity.

2.2. The Fermi Problem

The problem provided to the students was about estimating the number of objects
needed to fill a large volume and was presented to the students using a familiar context.
The problem statement was the following:

Vincent takes his little brother to a ball pit to celebrate his ninth birthday. When they
enter, they realise that the pool has been filled with new balls. Vicent’s brother thinks
that they’ve bought a lot of balls, probably more than 1000! Do you think Vicent’s
brother has exaggerated the number? Calculate approximately how many balls fit in
the pool if you have the diagram shown in Figure 2.

Figure 2. Diagram of the ball pit.

The students solved the task without any help from the instructors. At the time of the
online meeting, the students were alone and the only clarification accompanying the task
statement was the following: “The task is solvable. All data can be obtained from the problem
statement and the scheme”.

2.3. Methodology

As we stated before, the aim of our research is to provide new tools to improve the
training of prospective teachers. All the analysis that will be discussed in this work is based
on the interactions between the student members of the groups when solving a Fermi
problem. The study of the discussions and interactions during the problem-solving process
within a workgroup can be of great interest [50–52].

Although the written productions of the groups were collected to analyse what the
students considered to be their best resolution, the analysis in this research work is based
mainly on the video recordings and on the transcription of the discussions held during
the resolution of the task. On the one hand, it is necessary to detect the moment in time
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when the mistakes occur, and, on the other hand, it is important to analyse the resolution
processes carried out by each of the groups.

For the detection of mistakes, it was necessary to have transcriptions of the discussions
recorded in the video conferences. These were made by using specific software and
reviewed by the authors to adapt the interventions to natural language in order to avoid
informal comments and grammatical mistakes. We detected the mistakes in the text of the
transcript so that their timestamp would be recorded. The examples presented in this paper
have been translated from Spanish for ease of understanding, and the original dialogues
can be found in Appendix A.

The MAD+ Diagrams will be constructed using the TTT software [41] which, allows
us to create time diagrams that superimpose a layer with the mistakes observed in the
analysis of the student’s resolution processes.

Our study has two differentiated steps. On the first step, we adapt the classification
made by Moreno, Marín and Ramírez-Uclés [39] to the problem proposed in our research
to facilitate the implementation of the research study. On the second step, an additional
layer containing the mistakes made by the students’ groups will be added to the MAD
diagrams. This will allow us to obtain valuable information on the mathematical modelling
processes together with possible conceptual and procedural mathematical shortcomings.

3. Results and Discussion

In this section we will discuss the results observed during the analysis of the types
of mistakes that appear in the different phases of the modelling process detected in the
transcriptions. In this first discussion, the mistakes are aggregated, considering only if they
appear or not during each phase, even though some particular examples are presented.
Then, we address the analysis of the performance of each group separately by means of the
MAD+ diagrams.

3.1. Mistakes and Misconceptions Detection Using the Transcriptions

As we stated before, Moreno, Marín and Ramírez-Uclés [39] based their categories
around four competencies: simplifying, mathematising, solving and interpreting. The par-
ticular wording of our task makes this categorisation concrete as shown in Table 1.

This table is the guide to specifically and unambiguously detect mistakes in the
categorisation mentioned above. In the first column, the main category is named and the
statement of the mistakes included in the original categorisation is included. Finally, in the
second column we present a description of the form in which the mistakes of each category
appear during the solving process of our Fermi problem. This second column has been
obtained in several stages. In the first place, the authors solved the experimental problem
and made a hypothesis about the possible errors that students could make. The errors in this
list were then placed in Moreno’s categorisation. Finally, the content of this particularisation
was refined by listening to all the recordings of the experiment. The rest of this subsection
presents different transcripts of students’ dialogues that illustrate how this classification
was particularised using the empirical data.
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Table 1. Concretion of the mistake categorisation [39] when applied to the formulation of the task used in this study.

Mistake Description Students’ Considerations

T1
.S

im
pl

ifi
ca

ti
on

1.1. Incomplete real model associated with the lack of
consideration of elements of reality

Any of the following elements are not considered:

- Space occupied by the ladder, slide, and doors.
- Curved shape of a corner of the enclosure.
- Depth of the pool.
- Perimeter of the pool.
- Radius of the ball.
- Scale of the scheme.

1.2. Incomplete real model due to inconsistencies in
the relationships between the elements of reality con-
sidered

- Measure estimation mistakes.
- The learners are aware of the necessary variables, but they

do not study them because they do not know how to do it
or they do it incorrectly.

- They do not relate the variables well.

1.3. Does not develop an objective function for the
real model that can then be expressed in mathematical
terms.

- They do not plan any of the unit iteration, density or grid
models.

1.4. Does not build a real model.
- They do not try to deal with the problem. They do not

suggest any strategy.

T2
.M

at
he

m
. 2.1. Mathem. model inconsistent with reality

- Use of the grid model.
- Use of the surface division model.

2.2 Incomplete mathematical model
- Use of the unit iteration model without considering the gap

between the balls.

2.3. Does not build any mathematical models
- Try to solve the problem without doing any mathematical

modelling.

T
3.

So
lv

e

3.1. Conceptual mistakes: failure in relation to the
associated mathematical object

- Not knowing how to use the scale or considering the scale
1:100.

- Use of cm instead of cm2 when calculating areas.
- Reversal error, that is, multiplying instead of dividing or

vice versa [53].

3.2. Procedural mistakes in calculations - Not knowing how to convert cm3 to m3 or vice-versa.

3.3. Incomplete resolution of the proposed mathemat-
ical model.

- Not knowing what to do with the curved shape.
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Table 1. Cont.

Mistake Description Students’ Considerations

T4
.I

nt
er

pr
et

. 4.1 The results obtained are not interpreted on the
basis of the proposed model

- Overestimated or underestimated results not recognised as
a bad result.

- Incorrect or lack of validation of the partial results in each
of the phases.

4.2. The limitations of the mathematical model in the
original situation are not recognised.

- They do not recognise that calculations are approximate,
and that result cannot be exact.

- They do not realise that they should have considered the
space between the balls.

We have to focus on the importance the model chosen by the students has in Moreno,
Marín and Ramírez-Uclés’ categorisation [39]. As we saw in Section 1.1, the resolution
strategies used in problems similar to the one presented in this paper have been extensively
studied in previous works [17,25,26] and we think that it can open a line of research that
allows us to understand the resolution strategies and their relationship with the obstacles
and difficulties presented by the students.

Once we were clear about the guidelines for detecting mistakes, we looked for them
in the transcripts of each of the groups. The classification of the mistakes of the different
groups is included in Table 2. As we can see, all the mistakes in Moreno, Marín and
Ramírez-Uclés’ categorisation [39], except 1.3 and 1.4, appear in our experiment, with 1.2
and 4.1 being present in all groups.

Table 2. Mistakes made by group in each category.

T0 T1 T2 T3 T4
Reading Simplification Mathematisation Solve Validate

0 1.1 1.2 1.3 1.4 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2

Group A x x x x x x
Group B x x x x x x x x
Group C x x x x x
Group D x x x x x x

Hereafter, we comment on some relevant examples of the different mistakes committed
by the groups in each category. We show several examples of the transcriptions of the
students’ resolutions with the exact timestamp (hh:mm:ss). The students’ interventions
are labelled as GXSY, being X the name of the group (A, B, C or D) and Y the code of each
student (1, 2 or 3).

We remark that we have added one more category to the classification of Moreno,
Marín and Ramírez-Uclés [39] because one of the groups did not properly understand the
statement of the problem and they based their resolution on incorrect hypotheses. We
call it “Type 0—Reading” mistake. In the following dialogue, it can be seen how Group B
does not understand the statement of the task and therefore they are confused about the
validation data.

00:07:46 GBS2 No, because it says: how many balls did they have to buy? I’m sure it’s
more than 1000. It’s like they’ve added more balls.
00:07:50 GBS1 Yeah, yeah.
00:07:54 GBS3 So maybe there’s a catch there.
00:07:57 GBS2 Of course that’s what it is. It’s not that there’s 1000, it’s that there’s
1000 more than there were before.
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In the simplification (estimation) phase, most groups knew which variables had to
consider when solving the task, but they were discouraged from using them because they
did not know how to deal with their relationship or their use during the task resolution.
For example, Group B realised that, since they had a drawing of the shape of the ball pit,
they had to use a scale. This reasoning ended quickly when they realised that they didn’t
know how to manage it.

00:02:45 GBS1 And we could do it scaled because you have a drawing. I mean, from the
drawing you can measure, and you do it scaled but I don’t know if that would be okay.
00:03:05 GBS1 Because what scale do you use? I don’t know, I don’t remember how
that worked.
00:03:31 GBS1 We’ve said that you must calculate the volume by taking out the slide,
the staircase, and doors, right?
00:04:24 GBS3 Maybe it’s crazy to take a ruler and then scale it.
00:04:46 GBS1 Of course, I think the right thing to do is to do the scale, but I don’t
know, is there a fixed scale for the drawing or something?
00:04:57 GBS2 No. You can do whatever scale you want. I don’t think you don’t gain
anything by doing the scale because the scale is whatever you want.

In the mathematisation phase, Groups A and C chose the unit iteration model. In this
case, the resolution process corresponds to the division of the volume of the pool by the
volume of a ball. Furthermore, Group A realised that the space between the balls had to
be removed, but did not know how to do it. Group C also took this space into account
but estimated, without any calculation, that 2000 balls had to be removed (see example
below). In Group C, in addition, the density model appears, but they make the mistake of
thinking about how many balls fit in a square meter, not in a cubic meter, and they quickly
abandoned this reasoning because they did not know how to work it out mathematically.

00:19:35 GCS2 What I would say is that the total number of balls that we’ve got is
7458, but as the balls are not going to take up all the available space, we could subtract
2000 of those balls, at a guess. . .
00:19:47 GCS3 Yeah. . . 2000 will certainly be left out.
00:19:51 GCS2 Because, anyway, we don’t know how many balls fit in 1 square metre,
we’d have to assume that. . . Well, yeah, we could figure it out, you know, by having the
diameter of the sphere. . .
00:20:08 GCS3 Yeah, but you can’t work out how much the little gaps take up either. . .
00:20:13 GCS2 No, no, no. . . The volume that it takes up in those holes, we can’t
calculate that.
00:20:24 GCS3 Subtract about. . . 2000. . .
00:20:27 GCS2 Yeah, it’s by estimation. . . as these are modelling problems. . .
00:20:44 GCS1 . . . minus 2000, so 5458 balls. So. . . , so we could say that there’s room
for more than 1000 balls.

Continuing with the modelling phase, Groups B and D formulated models that were
not appropriate for solving the problem. Group B proposed to calculate the volume of one
ball and then calculate the volume of the 1000 balls mentioned in the statement, but they
did not know what to do with this information and abandoned the solution. They solved
the statement using an area division model by considering only one layer of balls. They
realised that ball pits have more than one layer, but they rejected the solution because they
did not know how to approach it mathematically. Group D, meanwhile, tried to estimate
the number of balls that would fit in a ball pit by comparison against the room they were
in, and guessing how many balls would fit. All attempts at estimating lengths and doing
mathematical calculations were soon abandoned because they felt it would be difficult.

In the resolution (calculation) phase, many mistakes occurred when using the cubic
units of magnitude and their conversion into sub-units. In addition, the reversal error
appears when multiplying the volume of the ball by the volume of the pool in the unit
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iteration model. All the groups considering that the scheme is scaled, take the scale of 1:100
by automatically going from centimetres to metres without keeping in mind the elements
of reality present in the scheme. In the following dialogue from Group A’s resolution, we
find that the students referred to metres and centimetres instead of cube units and they
divided by 1000 instead of 1,000,000 to go from cubic centimetres to cubic metres.

00:48:03 GAS3 37 million 44,000
00:48:11 GAS1 Shall we convert it to metres?
00:48:14 GAS2 Are you doing it in centimetres?
00:48:29 GAS3 Okay, now better 37,044 meters.
00:48:36 GAS1 cubic meters.

All groups present mistakes in the validation phase. In particular, those corresponding
to an overestimated volume of the pool and the ball were due to mistakes in the change of
magnitudes. One of the groups finds that the volume of the ball is greater than the volume
of the pool, but they do not consider this to be a mistake and they think the problem
is solved without calculating what was requested in the task. In the transcript of the
following dialogue, Group B gives an estimate of the ball pit pool of 13.5 square metres
while implicitly assuming a scale of 1:100 as they had measured the scheme in centimetres.

00:35:14 GBS1 Okay, it is 13 point 5, the whole area [of the pool picture]
00:35:20 GBS2 Thirteen point 5 square meters. Ok.

It should be noted that some of the mistakes described in Table 1 are caused by the
omission of fundamental elements in the mathematical modelling processes. Therefore,
they are not labelled with a specific timestamp, even though they are marked in Table 2.

To sum up, we have mapped the categorisation of Moreno, Marín and Ramírez-
Uclés [39] to the Fermi problem proposed in our research work and it can be used as the
basis to detect students’ mistakes. This result allows us to use this categorisation overlaid
in the MAD+ diagrams that will be described in Step 2.

3.2. Analysis of the Mistakes’ Timeline. Construction of the MAD+ Diagrams

As we stated before, the aim for this part of the research is to show how the inclusion
of a layer in the MAD diagrams, that includes the mistakes committed by the groups
of students when solving a Fermi problem, can help to understand the misconceptions
they have regarding modelling processes and mathematical concepts and procedures.
In order to describe the creation of the MAD+ diagrams, we have to clarify what are
the actions that students are taking during each of the phases. We have adapted the
scheme by Ärlebäck [13] defined to our particular problem, removing the writing phase.
The construction of the MAD+ diagrams is based on the description of the categories
shown in Table 3.

We consider the four general categories from Moreno, Marín and Ramírez-Uclés [39]
presented in Table 1. The correspondence of Table 1 categories and the ones in Table 3
is as follows: T1—Simplification corresponds to Estimating and Modelling in MAD;
T2—Mathematisation corresponds to Estimating and Modelling in MAD; T3—Solve corre-
sponds to Calculating in MAD; T4—Validate corresponds to Validating in MAD as seen
in Figure 1. In order to include the mistakes in the MAD+ diagram we will use the codes
specified in Table 4.

Additionally, as we explained before, we add the “Type 0—Reading” category.
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Table 3. Characterisation of students’ mathematical thinking in the context of the proposed problem.

MAD Categories Description of Modelling Activities of Students from the Problem in Context

Reading Understanding the task: The students must understand the context of the problem and to focus
on the main question of the task. How many balls can fit into the pool of the ball pit? Is this
number lower or greater than 1000?

Modelling Transitioning from a real-world context to a mathematical interpretation of the task: Students
find out how to calculate the number of balls fitting in the pool, asking themselves how to obtain
the result. They have to think if any of the unit iteration, density or grid models can lead to a
solution, even if they are not explicitly aware of that decision. They list the quantitative variables
to be estimated.

Estimating Making sense of the quantitative estimates in the problem in context: Students estimate the
quantities involved in the model.

Calculating Using simple mathematical concepts to calculate the missing information on the sketched
diagrams or figures: Students calculate the volume of the pool and the volume of the ball,
convert cm3 into m3 (or vice versa), use the proportion to calculate the scaled measures, etc.

Validating Interpreting, verifying and validating the mathematical calculations: Students make sense of
the mathematical results, including calculations, within the problem in context. They compare
their calculation with the number given in the task formulation.

Table 4. Mistake codes.

Type of Mistake Code

0. Reading Square (�)
1. Simplification Triangle (N)
2. Mathematisation Diamond (�)
3. Solve Cap ( H)
4. Validate Star (F)

When listening to the audio of each group, and by using the TTT software, the coder
can indicate the exact moment in which there exist a jump of phase in the modelling cycle
and, furthermore, the instant in which a mistake is detected. By using the codification of
Table 4, we can specify the mistake encountered. Note that the MAD+ diagram can be
obtained in the same process of reviewing the audio recording, without the need to go
through the transcription in an additional step, thus making the analysis more efficient.
As a result, we obtain the output shown in Figures 3–6.

Figure 3. MAD+ for the resolution process of Group A.
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Figure 4. MAD+ for the resolution process of Group B.

Figure 5. MAD+ for the resolution process of Group C.

Figure 6. MAD+ for the resolution process of Group D.

Next, we describe how the MAD+ diagrams can be used to obtain an analysis of the
different mistakes that appear during the resolution process. First, we present a synthetic
analysis of the kind of mistakes appearing in each phase of the modelling cycle. For this
purpose, Table 5 shows the different mistakes that have been detected in each phase. Then,
we explain the reasons why each mistake appears in a particular phase. Some of them are
expected to appear in certain phases due to their nature and we will call them “expected
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mistakes”. We use a circle to indicate this kind of mistake and a cross for those mistakes
that appear during a phase in which they are not expected to be.

Table 5. Mistakes detected in each phase of the modelling cycle. o = expected mistake; x = other
phases’ mistakes. Description of T0–T5 can be found in Table 1.

T0 T1 T2 T3 T4

V o
C x o x
E o x
M x x o x x
R

From Table 5, we observe that the students do not make any mistakes during the
reading phase, not even Type 0 (�) mistakes, which would be the expected ones. Type 0
mistakes, however, do appear during the modelling phase.

Indeed, it can be observed that during the modelling phase all types of mistakes
appear at some point in the construction of the needed model. Type 2 (�) is the expected
mistake, and it occurs because the students realised that they could have chosen a better
model, even though they did not know how to approach it. For instance, Groups A and C
are aware of the need to take into account the gap between balls, but they don’t find a good
strategy, such as using the concept of density model, to address it. Additionally, Type 0 (�)
emerges because they had not understood the statement of the problem while they were
thinking about the strategy to solve it. Furthermore, Type 1 (N) appears because, while they
were building the model, they missed variables that should be considered. In addition,
Type 3 ( H) happens because the students had conceptual mistakes while building the model.
Finally, Type 4 (F) is detected due to the incorrect validations that had to be made after
each partial result the students obtained.

In the estimating phase, we find the Type 1 (N) mistake, which is the expected one,
mainly because the students fail to obtain a good estimation of a required measure. In ad-
dition, Type 3 ( H) occurs because they make conceptual mistakes while estimating.

Regarding the calculation phase, Type 3 ( H) is the expected mistake and, indeed,
it happens frequently in all of the groups except for Group D. Additionally, Type 2 (�)
appears because, when calculating, the students make statements that are inconsistent with
the real model. For instance, they express the volume in litres, which makes no sense in
the context of the problem. Additionally, in this phase, Type 4 (F) mistakes appear due to
erroneous partial validations.

Finally, in the validation phase, Type 4 (F) mistake, which is the expected one, is the
unique we have detected.

In conclusion, we observe that any kind of mistake can appear in any phase of the
modelling cycle, the modelling phase being the most conflictive one, in the sense of being
the one with the highest frequency and variety of mistake types. This observation makes
sense if we take into account that the group of students that conformed to the sample
under analysis were novice students solving a modelling task, and, thus, they presented
difficulties when moving from the real world to the model [54,55]. This is also consistent
with the idea that the highest frequency of mistakes occurs in the phases in which the
original real situation appears, for instance, during the simplification phase in which they
try to obtain the real model [39]. However, in the validation phase, when the students
interpret the results to come back to the real world, we neither detect as many mistakes
nor as varied as when the students are involved in modelling activities. In our opinion,
this does not mean that they are better at validation than at modelling, but rather that,
as explained above, they hardly deal with this phase and consequently, the omission of
the work means no mistakes are made. This agrees with previous studies asserting that
students do not even consider the need for a validation phase when they get a result [28].
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Note also that all the expected mistakes, except in the case of Type 0 (�) mistakes, appear
in their corresponding phase.

In the analysis so far, we have addressed the overall distribution of mistakes during
the different phases, considering the groups altogether. Next, we use the individual MAD+
diagrams to revise how the modelling process is developed in each case. We shall see
that the usage of the MAD+ diagrams will help us detect the most significant aspects to
pay attention to, without having to go through the recordings or the transcriptions again.
It is possible to see, in a particular way, what type of mistakes are the most frequent in
each group and, consequently, which ones should be worked on to improve the teaching-
learning processes.

Figure 3 shows the appearance of many Type 1 (N) mistakes, which indicates that
Group A presents estimation problems, not only in the corresponding phase, but also at the
time of modelling. This could be reflecting a commonly observed problem regarding the
lack of estimation activities during primary and secondary studies [56–58]. If the estima-
tions are not done correctly, the validation process may be flawed since the results obtained
would entail erroneous conceptualisations that do not correspond to the real model.

From Figure 4, we observe that Group B has many problems in the modelling and the
calculation phases. They present a lot of conceptual and procedural problems that need to
be addressed in their mathematics teaching-learning processes.

Similar to the case of Group B, Group C has, primarily, estimation gaps that need to be
addressed. These estimation mistakes are translated into validation mistakes the two times
they try to validate. As a result of these mistakes, students finish the resolution process
without a final validation of the result, as it can be seen in Figure 5.

In Group D (Figure 6), despite being the group with the least number of mistakes
in the graph, there are two direct jumps between the modelling and validation phase
without going through estimation and calculation. This occurs because, although they
make attempts to create a model, they do not manage to obtain it, and try to solve the
problem without having a model.

These results show, on the one hand, evidence that the modelling phase is the most
difficult one. Particular emphasis needs to be placed on training teachers to learn how
to move correctly from the real model to the mathematical model. On the other hand,
the MAD+ diagrams allow us to see at a glance what kind of mistakes are most frequent in
each group and this will allow us to focus teaching on the most significant deficiencies in
each case.

One of the key benefits of the MAD+ diagrams is that it provides a visual representa-
tion that informs about the modelling phase in which the students are when the mistakes
arise. By means of the MAD+ diagrams, this contextual information can be grabbed with-
out having to dive into the recordings or the transcriptions of the problem resolution to
find it.

Note, however, that the original information of the resolution is still necessary for
a proper analysis of the activity. Not only because the recording has to be reproduced
entirely to build the MAD+ diagram, but also because it can be necessary to focus on
specific mistakes to understand their origin and their relationship with other mistakes or
with other aspects of the modelling processes, such as phase transitions. Nevertheless,
the MAD+ diagram will help find the appropriate section of the recording or transcription
very efficiently.

4. Conclusions

As we have seen in the previous section, MAD+ diagrams can provide a deep in-
sight into the processes of solving Fermi problems. To achieve this, we have adapted a
relevant mistake classification to the problem proposed in our research and used it as the
basis to detect students’ mistakes during the resolution of the proposed Fermi problem.
Furthermore, a MAD+ diagram has been constructed for all the productions made by
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the students in order to give an interpretation of the resolution processes steps and the
misconceptions produced.

The combination of the mistake information together with the MAD diagrams, to build
the MAD+ diagrams, makes it possible to efficiently analyse the process of solving mod-
elling activities and, in particular, a Fermi problem. These diagrams offer enough in-
formation to analyse the resolution process followed by the students, as well as their
misconceptions regarding mathematical concepts and procedures, without the need to
revisit the transcriptions or the recordings of the activity.

In summary, this work allows us to open a line of research that relates the mistakes
made by students when solving a Fermi problem with the temporal processes of solving it.
In this way, we can obtain a macroscopic picture of where the weaknesses of each group of
students may lie and focus the teaching–learning processes of mathematics on the solution
of these deficiencies.

Furthermore, in order to particularly analyse in more detail the cognitive processes
appearing when solving a Fermi problem, we could focus on developing an analogous tool
of representation, with sub-activities and mistakes, based on the modelling cycle instead
of Arleback’s approach. Then we could consider the “understanding”, “simplifying” and
“mathematising” activities separately. These require the most complex cognitive processes,
so an exhaustive analysis along this line made more sense in this framework.
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Appendix A. Spanish Transcriptions of the Dialogues

00:07:46 GBS2 No, porque dice ¿cuántas bolas han tenido que comprar? Seguro que
más de 1000. Es como que han añadido más bolas.
00:07:50 GBS1 Sí, sí.
00:07:54 GBS3 Entonces es que igual está la trampa ahí.
00:07:57 GBS2 Claro es que es eso. Es que no es que hayan 1000, es que hay 1000 más
las que ya más la que ya hubiera antes. Supuestamente

00:02:45 GBS1 Y lo podríamos hacer a escala porque tú tienes un dibujo. O sea a partir
del dibujo puedes medir y lo haces a escala pero no sé si eso estaría bien.
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00:03:05 GBS1 Porque ¿qué escala utilizas? No sé, eso no me acuerdo cómo funcionaba
00:03:31 GBS1 Hemos dicho que hay que calcular el volumen quitando tobogán, la
escalera y puertas ¿no?
00:04:24 GBS3 Igual es una locura pero coger una regla y luego pasarlo a escala.
00:04:46 GBS1 Claro yo creo que lo más correcto es que vas a hacer la escala pero claro
yo tampoco sé. ¿Hay una escala fija para los dibujos o algo?
00:04:57 GBS2 No. Tú puedes poner la escala que tú quieras. Es que yo creo que
haciendo la escala tampoco ganas nada porque la escala es la que tú quieras.

00:19:35 GCS2 Yo lo que pondría es que el total de bolas que hemos obtenido son 7458,
pero como las bolas no van a ocupar todo el espacio disponible, podríamos restar 2000
de esas bolas, a ojo. . .
00:19:47 GCS3 Sí. . . 2000 seguro que se quedan fuera.
00:19:51 GCS2 Porque, de todas formas, no sabemos cuántas bolas caben en 1 metro
cuadrado, eso tendríamos que suponerlo. . . Bueno, sí, lo podríamos calcular, vaya,
teniendo el diámetro de la esfera. . .
00:20:08 GCS3 Sí, pero tampoco lo puedes calcular lo que ocupan los huequecillos
esos. . .
00:20:13 GCS2 No, no. . . El volumen que ocupa en esos huecos, no lo podemos calcular.
00:20:24 GCS3 Réstales unas. . . 2000. . .
00:20:27 GCS2 Sí, es a ojo. . . como son problemas de modelización. . .
00:20:44 GCS1 . . . menos 2000, o sea, 5458 bolas. Entonces. . . , por tanto podríamos
decir que sí que caben más de 1000 bolas

00:48:03 GAS3 37 millones 44,000
00:48:11 GAS1 lo pasamos a metros?
00:48:14 GAS2 ¿Lo estáis haciendo en centímetros?
00:48:29 GAS3 Vale, ahora mejor 37,044 metros.
00:48:36 GAS1 metros cúbicos

00:35:14 GBS1 Vale, me da 13 con 5, toda el área [del dibujo de la piscina]
00:35:20 GBS2 Trece con 5 metros cuadrados. Vale.

Your authorisation is requested in order to participate in the research project titled:
Working on the measurement of magnitudes through Fermi problems The purpose of
which is to analyse the misconceptions and mistake that students have when doing this
type of problem regarding the measurement of magnitudes. It consists in solving a Fermi
problem. The expected benefits of this research will consist of improve the quality of
the teaching-learning processes in the undergraduate students. The research will take
place from 1 March 2021 until 1 May 2021. Participation in this research is completely
voluntary, if you do not wish to participate in it, there will not be negative consequences
for you. You may withdraw from the research at any moment without consequences.
Answers are completely anonymous, so there will not be any information that may identify
you. In any case, information will be used according to the Organic Law 15/1999 of
December 13 on Protection of Personal Data (LOPD). Any questions regarding this research
project may be asked to the Researcher at any moment: Marta Pla-Castells whose e-mail is:
marta.pla@uv.es

If you answer to the proposed questions, it is tacitly presumed that you have under-
stood the purpose of the present research, that you have been able to ask and clarify your
initial doubts and you have accepted to take part in it.

The researchers appreciate your valuable participation in the present research.
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