Exploring the Learning Experience of High-Performing Preclinical Undergraduate Dental Students: A Qualitative Study

Galvin Sim Siang Lin 1,*, Wen Wu Tan 2 and Kelvin I. Afrashtehfar 3,4, *

1 Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Malaysia
2 Department of Dental Public Health, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Malaysia
3 Evidence-Based Practice Unit, Clinical Sciences Department, College of Dentistry, Ajman University, Ajman City P.O. Box 346, United Arab Emirates
4 Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
* Correspondence: galvin@aimst.edu.my (G.S.S.L); kelvin.afrashtehfar@unibe.ch (K.I.A.)

Abstract: The current study aimed to explore the perceptions of high-performing undergraduate dental students in learning dental materials science. One-on-one semi-structured interviews with high-performing students who scored 80 marks and above in dental materials were conducted using an online video-chat platform. A purposeful sampling method was employed, and six students fulfilled the criteria. The interviews were audio-recorded, transcribed verbatim, and analyzed qualitatively using a thematic approach. Three major themes were identified: (1) Learning strategies, (2) Learning enablers and barriers, and (3) Coping with learning challenges. Six sub-themes emerged from the “learning strategies” theme: memorizing and repeating, peer learning, seeking learning resources, study planning, paying attention during class, and mnemonics. The enabler sub-themes include motivation, lecture notes, teachers, and hands-on, whereas the barrier sub-theme is content understanding. Moreover, family support and de-stress appeared as the sub-themes in coping with learning challenges. In short, the present exploratory study identified several major themes and sub-themes that can help dental educators comprehend the complexity of learning dental materials science and how it affects students’ academic performances. The current findings also offer learning recommendations for low-performing students to improve their academic achievements in the dental materials science course.

Keywords: academic performance; dental education; higher education; learning strategy; pre-clinical assessment; undergraduate

1. Introduction

Dental education is evolving into a transformational curriculum that equips students with the up-to-date knowledge and skills necessary to enter modern practice [1]. However, the rigorous nature of dental education, which includes a demanding curriculum, lack of control over the scheduling of lectures and clinical sessions, substantially lesser time for socializing and leisure activities, little room for error, and numerous formative and summative assessments, has been associated with academic stress and burnout, leading to poor academic achievement [2,3]. Therefore, it is crucial to maintain a high standard of academic performance while undergoing dental training since dropping out of dental school is a significant matter that impacts the demand for dental graduates.

Dental students will inevitably encounter challenges and difficulties in their learning throughout their undergraduate dental program. Nonetheless, some students handle...
their learning very well and achieve outstanding academic performance, while others are unable to do so. In fact, some low-performing students avoid facing their failure and blame external circumstances for their poor academic achievement [4]. It has also been reported that dental students with a higher level of grit and resilience performed better academically [5]. Hence, the learning strategies employed by high-performing students are likely those that are more effective [6]. Understanding why these students can perform better academically could be a remedy for dental educators to comprehend these techniques better and assist the low-performing students [7].

Dental materials science is one of the main subjects taught in the first or second year of most undergraduate dental programs that applies the fundamental concepts of chemical engineering and materials science to clinical dentistry [8]. Due to the multidisciplinary nature of this subject, students may find it challenging to understand the principles and practical relevance of dental materials science in each dental specialty; this is frequently regarded as a “dry” subject [9]. Despite the attempts to reduce the barriers between pre-clinical and clinical subject areas, a significant challenge is still inherent in effectively integrating dental materials science into clinical practice in the undergraduate curriculum since most dental undergraduates begin their clinical training only after completing their pre-clinical studies [8]. Thus, the learning experience of students in this subject is restricted to factual learning with minimal knowledge of the clinical significance [8,10].

A thorough electronic search revealed a gap in the literature on how high-performing dental students perceived their learning in dental materials. Understanding the learning of high-performing students in this subject is crucial since they experience the same educational environment as those low-performing students. However, less clarity exists when pinpointing the precise learning strategies employed by high-performing students [6]. Therefore, it is reasonable to investigate and explore the perceptions of high-performing undergraduate dental students in learning dental materials science to address the existing literature gap. The results of the present study would help to guide dental schools in identifying and establishing practical approaches for their fellow students who require assistance in learning dental materials science.

2. Materials and Methods

The study was conducted at the Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Malaysia. Ethical approval was granted from the AIMST University Human and Animal Ethics Committee (AUHEC) with the ethical approval reference: AUHEC/FOD/2022/26. The Consolidated Criteria for Reporting Qualitative Research (COREQ) served as a reference for reporting the present case study [11].

2.1. Study Context

In the current context, the dental materials science subject is taught in the second year of the Bachelor of Dental Surgery (BDS) Program. The second year of the BDS curriculum is divided into four modules with 23 dental materials science lectures and two practical sessions delivered throughout the year. Before advancing to clinical years, students must pass the continuous assessments at the end of Modules 1, 2, and 3, as well as a final summative assessment at the end of Module 4.

2.2. Research Method

An in-depth English-language one-on-one semi-structured interview was used in the current study as a practical approach to providing insights into participants’ perceptions of their learning in dental materials science. The interviewers were two male academic staff (G.S.S.L. and W.W.T.) experienced in conducting educational-based dental research and had no personal connections to the students prior to the study. The first investigator (G.S.S.L.) is the head of the department of dental materials at the faculty, while the second investigator (W.W.T.) is a dental public health lecturer with expertise in qualitative
research. Purposeful sampling was used in which high-performing students (students who scored 80 marks and above) in the dental materials science course were identified from the previous overall assessment results. Only 6 out of 74 students (8.1%) fulfilled the requirements and received an email inviting them to participate in the present study. Two weeks before the interview, participant information sheets with information about the purposes of the study, procedures, and ethical considerations were provided to the students. Participants were allowed to discuss their concerns with the researchers on the day of the interview and all participants provided written consent. Additionally, they were kept informed that their participation in the study was voluntary and that their anonymity would be protected using pseudonyms. All six high achievers have given their consent to participate in this study.

2.3. Data Collection

After reviewing the available literature [12,13], a topic guide for the interview was developed, and an expert in dental education validated its content. One of the investigators (W.W.T.), who has no direct teaching involvement with the students, used the Zoom platform to conduct one-on-one semi-structured interview sessions at the Faculty of Dentistry, AIMST University, Malaysia, to eliminate bias.

The interview questions were open-ended, and no leading questions were posed to ensure truthful responses from participants. The questions made during the interview were: “On a scale of 1 (low satisfaction) to 10 (high satisfaction), how high will you rate your learning in this subject and why would you rate so?”, “What factors affect your learning in dental materials science, and why?”, “Was/were there any specific strategy you used in learning this subject, and how you utilize it/them?”, “What did you do before/during/after attending the teaching activities, and why did you do so?”, and “Are there any challenges you faced in learning this subject, and if so, how did you overcome them?”.

The interview sessions were audio-recorded and each lasted around 20–30 min. The facilitator took field notes during and after each interview. The final recordings were anonymously transcribed verbatim and sent to the participants for correction before data analysis.

2.4. Data Analysis

Thematic analysis was based on an inductive approach to analyzing the data, which required familiarizing oneself with the data, creating preliminary codes, identifying and evaluating themes, defining and labelling themes, and writing a report [14]. The investigators first familiarized themselves with the data by reading the transcripts multiple times, followed by preliminary coding using NVivo 12 software. The codes were further developed and refined after discussion. Data saturation was anticipated because there no new code emerged. Any disagreements and discrepancies in the process were resolved through discussion and verification by all investigators of the research team.

3. Results

The students’ demographic backgrounds are listed in Appendix A. Three major themes were identified: (1). Learning strategies, (2). Learning enablers and barriers, and (3). Coping with learning challenges. Each major theme is divided into sub-themes pertaining to the perceptions of high-performing students in learning dental materials science.

3.1. Theme 1: Learning Strategies

The first theme relates to undergraduate dental students’ strategies to study dental materials science. Six sub-themes emerged: (i) Memorizing and repeating, (ii) Peer learning, (iii) Seeking learning resources, (iv) Study planning, (v) Paying attention during class, and (vi) Using mnemonics.
3.1.1. Sub-Theme 1: Memorizing and Repeating

Surprisingly, students preferred to memorize and revise dental materials science subjects repetitively after the lectures. One student claimed that understanding the context alone would not be sufficient without memorizing it. Another student also stated that teaching others can aid in memorizing the subject.

P1: “... for me, I can go through the PowerPoint slides, everything, memorize everything ... and revise the lecture notes again after the lecture.”

P2: “... after the lecture, I read back what I wrote down ... when I’m teaching my friends, it actually helps me to memorize better, and I get to remember it more ...”

P3: “I will start to memorize because last time I used to just understand without memorizing, but now I think that sometimes you really have to memorize ... I will try to recall what I have memorized”

P5: “I will repeat, repeat and repeat so that I really understand what I want to memorize.”

3.1.2. Sub-Theme 2: Peer Learning

Students mentioned that they would discuss with their peers if they had doubts on certain topics. Discussion among peers helped them to understand the context from a different perspective. This strategy was also employed before the examination to discuss the learning contents.

P2: “... and my friends told me that this is how we can approach this question ... That was the time when I learned something new and where I can improve ...”

P3: “... I will ask my friends to clarify it. They will teach me, and we always discuss together.”

P5: “... We discuss the lecture notes and learning contents together.”

3.1.3. Sub-Theme 3: Seek Learning Resources

Some students highlighted that they searched the internet for additional information if they did not fully understand a topic or a concept.

P3: “... anything I don’t understand I will look on the internet and see and search for more information.”

P4: “If I don’t understand, I will make sure like, I will go see the YouTube videos ...”

P6: “I will go to search on internet when I don’t understand like, I will search more about the material, the pictures ...”

3.1.4. Sub-Them 4: Study Planning

Students claimed they planned their study schedule, emphasizing the importance of revising the lecture topics soon after the lecture and starting their exam preparation early.

P4: “I will make sure I finish studying the lecture on that one day ... so I will have more time to prepare when exam is near.”

P5: “... do revision earlier. Weeks before exam.”

P6: “I read the lecture notes on the day, but if I cannot, I will make sure that I plan and read it tomorrow, I will plan to finish everything before exam.”

3.1.5. Sub-Theme 5: Pay Attention during Class

Students expressed that focus during class is one of the strategies in learning dental materials science. During the lecture, they would pay attention and record extra information delivered by the lecturer.

P1: “... will focus during the lecture and jot down everything important at the same time.”
3.1.5. Sub-Theme 5: Pay Attention during Class

Students expressed that focus during class is one of the strategies in learning dental materials science. During the lecture, they would pay attention and record extra information delivered by the lecturer.

P1: “…will focus during the lecture and jot down everything important at the same time.”

P3: “I listened to every lecture. write it down, and then read after the class.”

3.1.6. Sub-Theme 6: Use of Mnemonics

Another learning strategy employed by the students is using mnemonics to enable them to understand and remember the content.

P4: “I usually do mnemonics… to me it is easier to understand.”

P5: “If it (lecture content) is hard to remember, I will make mnemonic…”

Based on the subthemes, high-performing students are relatively self-directed in their learning, which is made possible by effective learning strategies, motivating beliefs, and involvement in structured learning plans. Hence, a learning strategy model for academic success that incorporates the six subthemes could be developed and is shown in Figure 1.

![Learning Strategies in Dental Materials Science Subject](image)

Figure 1. Learning strategies employed by high-performing students in learning dental materials science.

3.2. Theme 2: Learning Enablers and Barriers

Four sub-themes of enablers and one sub-theme of the barrier were identified among undergraduate dental students in learning dental materials science. The facilitator sub-themes were: (i) Motivation, (ii) Lecture notes, (iii) Teachers, and (iv) Hands-on, whereas the barrier sub-theme is: (v) Content understanding.

3.2.1. Sub-Theme 1: Motivation

Students demonstrated both intrinsic and extrinsic motivation, which helped them excel in dental materials sciences. While extrinsically motivated students expressed their desire to pass the exam, intrinsically motivated students showed interest in the subject and contentment with their performance. One of the students also cited the family as a source of motivation.

P1: “I would say I am more internally motivated because I think I am self-motivating in my study. No one forced me.”

P2: “I am happy because I felt like it (learning) paid off in the end.”

P3: “I was very happy as I felt that finally my hard work paid off.”
P4: “I want to make sure that I pass . . . to get good marks . . . and become a dentist . . .”
P5: “I want to pass this subject.”
P6: “I think the major motivation is from my family . . .”

3.2.2. Sub-Theme 2: Lecture Notes
Students claimed that the lecture notes were simplified and on point, enabling them to understand it better and more efficiently.
P2: “. . . I found that it was very simplified in the lecture slides. So, I could understand better.”
P4: “His (Lecturer) slides are mostly in point form or table form. It’s easier for me to understand.”
P5: “Our notes are very simplified, so I just study our notes.”

3.2.3. Sub-Theme 3: Teacher
Moreover, students mentioned that their lecturer could explain and interact well with them, causing the learning of a dental material science subject to be more interesting.
P1: “. . . the doctor (lecturer) teaching . . . he has a lot of explanation . . .”
P2: “I enjoyed the teacher teaching as it helps us understand better.”
P4: “There is more interaction between doctor and students, so it makes us understand easier . . .”
P6: “Lecturer’s teaching is interesting, and he can explain very well.”

3.2.4. Sub-Theme 4: Hands-On
The hands-on practical sessions further enhanced students’ understanding of the subject. The opportunity to manipulate different materials during the practical sessions enabled them to link the theoretical and practical aspects of the subject.
P2: “. . . practical classes really helped me a lot because it enhances my learning by looking at those materials.”
P5: “. . . during practical, when I mix the material, I’ll try to relate with the theories.”
P6: “. . . the hands-on practical is useful. It helped me to learn and understand better.”

3.2.5. Sub-Theme 5: Content Understanding
The students stated that learning dental materials science was complex since it required them to recall several properties and numbers. They also found it struggling to comprehend without seeing the actual materials.
P1: “. . . It is a very difficult subject because it’s all about the material sciences . . . difficult for me to memorize and understand.”
P3: “. . . this subject is very hard, because many things we must look at the real object then we can only understand better. We can’t just study theory . . .”
P4: “I find it hard to understand the melting points and all the numbers.”

3.3. Theme 3: Coping with Learning Challenges
Family support and de-stress emerged as two sub-themes enabling students to manage their stress during their learning.

3.3.1. Sub-Theme 1: Family Support
P4: “They (family) support me so much. Especially my mother . . .”
P5: “I constantly keep in touch with them (family). I share my daily routine . . . this helped to release my stress.”
P6: “You feel stress, and you think of your family, they give you so much support.”
3.3.2. Sub-Theme 2: De-Stress

P4: “I will take rest, or I will go out with my friends. And release my stress and continues to study.”

P5: “Feeling stress? Just go to sleep.”

Based on the subthemes in Theme 2 and Theme 3, a model based on learning enablers and barriers, as well as coping strategies with learning challenges among high-performing students, was developed and is illustrated in Figure 2.

Figure 2. Learning experiences among high-performing students in learning dental materials science.

4. Discussion

To the best of the authors’ knowledge, the present study is the first to explore how high-performing dental students learn the dental materials science subject using a qualitative approach. Most dental educators find it challenging to address the problems that cause students’ subpar performance in dental school. One of the ways is to understand the strategies behind these high-performing students. It is essential as it guides other students and allows educators to establish different learning approaches that support high academic accomplishment. The findings of the present study are congruent with those of previous similar studies conducted among high-performing medical students [6,15], highlighting that peer learning, seeking learning resources, and paying attention during classes are some traits that contribute to high academic achievement.

Surprisingly, memorizing and repeating was the strategy endorsed consistently by most students in learning dental materials science. This contradicts previous studies that emphasized that high-performing students demonstrated meaningful learning, while low-performing students tended to apply rote-memorization in their learning [12,16]. One explanation could be that dental materials science is a subject essentially concerned with factual material science and chemical engineering topics, often taught through a series of didactic lectures [8]. Since the subject is only taught in the preclinical year, students may find it difficult to relate the knowledge they learnt in selecting and applying dental materials
in clinical settings [17]. The students must understand why comprehension is required to apply dental materials and improve memory recall, which might serve as the foundation for their upcoming clinical training. Thus, dental schools should revamp their curricula by incorporating dental materials science into various dental specialties throughout the preclinical and clinical years using a horizontal and vertical integration approach [18].

The capability and opportunity to socialize with other students were seen as having a significant influence on student learning in dental education. The current high-performing students have acknowledged that they utilized peer learning, per a previous study suggesting that peer learning positively affects students’ performances. On the other hand, low-performing students described difficulties learning with their peers [19]. Dental educators could set up a mentoring program that could help foster socialization among all dental students. It should be emphasized that peer learning in dental curricula encourages active involvement and that small group activities promote student learning. High-performing students in the current study claimed that they seek additional learning resources from the internet to enhance their learning in dental materials science, which is congruent with previous similar studies [6,12]. Nonetheless, uncertainty exists over the aspect of the internet information that high-performing students felt aided their learning and the information sources they frequently used. Given that some dental students cannot afford the same external resources such as laptops and internet data plans, these findings may indirectly suggest that financial stability is another factor that might affect students’ performances [20]. Specific financial assistance pathways can be set up by dental schools for disadvantaged students to support them in gaining equitable access to curriculum and learning, including funding for subject-specific costs, school activities, and extracurricular activities.

The present results align with another published work mentioning that high-performing students planned their study schedules effectively [21]. On the other hand, low-performing students lack planning skills and are less devoted to making the most of their after-school time [22]. Planning strategically and efficiently is essential for students’ academic success. It has been discovered that high-performing students felt confident and at ease before classes or examinations with proper study planning [21]. Without an effective learning plan, students would squander their time before mastering the subject material [15]. Therefore, assisting students in adequately managing and planning their learning will allow them to optimize their learning time and improve their academic performances [15].

Moreover, high-performing dental students in the current study claimed that they pay attention during classes, which corroborates the findings from a previous study conducted among medical students [12]. Interestingly, students did not mention spaced practice (distributing study throughout time) and retrieval practice utilizing past exam questions, which contradicts previous research [6]. While this does not necessarily imply that students are not using these techniques, it is possible to postulate that they have been using such strategies but were either not disclosed or not acknowledged during the interview session. It is also worth noting that learning strategies students do not mention are probably still valuable.

High-performing students in the present study cited several facilitators and barriers in learning the dental materials science subject. Based on the current findings, all high-performing students were either intrinsically or extrinsically motivated to learn dental materials science, which is consistent with the results of previous studies [6,19,21]. Motivation is a crucial component of learning as it correlates with academic performance. A previous study found disparities between high- and low-performing students in terms of academic motivation, with high-performing students showing interest in the subject matter due to their intrinsic drive. In contrast, low-performing students only aimed to pass their examinations and had lower academic expectations [21]. Moreover, low-performing students tend to lack perseverance, motivation, and self-confidence in learning, in addition to skipping classes or school [22]. It is, therefore, reasonable to assume that high-performing students will continue to aim higher even if they perceive “passing the examination” as the culmination of their academic achievements.
Their learning process was also assisted by concise and uncomplicated lecture materials, supportive teachers, and hands-on practical sessions. Concise and straightforward lecture notes are a crucial tool for assisting students in learning and comprehending the material content covered in class. It has also been reported that not providing students with handouts significantly reduced their concentration and ability to take notes during lectures [23]. Dental educators play a crucial part in establishing the level of learning that dental students receive. The value of teaching reflection in the dental curriculum is acknowledged and several pedagogical techniques are recommended to ensure this is possible [19]. Poor student performance was linked to problematic teacher-related issues such as insufficient teacher preparation, lack of enthusiasm and teaching resources. Thus, the authors believed that teachers who are enthused, engaging, and inspiring aid students in learning and comprehending the subject matter more comprehensively [24].

Hands-on practical sessions in dental materials science helped the students retain learned knowledge through three-dimensional and tactile mental representations. The present finding is consistent with other studies from various disciplines, which found that hands-on practical sessions complemented students’ theoretical knowledge and enhanced their overall learning experiences [25,26]. Regarding the barrier faced by students, most of them mentioned that the subject was very factual, with many properties of different materials and numbers to be remembered. Undeniably, dental materials science is a fundamental subject that must be learned in the preclinical years before students move on to clinical years, where they start to select and manipulate all the different dental materials. Creative ways of teaching this subject are needed to spark interest among students when learning dental material science.

When questioned about coping mechanisms for learning challenges, students mentioned that support from family and de-stressing were the techniques they employed when learning dental materials science. The result is in line with a previous study that discovered a relationship between family support and students’ perceptions of their ability to deal with academic obstacles [27]. The high-performing students in the present study also managed their stress, which is significant since students who can manage their academic stress tend to perform better than those who cannot [28,29]. Conversely, low-performing students have been associated with more significant stress-related issues because they face academic and emotional learning challenges [15]. Nevertheless, coping strategies may be innate to each student’s psychological state. Thus, these strategies should neither be considered an exclusive trait of low-performing students who retake exams nor a predictor of the student’s likelihood to succeed.

The present study has several limitations. First, the present study was conducted among undergraduate dental students at a particular dental school, causing it to be inappropriate to generalize the findings to students at other dental schools. Furthermore, the current study focused on students’ self-reports of the learning strategies they believe will enable them to succeed in the dental materials science subject. It is also conceivable that students purposefully withheld important learning strategies to appease the facilitators or were unaware of the range of strategies they used [6]. In addition, the present study defined a high-performing student as someone who scored 80 marks and above, which may differ from other related studies where high-performing students are defined in different contexts.

Despite this, educators and other dental schools can adopt the findings of the present study as a guide to assist them in scaffolding students’ learning strategies and offer specific recommendations for remedial action and programs among low-performing students. Through curriculum improvement and student counsellor promotion, dental schools may foster a culture of high expectations that will support the successful learning strategies of these high-performing students. The mental health of dental students can also be enhanced with increased family support and stress management approaches. Future research is needed to understand how dental students from different institutions perceive their learning strategies in dental materials science and determine the elements that affect...
their learning preferences. Additionally, more studies should be conducted to identify strategies to prepare dental educators to motivate low-performing students to acknowledge their challenges and accept offers of learning assistance.

5. Conclusions

Within the limitations, the present exploratory study identified several major themes and sub-themes on how high-performing students learn dental materials science. This can help dental educators comprehend the complexity of learning this subject and how it affects students’ academic performances. The present findings also benefit dental educators by offering learning assistance and recommendations for low-performing students to improve their academic grades. Nevertheless, dental schools should ensure that the curriculum is underpinned by fundamental pedagogical theory and that the teaching approaches explicitly align with the students’ learning strategies. Future studies involving other subjects and students from other dental schools are warranted to verify and further enhance the learning strategies proposed by the present results.

Author Contributions: Conceptualization, G.S.S.L.; methodology, G.S.S.L. and W.W.T.; software, W.W.T.; validation, G.S.S.L.; formal analysis, G.S.S.L.; investigation, W.W.T.; data curation, G.S.S.L.; writing—original draft preparation, G.S.S.L. and K.I.A.; writing—review and editing, W.W.T. and K.I.A.; visualization, G.S.S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was approved by the AIMST University Human and Animal Ethics Committee (AUHEC) with the ethical approval reference: AUHEC/FOD/2022/26.

Informed Consent Statement: Informed consent was obtained from all participants involved in the study. Written informed consent has also been obtained from the participant(s) to publish this paper.

Data Availability Statement: Not applicable.

Acknowledgments: K. I. Afrashtehfar thanks the Universität Bern for partially supporting the open-access publication modality of this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Students’ demographic background.

<table>
<thead>
<tr>
<th>Student No.</th>
<th>Age</th>
<th>Gender</th>
<th>State of Birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Female</td>
<td>Penang</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>Female</td>
<td>Penang</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>Female</td>
<td>Kedah</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>Female</td>
<td>Kuala Lumpur</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>Female</td>
<td>Selangor</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>Female</td>
<td>Perak</td>
</tr>
</tbody>
</table>

References
