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Abstract: Background: This study explores the determinants impacting the mortality risk of COVID-19
patients following hospitalisation within South Africa’s Limpopo province. Methods: Utilising a
dataset comprising 388 patients, the investigation employs a frailty regression model to evaluate
the influence of diverse characteristics on mortality outcomes, contrasting its performance against
other parametric models based on loglikelihood measures. Results: The findings underscore diabetes
and hypertension as notable contributors to heightened mortality rates, underscoring the urgency
of effectively managing these comorbidities to optimise patient well-being. Additionally, regional
discrepancies come to the fore, with the Capricorn district demonstrating elevated mortality risks,
thereby accentuating the necessity for precisely targeted interventions. Medical interventions, partic-
ularly ventilation, emerge as pivotal factors in mitigating mortality risk. Gender-based distinctions
in mortality patterns also underscore the need for bespoke patient care strategies. Conclusions:
Collectively, these outcomes supply practical insights with implications for healthcare interventions,
policy formulation, and clinical strategies aimed at ameliorating COVID-19 mortality risk among
individuals discharged from hospitals within South Africa’s Limpopo province.
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1. Introduction

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes the
coronavirus disease-2019 (COVID-19) is a novel coronavirus that has a high fatality and
morbidity rate [1]. After receiving reports of 118,000 cases and 4291 deaths in 114 nations,
the World Health Organization (WHO) declared COVID-19 a pandemic on 11 March
2020 [2]. Globally, as of 15 July 2022, there were more than 6.4 million reported fatali-
ties and over 565.6 million confirmed cases [1]. As the novel coronavirus continues to
evolve, there are still many limitations to our knowledge of who exactly this virus would
impact critically.

In light of the current circumstances surrounding the global COVID-19 pandemic, this
study delves into the intricacies of post-hospitalisation mortality risk among patients in
South Africa’s Limpopo province. The unprecedented challenges posed by the pandemic
have necessitated a thorough understanding of the factors influencing patient outcomes. By
investigating these factors, we aim to shed light on the complexities of COVID-19 mortality
risk, offering insights that can aid healthcare professionals, policymakers, and researchers
in navigating the evolving landscape of patient care.

Indeed, the COVID-19 pandemic has prompted extensive research into understanding
the disease’s clinical manifestations, risk factors, and outcomes. Mortality risk assessment
is a pivotal aspect of this research, aiming to identify the factors contributing to higher
mortality rates among patients hospitalised due to laboratory-confirmed COVID-19. Theo-
retical frameworks have underscored several critical concepts in this context. For instance,
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clinical severity and the presence of comorbidities have been identified as key factors influ-
encing outcomes. Severe cases that necessitate hospitalisation are often linked to adverse
outcomes, while patients with pre-existing conditions such as diabetes, cardiovascular
diseases, and respiratory ailments face an elevated mortality risk [3,4].

Additionally, the immune response to COVID-19 plays a pivotal role in disease pro-
gression and outcomes. Dysregulated immune responses, including cytokine storms, have
been associated with severe cases and poor outcomes [5]. Furthermore, age and gender are
established risk factors for severe outcomes. Older adults are more vulnerable, and gender
differences in mortality rates have been observed, with males generally experiencing higher
mortality [6].

A number of studies have investigated the factors that influence post-hospitalisation
mortality risk. For instance, [7] examined a cohort of COVID-19 patients and found that
advanced age, high Sequential Organ Failure Assessment (SOFA) scores, and elevated
d-dimer levels were associated with increased mortality risk post-hospitalisation.

Another significant study by [8] identified age, male sex, and various comorbidities
(such as diabetes, obesity, and cardiovascular diseases) as independent risk factors for
COVID-19-related mortality. Another study by [9] highlighted ethnic and racial disparities
that impact mortality risk, with Black and Asian individuals having higher mortality risks
even after adjusting for age, sex, and comorbidities.

On 27 March 2020, South Africa experienced its first COVID-19 fatality [10]. Since then,
the nation has recorded 88.9 thousand citizen deaths due to the pandemic. Furthermore,
839 people died on 19 January 2021, the largest daily death reported during the outbreak.
South Africa was the most affected nation in the region as of 24 October 2021, with more
than 2.91 million infection cases [11]. The South Africa National Institute for Communicable
Diseases (NICD) verified the country’s first COVID-19 case on 5 March 2020 [10,11]. Since
then, the South African government has successfully implemented a robust and successful
national response to stop COVID-19 (see SAResponsetoCOVID-19, 2020, for main steps
and dates [10]).

Be that as it may, it has become crucial to look back and examine the mortality and
associated risk factors among COVID-19 hospitalised patients in the Limpopo province of
South Africa as we continue to count the costs of the devastating effects of the pandemic.
Indeed, pinpointing the causes of mortality among COVID-19 patients in both urban and
rural contexts within the province could help us better understand the disease and the
necessity of these findings in developing efficient preventive and therapeutic strategies for
future pandemics.

Several studies have identified age, underlying medical conditions, severity of illness,
and laboratory markers as significant risk factors associated with mortality rate [12,13]. How-
ever, there are still gaps in the literature regarding the long-term outcomes of COVID-19
patients, especially those who survive hospitalisation. Most studies have focused on short-
term outcomes, such as mortality rates during hospitalisation, and there is a need for more
research on the long-term outcomes of COVID-19 patients. Again, some studies have only
included patients from specific regions or populations, limiting their findings’ generalis-
ability. Generally, more research is needed to fully understand the risk factors associated
with mortality among hospitalised COVID-19 patients and to improve the accuracy of
predicting patient outcomes. The study aims to conduct a retrospective post-hospitalisation
COVID-19 mortality risk assessment of patients in the Limpopo province of South Africa.

It is envisaged that the findings of this study will help improve our understanding
of the factors that influence mortality rate among hospitalised COVID-19 patients and
help us identify potential interventions that may improve patient outcomes. The outline
of the paper is as follows: literature review and materials and methods are presented
in Sections 2 and 3, respectively. The results and discussions are presented in Section 4,
ending with the concluding remarks in Section 5.
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2. Literature Review

The COVID-19 pandemic has spurred extensive research aimed at understanding the
clinical aspects, risk factors, and management strategies for patients affected by the virus.
In this context, several studies have sought to uncover predictive factors for COVID-19
severity, mortality risk, and the specific implications for patients with comorbidities such
as diabetes mellitus and hypertension.

Zhou et al. (2021) employed machine learning techniques to analyse longitudinal
measurements and identified eleven routine clinical features that effectively predict the
severity of COVID-19 cases, offering valuable insights into risk assessment [14]. Similarly,
Onder et al. (2020) examined case-fatality rates in Italy, elucidating characteristics associated
with patients who succumbed to COVID-19 and contributing to understanding disease
outcomes [15].

The management of diabetes mellitus (DM) amid the COVID-19 pandemic presented
unique challenges. Koliaki et al. (2020) discussed practical issues and concerns surrounding
the clinical management of DM patients during the pandemic [16]. In their research, [17]
focused on inpatient COVID-19 mortality risk assessments, specifically exploring the
interplay of diabetes mellitus. Their study employed interpretable machine learning
models, enhancing the understanding of mortality risks in patients with diabetes.

The intersection of COVID-19 and diabetes mellitus has been a topic of significant
interest. Investigating mortality outcomes, [18] highlighted that patients with both COVID-
19 and diabetes face increased mortality risks, emphasizing the importance of tailored
interventions. Yang et al. (2020) developed predictive models for clinical deterioration
among COVID-19 patients, utilizing machine learning and readily available clinical data to
enhance prognosis accuracy [19].

In another dimension, short-term outcomes of newly diagnosed diabetes in COVID-19
patients were explored by Zhou et al. (2020). They identified distinct types of diabetes
arising from COVID-19 infection, deepening our understanding of the complexities of these
intertwined conditions [3].

In terms of long-term outcomes, a study by [20] found that nearly one-third of
COVID-19 patients experienced long-term symptoms such as fatigue and shortness of
breath, even after hospitalisation. This highlights the importance of understanding the
long-term outcomes of COVID-19 patients beyond just survival time. A study by [20] found
that COVID-19 patients with severe illness who received convalescent plasma therapy
had a lower risk of mortality compared to those who did not receive the therapy. This
suggests that convalescent plasma therapy may be an effective intervention for improving
patient outcomes.

Bambra et al. (2020) delve into gender-based health disparities brought about by the
COVID-19 pandemic, drawing insights from the concept of the ‘gender health paradox’.
This paradox highlights the consistent finding that men generally have higher mortality
rates and shorter life expectancies, while women report higher levels of morbidity. Their
study introduces the ‘gender health paradox’ and the various explanations encompassing
biological, social, economic, and political factors contributing to it. They also discuss
international data on gender-based inequalities in COVID-19 morbidity and mortality
rates, indicating that women tend to be diagnosed more frequently, yet men exhibit higher
mortality rates. They further examine the potential long-term consequences of the pan-
demic’s aftermath on gender-based health inequalities, focusing on the repercussions of
government policy responses and the emerging economic crisis. It suggests that these
factors might lead to increased mortality among men and heightened morbidity among
women [21].

In another study, Muñoz-Price et al. (2020) looked into the association between race
and COVID-19 outcomes, considering variables such as age, sex, socioeconomic status, and
comorbidities. Their study involves 2595 adults tested for COVID-19 and explores factors
related to COVID-19 positivity, hospitalisation, intensive care unit admission, mechanical
ventilation, and death. The findings indicate that the Black race is associated with an
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increased likelihood of COVID-19 positivity (odds ratio [OR], 5.37), and this association
remains after adjusting for factors like age and sex [22].

Campbel et al. (2021) [23] develop predictive models that stratify hospitalised COVID-
19 patients by their risk of severe outcomes, such as ICU admission, acute respiratory
distress syndrome development, or intubation. The models were designed using hier-
archical ensemble classification techniques and trained on a dataset of 229 COVID-19
patients. These models utilised easily accessible information, including patient character-
istics, vital signs at admission, and basic lab results. The assessment of the models was
based on precision (positive predictive value) and recall (sensitivity) to determine their
ability to categorise patients into increasing risk groups. The study used a separate cohort
of 330 patients for validation, maintaining pre-defined test cut-offs. The results showed
that the models achieved high precision, particularly in the lowest risk groups, and the
proportion of severe outcomes consistently increased with escalating risk groups. Notably,
attributes such as C-reactive protein, lactate dehydrogenase, and D-dimer were frequently
identified as significant contributors to the risk assessments. The study concluded that
machine learning-based models utilising routinely collected admission data can effectively
assess the risk of severe outcomes in COVID-19 patients during hospitalisation [23].

While a substantial body of research has illuminated the retrospective post-hospitalisation
COVID-19 mortality risk assessment among patients in South Africa, a notable gap exists in
the comprehensive exploration of survival models, specifically tailored to this population.
While studies by [24,25], among others, have delved into patient-specific characteristics
and the potential of machine learning, there is still a distinct lack of studies focusing on
implementing survival analysis techniques. Survival models, encompassing Kaplan-Meier
estimators and Cox proportional hazards models, offer a nuanced perspective by account-
ing for time-to-event outcomes. These models could provide insights into the temporal
patterns of mortality and uncover factors that may be time-dependent in influencing post-
hospitalisation COVID-19 mortality. Furthermore, survival analysis can be particularly
valuable in understanding the long-term implications of COVID-19 and capturing the dy-
namics of recovery and mortality beyond the immediate hospitalisation period. Addressing
this gap by incorporating survival models into the assessment framework can contribute to
a more comprehensive understanding of mortality risk factors and guide the development
of targeted interventions.

3. Materials and Methods
3.1. Data Collection

The study area for this research is the northern part of the South Africa region, known
as Limpopo province. The province has approximately 5.8 million people with diverse
ethnic groups and socio-economic backgrounds. The study uses deidentified secondary
data collected from electronic medical records of COVID-19 patients who were hospitalised
across the health facilities in three districts, namely, Mopani, Waterberg, and Capricorn,
compiled by the Department of Health in the Limpopo province between 27 June 2020
and 29 August 2022. The demographic and clinical characteristics of COVID-19 patients,
including age, gender, comorbidities, and laboratory markers, were collected and treated
as potential risk factors for mortality rate in the model building process. The study design
is a retrospective cohort study of patients with COVID-19 infection who were followed up
through 29 August 2022.

Participants for the study were identified through retrospective analysis of electronic
medical records of COVID-19 patients who were hospitalised in health facilities across the
Mopani, Waterberg, and Capricorn districts of the Limpopo province, South Africa. These
records covered the period between 27 June 2020 and 29 August 2022. As the study focused
on post-hospitalisation COVID-19 mortality risk assessment, informed consent was not
required from individual participants, as data were anonymised and deidentified to ensure
patient confidentiality and ethical compliance. The utilisation of existing medical records
facilitated a comprehensive assessment of patients’ characteristics and outcomes within
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the defined timeframe, enabling a detailed exploration of mortality risk factors among the
target population.

3.2. Summary of the Data

This study will utilise the records of patients who tested positive for COVID-19 and
were hospitalised between 27 June 2020 and 29 August 2022. The sample size comprises
388 patients meeting the research criteria after data cleaning and editing. All age groups of
COVID-19-positive patients hospitalised within the specified timeframe were included in
the study, while patients with incomplete records were excluded. This research is conducted
in accordance with ethical principles, including obtaining informed consent, ensuring confi-
dentiality, and protecting data. Ethical clearance has been granted by the Turfloop Research
Ethics Committee (TREC) and the Department of Health in Limpopo for using data in this
study. While investigating mortality rates and associated risk factors among hospitalised
COVID-19 patients, potential methodological errors such as measurement bias, sampling
bias, confounding variables, reverse causation, and missing data were carefully assessed
and addressed. To mitigate these issues, the study employed stringent patient selection,
standardised data collection, confounding control, and transparent reporting practices.
These efforts enhance the study’s credibility, aiming to provide reliable insights for im-
proved post-hospitalisation COVID-19 mortality risk assessment and patient outcomes in
South Africa.

3.3. Models

In this study, we will apply survival models to analyse the data. Survival analysis is a
statistical method for analysing time-to-event data, such as the time until death and disease
relapse. It is often used in medical and social sciences research to understand the factors
that influence the occurrence of an event [26].

3.3.1. Survival Function

The survival function describes the probability that a subject will survive beyond a
certain time point. It is denoted by S(t) and is defined as the probability that the survival
time T is greater than or equal to t:

S(t) = P(T ≥ t). (1)

The survival function can also be expressed in terms of the cumulative distribution
function (CDF) as:

S(t) = 1− F(t) (2)

where F(t) is the cumulative distribution function (CDF), which gives the probability that
T is less than or equal to t.

The survival function has the following properties:

n It is a non-increasing function of time, i.e., S(t) decreases as t increases;
n S(0) = 1, since everyone survives at time 0;
n S(∞) = 0, since eventually, everyone will experience the event of interest [26].

3.3.2. Hazard Function

The hazard function is used in survival analysis to describe the instantaneous rate at
which events occur. It is denoted by h(t) and is defined as the probability that the event
of interest occurs at time t, given that it has not yet occurred up to time t, divided by the
length of the time interval:

h(t) = lim∆t→ 0[P(t ≤ T < t + ∆t|T ≥ t)/∆t], (3)

where T is the survival time of interest.
The hazard function has the following properties:
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n It is a non-negative function of time, i.e., h(t) ≥ 0 for all t;
n It can take on different shapes, depending on the distribution of the survival time;
n The area under the hazard function curve gives the total number of events expected

to occur in the population during the study period.

The hazard function can be used to estimate the survival function using the relationship:

S(t) = exp
(
−
∫ t

0
h(u)du

)
, (4)

where the integral is taken from 0 to t. The hazard function is a useful tool in survival
analysis because it allows us to model the instantaneous risk of an event, which can vary
over time [26].

3.3.3. Relationship between Hazard Function and Survival Function

The hazard and survival functions are two closely related functions used in survival
analysis to model the time-to-event data. The survival function S(t) describes the probabil-
ity that an individual survives beyond time t, while the hazard function h(t) describes the
instantaneous rate at which events occur at time t.

The relationship between the two functions can be expressed mathematically as follows:

h(t) = − d
dt
[log(S(t))], (5)

where d/dt denotes the derivative with respect to time. This means that the hazard function
is the negative derivative of the natural logarithm of the survival function. Conversely, the
survival function can be obtained from the hazard function using the relationship:

S(t) = exp
(
−
∫ t

0
h(u)du

)
, (6)

where
∫ t

0 h(u)du is the cumulative hazard function, which is the integral of the hazard
function from 0 to t. In summary, the hazard function and survival function are comple-
mentary functions in survival analysis. The hazard function describes the instantaneous
risk of an event, while the survival function describes the probability of surviving beyond a
certain time.

3.3.4. Estimation of Survival Function and Regression Models
Kaplan-Meier Model

The Kaplan-Meier method is a non-parametric method used to estimate the survival
function in survival analysis. It involves calculating the probability of surviving without
experiencing the event of interest at each time point using the formula:

S(t) = ∏i:ti≤t

[
1− di

ni

]
, (7)

where S(t) is the survival function at time t, di is the number of events (e.g., deaths) that
occurred before time t, and ni is the number of individuals still at risk of experiencing the
event at time t. The Kaplan-Meier estimator produces a stepwise survival curve that is
commonly used in the analysis of survival data [26].

Cox Proportional Hazard Model

Regression models in survival analysis are used to investigate the relationship between
predictor variables and the hazard function, which represents the instantaneous risk of an
event occurring over time. Various regression models are used in survival analysis, but the
most common is the Cox proportional hazards model.
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The Cox model assumes that the hazard function can be expressed as a product of
a baseline hazard function and a function of the predictor variables, where the latter is
proportional to the baseline hazard. Mathematically, the Cox proportional hazards model
can be written as follows:

h(t|X) = h0(t)exp(Xβ), (8)

where h(t|X) is the hazard function at time t for an individual with predictor values X, h0(t)
is the baseline hazard function, β is a vector of regression coefficients and exp(.) is the
exponential function. The Cox model does not require assumptions about the shape of the
baseline hazard function, but it assumes that the effect of the predictor variables on the
hazard is constant over time (i.e., proportional hazard assumption).

Estimation of the regression coefficients in the Cox model is typically done using
partial likelihood, which accounts for censoring (i.e., when the event of interest has not yet
occurred for some individuals). The partial likelihood function for the Cox model is

L(β) = ∏i∈D

[
exp(Xiβ)

∑ j
∈ Ri exp

(
Xj β

)]
, (9)

where D is the set of individuals who experience the event of interest, Ri is the set of indi-
viduals who are at risk of experiencing the event at the time of observation for individual
i. The partial likelihood estimate of β is obtained by maximising the partial likelihood
function [27–29].

Frailty Models

Frailty models are used in survival analysis to account for unobserved heterogene-
ity or clustering of individuals within groups, especially when the proportional hazard
assumption is violated. The basic idea of frailty models is to introduce a random effect
term that captures the unobserved heterogeneity among individuals within a group. The
random effect is assumed to follow a specific distribution, such as a normal or gamma
distribution, and is incorporated into the hazard function.

Mathematically, the frailty model can be written as:

h(t|Z, ϑ) = h0(t)exp(Zβ + γu), (10)

where h(t|Z, ϑ) is the hazard function at time t for an individual with covariate values
Z, β is a vector of regression coefficients, u is the frailty term that captures the unobserved
heterogeneity, and γ is the scaling parameter that determines the strength of the effect of
the frailty term. The frailty term u is assumed to follow a specific distribution, such as a
normal or gamma distribution, with mean 1 and variance ϑ.

The likelihood function for the frailty model is a mixed-effects model, which in-
volves integrating over the distribution of the frailty term. The likelihood function can be
written as:

L(β, ϑ) = ∏n
i=1

[
h(ti|Zi, ϑ)(δi)S(ti|Zi, ϑ)(1−δi) f (u|ϑ)

]
, (11)

where n is the number of individuals, ti is the survival time for individual i, Zi is the
covariate vector for individual i, δi is the censoring indicator (δi = 1 if the event is observed
and δi = 0 if the event is censored), S(ti|Zi, ϑ) is the survival function for individual i, and
f (u|ϑ) is the density function of the frailty term u. Estimation of the parameters in the frailty
model can be done using maximum likelihood estimation or Bayesian methods [22,23].

Parametric Models

Parametric survival models are used to model the time to an event of interest, such
as death or disease recurrence, using a set of covariates. The baseline hazard function
represents the probability of the event occurring without any covariates, and the covariate
effects are captured by the regression coefficients. In this methodology, we will focus on
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three common parametric models with different baseline hazard functions: the generalised
gamma, gamma, and Weibull models.

The generalised gamma model allows for flexible shapes of the baseline hazard func-
tion, making it suitable for modelling survival data with various patterns of hazard rates.
The baseline hazard function of the generalised gamma model is defined as:

h(t) =
( a

b

)( t
c

)(a−1)
∗ exp

(
−
(

t
c

)b
)a

, (12)

where a, b, and c are shape parameters. The regression coefficients are estimated using
maximum likelihood estimation.

The gamma model is a special case of the generalised gamma model with b = 1, which
results in a simpler baseline hazard function:

h(t) =
( a

b

)( t
c

)(a−1)
∗ exp[−(t/c)

]
, (13)

where a and c are shape parameters. The gamma model is particularly useful for modelling
survival data with a monotonically decreasing hazard rate.

The Weibull model has a baseline hazard function that is an exponential function of
time, which makes it suitable for modelling survival data with an increasing hazard rate.
The baseline hazard function of the Weibull model is defined as:

h(t) = a b ∗ t(b−1), (14)

where a and b are shape parameters. The regression coefficients are estimated using maxi-
mum likelihood estimation. In conclusion, parametric survival models with generalised
gamma, gamma, and Weibull baseline hazards are useful for modelling survival data with
different patterns of hazard rates [27–29].

3.4. Analysis

The statistical analysis was performed using R version 4.0.3 and SPSS IBM Statistics
version. For continuous variables following a parametric distribution, they were presented
as mean ± standard deviation (SD), while nonparametric variables were expressed as
medians ± interquartile range. Categorical variables were presented as counts and percent-
ages, and crosstabulation. To analyse the data, various semiparametric survival models,
including Cox proportional regression, frailty models, and parametric models, were ap-
plied, and their fit was compared using the loglikelihood. A significance level of p < 0.05
was used to determine statistical significance.

4. Results and Discussion

This section presents the study results and discussion, utilising secondary data from
the Department of Health in the Limpopo province in South Africa. The data were collected
on patients who had COVID-19 and symptoms of the disease admitted across Limpopo
province hospitals, and the data is accessed in Microsoft Excel format. Table 1 presents
the description of the variables and the dataset codes. Data for survival regression models
require a specific structure, and variables that did not meet the standard were omitted from
the analysis.

At the outset of our analysis, we initiated an extensive exploration of the dataset
utilizing descriptive statistics, as demonstrated in Table 2. This fundamental phase provides
us with a valuable opportunity to grasp the distribution and grouping of patients across
various categories. Through our engagement with descriptive statistics, we establish a
solid groundwork for our ensuing analyses, facilitating the discovery of inherent patterns,
emerging trends, and prospective insights that will underpin our research endeavours.
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Table 1. Variable description and dataset codes.

Variable Description

Discharged status Binary response from the patients: discharged alive, died.
District The three districts: Mopani, Capricorn, and Waterberg
Gender/Sex Gender of a participant: Female and Male

Chronic diseases Hypertension, Diabetes, Asthma, Chronic Pulmonary Disease, Tuberculosis, Obesity (with two levels
each, yes, no)

Ever Oxygenated yes or no
Ever Ventilated yes or no
Obesity yes, no, unknown
Facility Type Private General Hospital District Hospital, Provincial Tertiary Hospital

NB: This table displays all the variables used in the modelling process and their codes.

Table 2. Descriptive statistics.

Category Frequency Percent Valid Percent Cumulative Percent

Sex/Gender
F 204 52.6 52.6 52.6
M 184 47.4 47.4 100.0
Total 388 100.0 100.0

Facility Type
District Hospital 165 42.5 42.5 42.5
Private General Hospital 191 49.2 49.2 91.8
Provincial Tertiary Hospital 32 8.2 8.2 100.0
Total 388 100.0 100.0

Districts
Capricorn 267 68.8 68.8 68.8
Mopani 108 27.8 27.8 96.6
Waterberg 13 3.4 3.4 100.0
Total 388 100.0 100.0

Discharge Status
Died 296 76.3 76.3 76.3
Discharged alive 92 23.7 23.7 100.0
Total 388 100.0 100.0

Hypertension
No 341 87.9 87.9 87.9
Yes 47 12.1 12.1 100.0
Total 388 100.0 100.0

Diabetes
No 324 83.5 83.5 83.5
Yes 64 16.5 16.5 100.0
Total 388 100.0 100.0

Asthma
No 349 89.9 89.9 89.9
Yes 39 10.1 10.1 100.0
Total 388 100.0 100.0

Chronic Pulmonary Disease
No 365 94.1 94.1 94.1
Yes 23 5.9 5.9 100.0
Total 388 100.0 100.0

Tuberculosis
No 352 90.7 90.7 90.7
Yes 36 9.3 9.3 100.0
Total 388 100.0 100.0
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Table 2. Cont.

Category Frequency Percent Valid Percent Cumulative Percent

Obesity
No 335 86.3 86.3 86.3
Yes 53 13.7 13.7 100.0
Total 388 100.0 100.0

Ever Oxygenated
No 208 53.6 53.6 53.6
Yes 180 46.4 46.4 100.0
Total 388 100.0 100.0

Ever Ventilated
No 316 81.4 81.4 81.4
Yes 72 18.6 18.6 100.0
Total 388 100.0 100.0

NB: The descriptive statistics depicting frequencies of all variables.

The descriptive statistics from Table 2 and Figure 1 offer valuable insights into the
characteristics of the study population and their relevance to the topic in terms of mortality
rates and risk factors associated with COVID-19. The descriptive statistics tables provide
a comprehensive overview of various aspects within the context of the research on ret-
rospective post-hospitalisation COVID-19 mortality risk assessment of patients in South
Africa. These tables offer insights into different variables related to the study population.
In terms of gender distribution, 52.6% of patients were female, and 47.4% were male. The
distribution across facility types indicates that 49.2% were in private general hospitals,
42.5% in district hospitals, and 8.2% in provincial tertiary hospitals. Regarding districts,
68.8% of patients were from Capricorn, 27.8% from Mopani, and 3.4% from Waterberg.
The outcomes of hospitalisation show that 76.3% of patients died in the hospital, while
23.7% were discharged alive. Comorbidity prevalence is detailed across Table 2, with
conditions like hypertension (87.9% without, 12.1% with), diabetes (83.5% without, 16.5%
with), asthma (89.9% without, 10.1% with), chronic pulmonary disease (94.1% without,
5.9% with), tuberculosis (90.7% without, 9.3% with) (Table 2), and obesity (86.3% with-
out, 13.7% with). Oxygenation (46.4% received oxygen, 53.6% did not) and ventilation
(18.6% received ventilation, 81.4% did not) during hospitalisation are also highlighted.
These statistics collectively provide a comprehensive understanding of the demographic,
clinical, and intervention-related characteristics of the study population, contributing to a
comprehensive assessment of COVID-19 mortality risk among patients in South Africa.
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Figure 1. Bar chart depicting the distribution of hypertension and discharged status.

In the upcoming sections, we introduce crosstabulation as an integral component
of our results and discussion presentation, with the intention of delving further into
the intricate interplay between variables. This analytical methodology provides us with
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the means to investigate the mutual influence of diverse factors on outcomes, thereby
revealing potential associations that may be obscured otherwise. Through the utilisation
of crosstabulation, we have the opportunity to unearth subtle insights that enrich our
comprehension of the intricate dynamics inherent to our research domain. These results
are presented in Tables 3 and 4, together with graphs in Figures 1 and 2 displaying the
distribution of hypertension and asthma in relation to discharged status.

Table 3. Crosstabulation between hypertension and sischarged status.

Value df Asymptotic Significance (2-Sided) Exact Sig. (2-Sided) Exact Sig. (1-Sided)

Pearson Chi-Square 10.496 a 1 0.001
Continuity Correction b 9.344 1 0.002
Likelihood Ratio 9.380 1 0.002
Fisher’s Exact Test 0.003 0.002
N of Valid Cases 388

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 11.14. b. Computed only for a
2 × 2 table. H0: There is no relationship between the two variables.

Table 4. Crosstabulation between asthma and discharged status.

Value df Asymptotic Significance (2-Sided) Exact Sig. (2-Sided) Exact Sig. (1-Sided)

Pearson Chi-Square 6.151 a 1 0.013
Continuity Correction b 5.206 1 0.023
Likelihood Ratio 7.577 1 0.006
Fisher’s Exact Test 0.010 0.007
N of Valid Cases 388

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 9.25. b. Computed only for a
2 × 2 table. H0: There is no relationship between the two variables.
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Table 3 presents the results of Chi-Square tests assessing the association between
the presence of hypertension and the discharge status of patients in the context of the
research. These tests aim to determine whether there is a significant relationship be-
tween the two variables—hypertension and discharged status—and to ascertain if the
presence of hypertension has an impact on the likelihood of being discharged alive or dying
after hospitalisation.

The Pearson Chi-Square test statistic is 10.496 with one degree of freedom, yielding an
asymptotic significance level of 0.001. This indicates a statistically significant relationship
between hypertension and discharged status. The Continuity Correction Chi-Square value
is 9.344 with the same degrees of freedom and a significance level of 0.002, which further
strengthens the evidence of a significant association. The Likelihood Ratio test also yields a
Chi-Square value of 9.380 with one degree of freedom and a significance level of 0.002.
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The Fisher’s Exact Test, often employed when dealing with small cell sizes, demon-
strates a significant exact two-sided p-value of 0.003 and a significant one-sided p-value of
0.002. This indicates a notable relationship between hypertension and discharged status,
even when considering smaller sample sizes or rare occurrences.

Similarly, Table 4 presents the outcomes of Chi-Square tests investigating the asso-
ciation between the presence of asthma and the discharge status of patients within the
research context. These tests aim to establish whether there is a significant relationship
between these two variables and whether the presence of asthma affects the likelihood of
being discharged alive or dying following hospitalisation.

The Pearson Chi-Square test statistic results in a value of 6.151 with one degree of
freedom, yielding a two-sided asymptotic significance level of 0.013. This indicates a
statistically significant connection between asthma and discharged status, suggesting that
asthma might influence patient outcomes after hospitalisation for COVID-19. Similarly,
the Continuity Correction Chi-Square value is 5.206 with a significance level of 0.023,
strengthening the evidence of a significant association.

The Likelihood Ratio test yields a Chi-Square value of 7.577 with one degree of
freedom and a significance level of 0.006. This further emphasises the statistically significant
relationship between asthma and discharge status.

The Fisher’s Exact Test, designed for small cell sizes, exhibits an exact two-sided
p-value of 0.010 and a one-sided p-value of 0.007. These small p-values suggest a noteworthy
association between asthma and the likelihood of being discharged or dying after COVID-19
hospitalisation, even when considering smaller sample sizes or rare occurrences.

Importantly, all expected cell counts in the table are greater than 5, and the minimum
expected count is 9.25, satisfying the prerequisite for the application of Chi-Square tests.
The tests are computed for a 2 × 2 table.

In summary, the findings of Table 4 underscore a statistically significant link between
the presence of asthma and the discharge status of patients post-hospitalisation. This
suggests that asthma might have a discernible impact on the outcomes of COVID-19
patients, potentially influencing the course of their recovery or mortality. These results
hold implications for healthcare strategies and patient care approaches, warranting further
investigation into the relationship between asthma and COVID-19 outcomes.

Before delving into the application of semiparametric and parametric models, we
begin our analysis by examining the Kaplan-Meier survival function. Initially, we explore
the overall survival function to gain a holistic view of the mortality trends within our
dataset. Additionally, we dissect this function based on gender, allowing us to discern
potential disparities in survival probabilities between male and female patients. These
preliminary steps pave the way for a comprehensive investigation of our data, enabling us
to subsequently fit semiparametric and parametric models. We aim to unravel the complex
interplay of variables influencing COVID-19 mortality outcomes through these models.

It is also evident from Figure 3 that the overall survival of patients for the first 60 days
declines steadily, with the survival function amongst males and females being significant,
with a p-value of 0.029.

In our pursuit to comprehensively understand the intricate landscape of COVID-19
mortality risk assessment among post-hospitalised patients in South Africa, we turn our
attention to the fitting of semiparametric and parametric models. These advanced analytical
techniques hold the potential to unravel the multifaceted associations between various risk
factors and mortality outcomes. By applying semiparametric and parametric models, we
endeavour to go beyond descriptive insights, delving into the underlying mechanisms that
drive mortality trends. Through this approach, we aspire to unearth valuable insights that
can inform targeted interventions and strategies for improving patient outcomes within the
context of the South African healthcare landscape. These models were compared using the
loglikelihood after checking the underlying assumptions. The selected model is presented
in Table 5, whereas the competitive models are presented in Appendix A.
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Table 5. Parameter estimates for the frailty regression model.

Characteristic HR 1 95% CI 1 p-Value

Asthma
No — —
Yes 0.83 0.48, 1.46 0.5

Diabetes
No — —
Yes 1.69 1.03, 2.76 0.038

Hypertension
No — —
Yes 3.31 1.61, 6.81 0.001

Tuberculosis
No — —
Yes 0.38 0.18, 0.79 0.010

Obesity
No — —
Yes 0.74 0.42, 1.30 0.3

District
Mopani — —
Capricorn 17.1 7.61, 38.3 <0.001
Waterberg 0.41 0.05, 3.50 0.4

Ever Oxygenated
Yes — —
No 0.95 0.60, 1.50 0.8

Ever Ventilated
No — —
Yes 0.34 0.22, 0.54 <0.001

Sex
F — —
M 1.55 1.09, 2.21 0.015

Frailty (Column1) <0.001
1 HR = Hazard Ratio, CI = Confidence Interval, Global p-value = 1.00, Loglikelihood = −1237.52,

AIC = 2743.64
NB: The Global p-value evaluates the hypothesis underlying the model, where H0: there is no association between
the term and the response.
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When comparing the models and selecting the best-fitted one based on loglikelihood
and AIC, it is essential to consider the assumptions and clinical relevance of the models
in addition to their statistical fit. The frailty regression model presented in Table 5 has a
higher loglikelihood −1237.52 compared to the parametric survival models displayed in
Appendix A. Again, the frailty regression model has the advantage of directly accounting
for frailty, which may have clinical relevance to our problem statement. This model assumes
a random effect for frailty, allowing for individual heterogeneity in the baseline hazard.

Table 5 presents a comprehensive analysis of parameter estimates within the frailty
regression model, offering valuable insights into the mortality risk assessment of post-
hospitalised COVID-19 patients in the context of the research topic. Each parameter
estimate, along with its associated Hazard Ratio (HR), 95% Confidence Interval (CI), and
p-value, provides a detailed understanding of the impact of various characteristics on
mortality outcomes.

Among the factors examined, the presence of asthma does not appear to exert a
statistically significant influence on mortality risk, as evidenced by the non-significant
HR of 0.83 (95% CI: 0.48 to 1.46, p = 0.5). This suggests that asthma might not play a
substantial role in determining COVID-19-related mortality among the studied patients.
In contrast, diabetes emerges as a significant contributor to mortality risk, with patients
having a 1.69 times higher hazard of mortality (95% CI: 1.03 to 2.76, p = 0.038) compared to
those without diabetes. This emphasises the importance of managing diabetes as a crucial
comorbidity to mitigate the risk of adverse outcomes following COVID-19 hospitalisation.

Hypertension stands out as a notable risk factor, significantly elevating the hazard
of mortality. Patients with hypertension exhibit a substantial 3.31 times higher hazard of
mortality (95% CI: 1.61 to 6.81, p = 0.001), underscoring the critical need to address this co-
morbidity in COVID-19 patient management strategies. Intriguingly, tuberculosis seems to
have a protective effect, resulting in a reduced hazard of mortality among affected patients.
The HR of 0.38 (95% CI: 0.18 to 0.79, p = 0.010) implies that individuals with tuberculosis
experience a lower risk of mortality, suggesting potential immune responses or effective
medical interventions associated with tuberculosis that warrant further investigation.

Notably, obesity does not significantly alter mortality risk among the studied patients,
as indicated by an HR of 0.74 (95% CI: 0.42 to 1.30, p = 0.3). This implies that obesity
might not play a prominent role in influencing mortality outcomes in this specific context.
Geographic disparities are also evident, with patients from the Capricorn district facing an
alarmingly higher hazard of mortality (HR: 17.1, 95% CI: 7.61 to 38.3, p < 0.001) compared
to the reference district, Mopani. This highlights the need to address regional variations in
healthcare access and outcomes.

Medical interventions play a significant role as well. Ventilation during hospitalisation
is associated with a substantial reduction in the hazard of mortality (HR: 0.34, 95% CI: 0.22
to 0.54, p < 0.001), underlining its critical importance in the treatment of severe COVID-19
cases. Gender differences also come to the forefront, with males having a higher hazard
of mortality (HR: 1.55, 95% CI: 1.09 to 2.21, p = 0.015), suggesting potential gender-related
disparities in COVID-19 outcomes.

In the broader context of our problem, these parameter estimates provide invaluable
insights into the intricate interplay between various characteristics and mortality risks
among post-hospitalised COVID-19 patients. These findings hold profound implications
for healthcare interventions and patient management strategies. Addressing diabetes,
hypertension, regional disparities, and medical interventions such as ventilation become
imperative for improving outcomes. Overall, these parameter estimates significantly
contribute to our understanding of COVID-19 mortality risk assessment and offer crucial
guidance for tailored strategies to enhance patient care and outcomes in South Africa.

In relation to previous research, diabetes is identified as a significant risk factor for
mortality, aligning with previous studies that have consistently reported the detrimental
impact of diabetes on COVID-19 outcomes [20,30,31]. Similarly, hypertension is found to
be strongly associated with increased mortality risk, corroborating evidence suggesting
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hypertension as a risk factor for severe illness in COVID-19 patients [30,31]. Nonetheless,
these results have implications for risk stratification and targeted interventions to improve
patient care and outcomes. They can inform healthcare providers in identifying and
providing appropriate care to individuals with diabetes and hypertension who are at
higher risk of mortality. Additionally, the findings highlight the need for integrated care for
individuals with comorbidities to optimise COVID-19 management and reduce mortality
rates. Further studies are warranted to validate these findings and explore potential
mechanisms underlying the observed associations.

5. Conclusions and Implication of Results

In conclusion, the findings of this study offer comprehensive insights into the intricate
web of factors shaping post-hospitalisation COVID-19 mortality risk among patients in
South Africa’s Limpopo province. The robust association between diabetes and hyperten-
sion with increased mortality rates underscores the imperative of effectively managing
these underlying conditions to enhance patient outcomes. The intriguing protective effect
linked to tuberculosis warrants further exploration, potentially unlocking novel avenues
for understanding immune responses and potential therapeutic interventions. The regional
disparities, evident through elevated mortality risk in the Capricorn district, highlight
the urgency of targeted interventions to address healthcare inequities across different
geographical areas.

This study brings to the forefront the pivotal role of medical interventions, particularly
ventilation, in significantly mitigating mortality risk. Furthermore, gender-based variations
in mortality outcomes underscore the necessity of tailored approaches to ensure gender-
specific healthcare strategies. These findings carry significant implications for healthcare
interventions and patient management strategies. Prioritizing the management of diabetes,
hypertension, and regional disparities could lead to substantial improvements in patient
outcomes. The protective effect of tuberculosis holds promise for innovative therapeutic
avenues, while emphasising the importance of understanding diverse immune responses.

Overall, this study provides actionable insights that can inform healthcare policies,
allocation of resources, and clinical practices to effectively address and mitigate COVID-19
mortality risk among post-hospitalised patients in South Africa’s Limpopo province. The
results underscore the importance of a holistic and tailored approach to patient care, offering
a valuable roadmap for both current and future efforts in tackling the challenges posed by
the pandemic.
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Appendix A

Table A1. Parameter estimates for Cox proportional hazard regression model.

Characteristic HR 1 95% CI 1 p-Value

Asthma
No — —
Yes 0.99 0.67, 1.46 >0.9

Diabetes
No — —
Yes 1.17 0.83, 1.65 0.4

Hypertension
No — —
Yes 2.49 1.43, 4.36 0.001

Tuberculosis
No — —
Yes 0.54 0.31, 0.93 0.027

Obesity
No — —
Yes 0.98 0.66, 1.45 >0.9

Chronic Pulmonary Disease
No — —
Yes 1.08 0.56, 2.09 0.8

Facility Type
District Hospital — —

Private General Hospital 0.46 0.30, 0.69 <0.001
Provincial Tertiary Hospital 0.40 0.25, 0.66 <0.001

District
Mopani — —

Capricorn 7.82 4.26, 14.3 <0.001
Waterberg 0.38 0.05, 2.86 0.3

Ever Oxygenated
Yes — —
No 0.88 0.64, 1.21 0.4

Ever Ventilated
No — —
Yes 0.60 0.45, 0.81 <0.001

Sex
F — —
M 1.15 0.91, 1.46 0.2

1 HR = Hazard Ratio, CI = Confidence Interval, Global p-value = 0.00, Loglikelihood = −1409,
AIC = 2844.00

Table A2. Parameter estimates for parametric survival model with Gamma baseline hazard distribution.

Characteristic HR 1 Beta 95% CI 1 p-Value

shape -- 1.55 1.34, 1.79 --
rate -- 0.06 0.04, 0.10 --
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Table A2. Cont.

Characteristic HR 1 Beta 95% CI 1 p-Value

Asthma
Yes 0.99 −0.01 −0.33, 0.30 0.5
No --

Diabetes
Yes 1.13 0.12 −0.14, 0.39 0.2
No --

Hypertension
Yes 1.97 0.68 0.25, 1.11 <0.001
No --

Tuberculosis
Yes 0.60 −0.51 −0.93, −0.08 0.009
No --

Obesity
Yes 0.98 −0.02 −0.33, 0.28 0.4
No --

Chronic Pulmonary Disease
Yes 1.08 0.08 −0.43, 0.59 0.4
No

Facility type
Private General Hospital 0.50 −0.69 −1.02, −0.36 <0.001

Provincial Tertiary Hospital 0.46 −0.77 −1.15, −0.39 <0.001
District Hospital --

Ever Oxygenated
No 0.91 −0.09 −0.34, 0.17 0.3
Yes --

Ever Ventilated
Yes 0.66 −0.41 −0.64, −0.18 <0.001
No --

Sex
M 1.12 0.12 −0.07, 0.30 0.11
F

District
Capricorn 4.71 1.55 1.08, 2.02 <0.001

Waterberg 0.52 −0.66 −2.10, 0.77 0.2
Mopani ---

HR 1 = Hazard Ratio, 1 CI = Confidence Interval, Loglikelihood = −996.33, AIC = 2022.67

Table A3. Parameter estimates for parametric survival model with Gen Gamma baseline hazard
distribution.

Characteristic HR 1 Beta 95% CI 1 p-Value

mu -- 2.97 2.56, 3.39
sigma -- 0.88 0.80, 0.96

Q -- 0.31 0.02, 0.60

Asthma
Yes 1.09 0.09 −0.24, 0.43 0.3
No --

Diabetes
Yes 0.79 −0.23 −0.51, 0.04 0.049
No --
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Table A3. Cont.

Characteristic HR 1 Beta 95% CI 1 p-Value

Hypertension
Yes 0.53 −0.63 −1.04, −0.21 0.001
No --

Tuberculosis
Yes 1.73 0.55 0.12, 0.97 0.006
No --

Obesity
Yes 1.09 0.09 −0.23, 0.42 0.3
No

Chronic Pulmonary Disease
Yes 0.94 −0.06 −0.58, 0.45 0.4
No

Facility Type
Private General Hospital 2.08 0.73 0.37, 1.08 <0.001

Provincial Tertiary Hospital 1.84 0.61 0.18, 1.04 0.003
District Hospital --

Ever Oxygenated
No 1.07 0.07 −0.19, 0.33 0.3
Yes --

Ever Ventilated
Yes 1.69 0.53 0.27, 0.79 <0.001
No --

Sex
M 0.83 −0.18 −0.37, 0.02 0.040
F

District
Capricorn 0.21 −1.54 −1.99, −1.09 <0.001

Waterberg 1.89 0.64 −0.57, 1.84 0.15
Mopani --

HR 1 = Hazard Ratio, 1 CI = Confidence Interval, Loglikelihood = −991.02, AIC = 2014.04

Table A4. Parameter estimates for parametric survival model with Weibull baseline hazard distribution.

Characteristic HR 1 Beta 95% CI 1 p-Value

shape -- 1.25 1.15, 1.36
scale -- 27.9 17.8, 43.5

Asthma
Yes 1.00 0.00 −0.31, 0.31 0.5
No --

Diabetes
Yes 0.91 −0.09 −0.36, 0.19 0.3
No --

Hypertension
Yes 0.49 −0.72 −1.17, −0.27 <0.001
No --

Tuberculosis
Yes 0.65 0.50 0.07, 0.94 0.012
No --

Obesity
Yes 1.00 0.00 −0.32, 0.31 0.5
No
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Table A4. Cont.

Characteristic HR 1 Beta 95% CI 1 p-Value

Chronic Pulmonary Disease
Yes 0.92 −0.08 −0.61, 0.44 0.4
No

Facility Type
Private General Hospital 1.92 0.65 0.32, 0.98 <0.001

Provincial Tertiary Hospital 2.25 0.81 0.43, 1.20 <0.001
District Hospital --

Ever Oxygenated
No 1.05 0.10 −0.15, 0.35 0.2
Yes --

Ever Ventilated
Yes 1.46 0.38 0.15, 0.61 <0.001
No --

Sex
M 0.91 −0.09 −0.28, 0.10 0.2
F --

District
Capricorn 0.21 −1.58 −2.08, −1.08 <0.001

Waterberg 2.09 0.74 −0.88, 2.35 0.2
Mopani --

HR 1 = Hazard Ratio, 1 CI = Confidence Interval, Loglikelihood = −1000.49, AIC = 2030.99

Table A5. Criteria for selecting the best-fitted distribution for the parametric models.

Distribution Akaike Information Criterion (AIC)

Gamma 2075.2
Generalised Gamma 2077.3
Weibull 2078.4
Gompertz 2089.5
LogNormal 2091.0
Exponential 2098.0
LogLogistic 2100.0
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Figure A1. Parametric distribution fits for discharged status. 
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