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Abstract: In this paper, we explore how effectively renewable generation can be used to meet a
country’s electricity demands. We consider a range of different generation mixes and capacities, as
well as the use of energy storage. First, we introduce a new open-source model that uses hourly wind
speed and solar irradiance data to estimate the output of a renewable electricity generator at a specific
location. Then, we construct a case study of the Great Britain (GB) electricity system as an example
using historic hourly demand and weather data. Three specific sources of renewable generation are
considered: offshore wind, onshore wind, and solar PV. Li-ion batteries are considered as the form
of electricity storage. We demonstrate that the ability of a renewables-based electricity system to
meet expected demand profiles can be increased by optimising the ratio of onshore wind, offshore
wind and solar PV. Additionally, we show how including Li-ion battery storage can reduce overall
generation needs, therefore lowering system costs. For the GB system, we explore how the residual
load that would need to be met with other forms of flexibility, such as dispatchable generation sources
or demand-side response, varies for different ratios of renewable generation and storage.

Keywords: intermittency; wind energy; solar PV; Li-ion; storage

1. Introduction

Many countries, including the United Kingdom (UK), are moving towards net carbon
dioxide neutrality by 2050, where any emissions of man-made CO2 are compensated for by
negative emissions from greenhouse gas removal technologies. Since negative emission
technologies are expensive and of limited capacity, most areas of economic production,
including electricity generation, will have to be largely non-emitting before 2050 to meet
this goal [1]. At the same time, increased use of electricity in transport and heating to
displace existing fossil fuel alternatives is increasing demand for electricity generation and
transmission, thus requiring more low-carbon electricity to be produced in a way that is
balanced with consumer demand [2,3].

Although difficult, the goal of a 100% zero-carbon electricity system is possible and
may lead to lower overall system cost than fossil fuel generation due to rapid decreases in
renewable generation prices [4]. One analysis presents plans for 139 countries to transition
to 100% clean and renewable energy by 2050 [5] and several studies [6–8] have produced
detailed pathways in different countries for renewable energy to meet 100% of electricity
demand. In the UK, the Government has recently indicated that they aim to achieve a
zero-carbon electricity system by 2035, which is in line with advice from the UK Climate
Change Committee [9,10].

There are several problems in transiting a predominantly dispatch led fossil fuel
generation network to one dependent on renewable generation:
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• Many forms of renewable generation are intermittent and non-dispatchable; only some
forms, such as biomass generation and certain types of hydroelectric schemes, can
be dispatched by a central controller in much the same way as fossil fuel generation.
Various kinds of renewables have different capacities for generation in the seasons as
local weather conditions vary. A much better control strategy is needed to control a
renewables based network [11].

• It is not possible to match generation with rapid changes in demand without the
careful use of other ancillary services procured by the network operator. These services
include the use of electricity storage in the network, the smart grid enabling demand
side response services and the use of interconnections to other networks to provide
balancing services over a wider area [12].

• Increased contribution of convertor fed renewable generation will lead to a lowering
of system inertia compared to fossil fuel rotating generation. This can be overcome by
incorporating faster control in the network to reduce inertia demands and potentially
by the use of synthetic inertia from renewables and energy storage systems. A review
of this issues can be found here [13].

• Lower load factors from renewable generation compared to fossil fuel generation lead
to system assets such as transmission networks being under-utilised. This can be
mitigated by increasing load factors from renewables by technology improvements.
For example, the latest large offshore wind turbines can have load factors of 60% and
improvements in solar PV technologies are doubling the energy delivered from a solar
panel of a certain size [14,15].

This paper looks at the requirements to balance generation and load in a UK based
fully renewable electricity generation system using a mixture of both renewables (solar PV,
onshore wind, offshore wind) and electricity storage (lithium ion based battery storage).
It concentrates on the optimisation of the type of renewables to give diversity to the
generation mix and the storage in the network to allow operators to balance demand over
both short and extended periods.

To model the situation where both generation from renewables and demand are
correlated, we introduce a novel model: Storage and Cost Optimization of Renewable
Electricity Systems (SCORES). SCORES uses real weather data with geographic coverage of
the whole of GB from the past 25 years at one-hour intervals to generate a realistic electricity
generation profile from a range of geographically distributed renewable assets. SCORES
uniquely also includes realistic engineering models of types of electricity generation and
storage to explore the effect of different mixes on the availability of electrical power. The
profiles generated are then compared to a one-hour resolution demand model to get a
reliability metric of the system for meeting overall consumer demand.

This model allows us to be uniquely able to answer the question ’what percentage
of time can demand be met with a mix of renewables and storage at certain deployment
levels?’. Unlike other models that take advantage of high-resolution historic weather
data, such as the Renewables Ninja platform [16,17], SCORES is sensitive to the type
of renewables deployed and even to technologies now being innovated (for example,
the proposed engineering characteristics of the >15 MW offshore turbines now under
development), the location of assets deployed, and the type of storage used in the network.
Furthermore, unlike other energy system models such as UK-TIMES [18] and IWES [19],
SCORES uses historic hourly weather data and, therefore, includes a much more realistic
and high-resolution representation of the variations in renewable energy generation.

The novel contributions of this paper can be summarised as follows: First, that the
proposed model captures the parameters of various generation and storage technologies,
even those that are not yet commercially deployed. Second, that the developed framework
incorporates the geographic variation in renewables output and allows the generation
output at a new site to be modelled. Third, that, using a case study of the GB system, we
investigate the percentage of consumer load that could be met with various combinations
of generation and storage.
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The model is being published as open source alongside this paper, allowing others
to perform their own case studies. In future papers we will extend this to other forms of
longer-term storage (thermal, hydro, power-to-gas, compressed air, liquid air) and less
common forms of renewables to see what effect these future technologies will have in
meeting 2050 targets. In this paper, we optimise to find the best match of generation to
demand, future papers will also look at optimising the cost of deploying these solutions.

2. Materials and Methods

The SCORES model was developed for this study to explore the relationships between
intermittent renewable electricity generators, electricity demands, and storage technologies.
The model is outlined in the following subsections.

2.1. Model Overview

The SCORES model consists of several separate sub-models, which can be combined to
carry out simulations or optimisations of a whole electricity system. A schematic overview
of the model is shown in Figure 1.
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Figure 1. Schematic representation of SCORES model. The “Generation Model” makes use of
renewable resource data, and contains sub-models representing onshore wind, offshore wind and
solar. A separate “Storage Model” has sub-models representing different storage technologies, and
a “Multiple Storage Assets” Model” to manage the interactions between these technologies. The
“Electricity System Model” makes use of the Generation Model, the Storage Model, and demand data
to carry out simulations or optimisations of the overall electricity system.

The model makes use of high-resolution renewable energy resource data, shown in
Figure 1 in the dashed box named “Renewable Resource Data”. These data include historic
hourly wind speeds and solar irradiance data for a grid of datapoints across Great Britain
and its territorial waters. More information is provided in Section 2.2.

The “Generation Model” makes use of the Renewable Resource Data via technology
specific sub-models for onshore wind, offshore wind and solar photovoltaics (PV). These
sub-models include the technological parameters and relationships required to convert the
hourly resource data into hourly generation profiles. More information on these sub-models
is provided in Sections 2.3.1 and 2.3.2. The Generation Model is a standalone model, which
can be used to calculate various results, such as annual load factors for different technology
types or locations.

The “Storage Model” is a separate model that is used to represent electricity storage as-
sets. This model contains the necessary constraints to manage the charging and discharging
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of storage technologies. Sub-models are used to represent different storage technolo-
gies, such as batteries or power-to-gas-to-power (P2G2P). Additionally, the storage model
contains a “Multiple Storage Assets” function, which manages the relationship between
different storage technology types, for example, determining which technology should be
charged or discharged first. The Storage Model is described in detail in Section 2.4.

The Storage Model interfaces with the Generation Model, via the “Electricity System
Model”. The key function of the Electricity System Model is to compare the electricity
generation profiles generated in the Generation Model with pre-determined electricity
demand data, generating an hourly profile of electricity “surplus” (when generation exceeds
demand) or “deficit” (when demand exceeds generation). Based on this profile, operation
of an electricity system can be simulated over one or more years. As described in detail in
Section 2.4, the “surplus” profile generated by the Electricity System Model is also used by
the Storage Model in the simulation of storage operation.

The Electricity System Model is still in development, but is intended to include various
other functions to provide overall system analysis. This will include modelling technology
costs, and a system optimiser, which will seek the combination of generation and storage
installed capacities that achieves the lowest overall system cost while still meeting required
reliability levels. Details of this will be published in future work.

2.2. Renewable Resource Data

The SCORES model can make use of global reanalysis models such as the NASA
Modern-Era Retrospective analysis for Research and Applications (MERRA-2) [20]. This
has a spatial resolution of 50 km and global coverage, meaning that SCORES could be
applied to any country or energy system in the world.

In this study, MERRA-2 is used to provide the onshore wind speed data. For greater
resolution and accuracy in the context of Great Britain, sources from the UK Met Office
are used for offshore wind speeds and solar irradiance. The offshore wind speed data are
sourced from the Met Office’s Virtual Met Mast (VMM) dataset [21]. The VMM utilises
data from Met Office regional-scale numerical weather prediction (NWP) models to which
adjustments are applied to account for local complexity such as the effects of local topogra-
phy and near-coast effect. It covers a period of over 34 years at 150 m height for 512 sites in
regular spaced grids (30 km × 30 km) across Great Britain’s offshore sea water. The solar
irradiance data are sourced from Met Office datasets from 80 observation centres across
Great Britain, covering up to 10 years [22].

Where there is not a data point at the specific location being simulated, a spatial inter-
polation is performed. The three closest data points are located and linearly weighted by their
distance from the simulation point, such that the closest point is most strongly represented.

2.3. Generation Model

SCORES’ Generation Model contains a series of technology-specific sub-models. Each
sub-model includes the relationships and parameters necessary to convert the hourly
renewable resource data into power generation profiles. The sub-models are described in
the following sub-sections.

2.3.1. Offshore Wind Model and Onshore Wind Model

Both the Offshore Wind Model and Onshore Wind Model use the same approach to
convert wind speed data to power output. The only differences between the models are the
wind speed data used and the turbine technology parameters.

To calculate the hourly power output profile, first the wind speeds in the renewable
resource data are adjusted to account for differences in height between the wind turbine
hub height h and the height at which the wind speed data were measured, href:

v = vre f

(
h

hre f

)α

(1)
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where v is the wind speed at the wind turbine hub height h; vref is wind speed from the
renewable resource data, measured at height href; and α is the wind shear coefficient, taken
to be 0.143. The wind turbine “power curve” is then defined based on the wind power
equation:

Pt =
1
2

CpρAv3 (2)

where Pt is the theoretical wind turbine power output; Cp is the power coefficient; ρ is the
air density; A is the turbine rotor swept area and v is the wind speed at the rotor hub height.
In practice, Cp is a non-linear function of the turbine’s tip speed ratio; however, in SCORES,
it is assumed to be a constant value, derived from Equation (2) for the turbine’s power
output at rated wind speed vrated.

The actual wind turbine power output P is then calculated from Pt as follows:

P(v) =


0 f or v < vcut-in

Pt(v) f or vcut-in ≤ v < vrated
Pt(v = vrated) f or vrated ≤ v < vcut-out

0 f or v ≥ vcut-out

(3)

where vcut-in is the cut-in wind speed (at which the turbine begins outputting power);
vrated is the rated wind speed (at which maximum power output is first achieved); and
vcut-out is the cut-out wind speed (at which the turbine shuts down). The parameters h, A,
vcut-in, vrated and vcut-out are all input parameters that are defined based on the manufacturer
specifications for the turbine being modelled. The details of the assumptions used for the
offshore and onshore models in this study are shown in Table 1.

Table 1. Technology input data used for offshore and onshore wind turbines in this study.

Offshore Wind Model [23] Onshore Wind Model [24]

Reference Turbine AMSC SeaTitan Envision E128
Rated Power Prated (MW) 10 3.6
Hub height h (m) 150 88
Rotor swept area A (m2) π 952 π 642

Cut-in wind speed vcut-in (m/s) 4 3
Rated wind speed vrated (m/s) 11.5 11.5
Cut-out wind speed vcut-out (m/s) 30 25

2.3.2. Solar Model

The Solar Model converts the solar irradiance data to solar PV power output data.
The hourly power output P of a solar PV installation of area A, subject to radiation D, is
calculated as follows:

P = DAη (4)

where η is a fixed efficiency parameter for the PV panel. Similarly, the installation area A
relates to its nominal maximum power output C via a fixed area factor a f :

A = Ca f (5)

The radiation seen by the PV installation, D, is derived from the global horizontal
irradiation input data described in Section 2.2. The method used follows the equations set
out by Duffie and Beckman [25], and is detailed in Appendix A. The method accounts for
the panel location, tilt and orientation, as well as how diffuse the irradiation is. The key
panel parameters used in this study are shown in Table 2. The PV nominal capacity is not
defined as an input parameter, as it is varied depending on the total solar installed capacity
that is modelled.
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Table 2. Technology input data used for solar PV in this study calculated from data in [26,27].

Solar Model

Panel efficiency η (%) 17
Panel area factor af (m2/kW) 5.84

Panel tilt angle β (◦) 22
Panel azimuth angle γ (◦) 0

2.4. Storage Model
2.4.1. Storage Technology Parameters

One or more storage technologies may be included in the model. All modelled storage
technologies follow the same operating principles, but are differentiated by technology pa-
rameters, which may determine their preferred mode of operation. The storage technology
parameters that are modelled in SCORES are shown in Table 3, with the values of those
parameters that were used to model Li-ion batteries in this study.

Table 3. Technology parameters used for Li-ion batteries in this study.

Li-Ion Batteries [28]

Charging efficiency (%) 95
Discharging efficiency (%) 95
Self-discharge (% per month) 2
Maximum charging rate (% per hour) 100
Maximum discharging rate (% per hour) 100

A nominal battery storage or power capacity is not defined as an input, as this is
determined by the total installed capacity of batteries. However, the parameters shown
in Table 3 are sufficient to determine the operating limits of the technology. For example,
based on a maximum charging and discharging rates of 100% per hour, a battery with a
nominal storage capacity of 20 MWh, would have a nominal power rating of 20 MW.

2.4.2. Storage Operation for a Single Storage Technology

The storage model is based on an hourly “surplus” profile ES, which is defined as the
total electricity generation minus the electricity demand:

ES = EG − ED (6)

where EG is the hourly generation profile, determined by the Generation Model, and ED is
the hourly demand profile, a model input. ES may be positive in the case of a generation
surplus, or negative in the case of a deficit.

The storage model assumes opportunistic storage operation: in the event of a genera-
tion surplus (ES > 0), the storage is charged at the maximum available rate; meanwhile, in
a generation deficit (ES < 0), the storage is discharged at the maximum available rate. The
maximum available charging or discharging rate is constrained by a number of variables:

• The total available surplus (or deficit) during the given time interval (the storage
cannot continue charging if there is no more electricity available);

• The remaining storage capacity (the storage cannot continue charging if it is already
full);

• The maximum charging or discharging rate of the technology (as defined in Table 3).

The remaining storage inventory is tracked across the simulation, and the charging
and discharging efficiencies are accounted for as electricity is either put into storage or
withdrawn. Additionally, the storage inventory is depleted in each interval based on the
self-discharge rate defined in Table 3. Once the storage operation has been simulated
for an entire time history, a new post-storage surplus profile will have been generated.
Depending on the effectiveness of the storage technology, the new surplus profile may now
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be entirely positive, indicating that all generation deficits have been eliminated through
storage. However, the post-storage surplus may still include negative values, indicating
that there are time steps for which a generation deficit remains.

A “reliability” metric is used to measure the extent of remaining deficits. This metric
is valuable for comparing the effectiveness of different generation and storage systems.
Here we a metric previously used by Budischak et al. [29]: the percentage of the simulation
time for which the demand was met, such that reliability is defined as:

reliability(%) =
tde f icit

ttotal
× 100 (7)

where tde f icit is the total number of timesteps where a deficit occurs (i.e., electricity demand
exceeds supply, even after storage has been utilised), and ttotal is the total number of
timesteps in the simulation. This metric describes the percentage of time intervals for
which demand could be met entirely with renewable electricity and storage. Although
this does not capture the magnitude of energy shortfalls, as the storage is assumed to
operate opportunistically (rather to maximise this metric) there is no danger of the system
purposefully missing demand where a shortfall is unavoidable.

It should be noted that this specific definition of “reliability” is concerned only with
the renewable generators, storage, and demand profile included in the model. Any “missed
reliability” under this definition simply indicates that additional flexibility may be required,
such as dispatchable generation or demand-side response. In the remainder of this article,
the term “reliability” will only be used as defined above.

2.4.3. Multiple Storage Assets

Different storage technology types can be modelled concurrently in SCORES, for
example, to include both Li-ion batteries and hydrogen storage in the same system. The
same opportunistic storage algorithm is used; however, a precedence order must also
be chosen to determine which storage technology type is charged and discharged first.
Future work will investigate more dynamic precedence setting in order to maximise the
overall system benefit. In this study, only one storage technology type (Li-ion batteries)
was modelled.

2.5. Demand Data

The relationship between renewable generation and electricity demand will dictate the
required amount of energy storage. Electricity demand is partially determined by human
behaviour, and thus dependent on the weather. This complicates the problem of estimating
the reliability of renewable electricity systems because generation will also be strongly
weather dependent. Here, we propose using historic demand alongside historic weather
data, so that this relationship is accurately captured.

For this study, electricity data were obtained from Gridwatch [30], an API for accessing
historic UK electricity demand. The demand is available at 5 min intervals; however, it was
down-sampled to hourly resolution and missing points were forward-filled.

Figure 2 shows the resulting electricity demand profiles. As can be seen, there is
significant variability across the year, with much larger electricity demands in winter.
Demand is also much higher during the day than overnight, and with an early evening peak.

Although there are models of the future electricity profile (e.g., [31–33]) these take a
sample-day approach. This approach is not appropriate for estimating system reliability
because both demand and renewable generation can have rare long events that must be
accounted for—e.g., a two-week period of low wind output. We believe the proposed
method is the most robust available for quantifying the reliability of an electricity system.

The limitation of using historic demand data in this way is that future changes to the
electricity demand profile are not included. Electrification of transport and heating are
likely to both increase total electricity consumption, and change its diurnal and seasonal
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profiles. It would be possible to model these additional loads and then superimpose them
onto historic demand data. This will be explored in future work.
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consumption throughout the year; (b) electricity demand profile on the “average day”.

3. Results and Discussion

This section presents results generated with the SCORES model. A case study of Great
Britain and its territorial water is modelled, with electricity generation made up of offshore
wind, onshore wind, and solar power aided by battery energy storage. Offshore wind,
onshore wind, and solar power plants are assumed to be evenly distributed across the
territory. For all results in this section, the system is simulated at an hourly time step, using
historic electricity demand and weather data between the years 2013 and 2019 inclusive;
therefore, a total of 61,344 h were simulated. These results analyse the effect of sizing the
various aspects of the system on the resultant reliability factor as defined by Equation (7).

3.1. Varying Installed Generation and Storage Capacity

The reliability of a renewable electricity system may be increased by increasing either
the total installed generation capacity or the total installed storage capacity. Increased
generation means that the storage is used less frequently, so it is more likely to be available
to discharge at times of shortfall. By contrast, increased storage capacity means that a larger
percentage of generation surplus can be shifted to meet demand. Here, we investigate
how the reliability of the electricity system changes as one increases either the installed
generation capacity or storage. We assume a fixed ratio of renewable energy capacity of
40% offshore wind, 30% onshore wind, and 30% solar (percentages taken by nameplate
capacity, not energy generation).

Figure 3 shows the variation in system reliability for a range of system generation
and storage capacities. Note that the “reliability” is as defined in Equation (7); therefore,
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“missed” reliability does not necessarily represent a system failure, but suggests that further
alternative flexibility provision (such as dispatchable power generation or demand-side
response) would be required.
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Figure 3a shows five different total generation capacities, each with a range of storage
capacities between 0 GWh and 800 GWh. At very low levels of storage the marginal utility
of additional storage is high; i.e., a small further increase results in a substantial increase in
reliability. However, as the amount of storage increases the marginal utility decreases, and
for each installed generation capacity, the achievable reliability plateaus. In the cases where
there is sufficient energy to meet all demand, theoretically close to 100% reliability should
be possible (start-up effects of the simulation may prevent 100% from being reached).
However, the cost of achieving an extra unit of reliability may become prohibitively high.

Figure 3b shows the variation in system reliability as the total generation capacity is
increased from 55 GW to 170 GW for five levels of installed storage. Recall that generation
capacity values are for total nameplate capacity rather than peak generation output (an
important distinction as the peak output of the different renewables are unlikely to occur at
the same time). For this range of values, total generation capacity has a more pronounced
effect on reliability (although having energy storage significantly increases reliability).

Given the load factors of each renewable generator, the “average load factor” of the
electricity generation system (with 40% offshore wind, 30% onshore wind and 30% solar) is
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40%; therefore, a 60 GW system, for example, would only generate 24 GW on average. By
comparison, the average electricity demand in the scenario is around 33 GW. From this,
we can see that even in a system with “perfect storage”, a minimum generation capacity
of around 83 GW would be required in order to meet the 33 GW “average demand” (thus
achieving 100% reliability). As the results in Figure 3 show, the storage system is non-
perfect, so in fact system reliabilities remain well below 100% until generation capacity
exceeds 100 GW, no matter how much storage is included.

3.2. Varying Generation Mix

As well as the total installed generation capacity, the relative sizes of the generation
assets will influence system reliability. Table 4 shows some metrics for the hourly generation
profiles of different generation technologies. The generator’s load factor is calculated
by dividing the average power output of the generator by its nameplate capacity, and
for renewable generators, it is typically determined by the weather and the operating
parameters of the generator. For example, solar generation has a significantly lower load
factor than wind power due to the low number of sunlight hours per year. Load factor is
important in this analysis because generators with higher load factors will generate more
energy for a fixed installed generation capacity.

Table 4. Metrics for the time profiles of the offshore wind, onshore wind and solar generation profiles.
Metrics include load factor, Pearson coefficient and correlation with demand, and correlation with
the other generators.

Offshore Wind Onshore Wind Solar

Load Factor 60.2% 38.6% 13.7%
Pearson coefficient with demand 0.121 0.112 0.04
Correlation with demand 23.2% 15.3% 5.4%
Correlation with offshore wind - 28.1% 6.9%
Correlation with onshore wind 28.1% - 4.7%
Correlation with solar 6.9% 4.7% -

The generator’s Pearson coefficient and correlation with demand each give an indica-
tion of the degree to which the output of the generator matches the variations in demand.
For example, as can be seen in Figure 2, the UK’s electricity demand is lowest in the summer;
meanwhile, solar power peaks in the summer, so seasonally the variation in solar power is
not well aligned with demand. On the other hand, solar power is only available during
the day, and the UK’s demand is higher in the daytime. This is important because greater
misalignment of generation and demand suggests an increased reliance on energy storage.
Correlation is quantified by scaling each signal to vary between 1 and 0 and calculating
the average product between the two signals, such that the minimum value is 0% and the
maximum value is 100%.

Finally, the correlation of each generator’s output with the other generators gives
an indication of how well “matched” different generators are. It might be expected that
generators with a low correlation would be more complementary in an electricity system,
although in practice, it will depend on wider system dynamics.

The load factor for offshore wind is by far the highest, as is the correlation with
demand. As they result in a higher energy generated (so larger area under the power curve)
we can expect signals with a higher load factor may have a larger correlation with any
signal. It is important to note that the load factors and correlation alone cannot dictate what
the best mix of generation technologies is, as the correlation coefficient does not dictate the
required energy storage capacity—this also depends on how long the energy needs to be
stored for.

Therefore, in the following subsections, we will examine how the system reliability
changes for different ratios of the three generation technologies, with a fixed amount of
energy storage. Given that the load factor varies with the power sources, we present two
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cases: one with a fixed total capacity, and one with a fixed total energy generation. This
will help to distinguish between the effect of the high load factor and the effect of the
generation profiles.

3.3. Optimal Generation Mix with a Fixed Total Installed Capacity

Figure 4 shows how the reliability of a system with 100 GW of total generation and
300 GWh of Li-ion battery storage changes with different relative installed capacities of the
generator types.
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Figure 4. System reliability as a function of renewable capacity generation mix of solar PV, offshore
wind and onshore wind with a total installed capacity of 100 GW and a fixed storage installed capacity
of 300 GWh. Graph (a) shows reliability of mixtures of offshore wind and solar PV, Graph (b) shows
reliability with mixtures of solar PV and onshore wind and Graph (c) shows reliability with mixtures
of onshore wind and offshore wind.

The top-left Figure 4a shows the percentage of total installed capacity provided by
onshore wind on the x-axis, and the percentage provided by solar PV on the y-axis. The
remaining capacity (summing to 100%) is provided by offshore wind. The other two
Figure 4b,c shows the same generator types but assigned to different axes so that the
interplay between each of the generator types can be seen. Only the bottom triangle is
shaded in each case as the sum of the contribution from each generator types cannot exceed
100%. Contour lines show lines of constant reliability, such that the generation mixes along
the line will all have the same system reliability. It is interesting to consider the subset of
generation mixes which create the same overall system reliability, because there may be
political or economic considerations which favour one technology over the other.

The highest levels of reliability are found with a predominately offshore wind mix,
which is likely caused because offshore wind has the highest load factor of the three
generator types. A high penetration of solar power gives a low reliability regardless of the
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remaining mix between offshore and onshore wind. At high levels of offshore wind, the
90% contour is almost parallel to the y-axis—demonstrating that the reliability is almost
the same regardless of the remaining make-up on onshore wind and solar. The contours
show that the highest reliability levels are seen at, and close to, 100% offshore wind.

3.4. Optimal Generation Mix with a Fixed Annual Generation

Given that the total generation capacity is fixed at 100 GW in the above example, there
is a distortion towards the generation technologies with the higher load factors. As offshore
wind has the highest load factor, a larger percentage of offshore wind means that the total
energy generation is higher. To compare how the generation mix aligns with the demand
profile, we can instead fix the total energy generation.

Figure 5 shows plots with a fixed energy generation of 350.4 TWh/year, which is
equivalent to 100 GW of generation with a 40% load factor. In this case, the range of
reliability is much smaller, demonstrating that the quantity of energy had a large effect on
the previous results. Whereas in the previous example, the contours centred around the
100% offshore wind point, here, the optimal reliability occurs at around 75% offshore wind,
25% solar.
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Figure 5. System reliability as a function of renewable energy generation mix of solar PV, offshore
wind and onshore wind with a fixed annual generation of 350 TWh/y and a fixed storage installed
capacity of 300 GWh. Graph (a) shows reliability of mixtures of offshore wind and solar PV, Graph
(b) shows reliability with mixtures of solar PV and onshore wind and Graph (c) shows reliability
with mixtures of onshore wind and offshore wind.

The dominance of offshore wind is likely because it has the highest correlation with
demand (as shown in Table 4). Solar power is likely chosen because it complements the
offshore wind, meaning that the solar is likely to be high when the offshore wind is low.
This can also be seen from the correlation values: solar and offshore wind have less than a
7% correlation. There is little role for onshore wind, because it is more strongly correlated
with offshore wind (28%), so compared to solar, it would be less effective at filling in the
shortfalls of offshore wind.
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To further understand why the reliability varies this way with generator mix, it is
useful to look at how the storage is used. Figure 6 shows a scatter plot of the reliability of
a system versus the average number of consecutive hours for which the storage is fully
charged. This gives an indication of how long energy is generally stored for, as while the
storage is fully charged, it is not being used. The systems were chosen using the same
assumptions as in Figure 5. The colour of each marker signifies the relative contribution of
each generation technology to the total energy generation; for example, fully blue markers
denote a 100% offshore wind powered system.
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Figure 6. A scatter plot showing the reliability of different system designs against the average number
of consecutive hours for which the energy storage was fully charged. Each system design has an
annual generation of 350 TWh/y and 300 GWh of storage. The colour of the markers indicates relative
contribution of each generation technology to the total annual energy generation.

The system designs that are most reliant on solar power have the shortest durations for
which the storage is fully charged, in the range of 5 to 16 h. Clearly, this storage operation is
driven by the day/night cycle of solar power. Meanwhile wind-based systems have much
longer full-storage durations on average, indicating that the storage is used less frequently
in those systems. The highest reliability systems have average full-storage durations of
around 23 h, whilst for some systems, this is in excess of 50 h. These long storage durations
may present challenges in finding a viable economic case for the storage when it is used so
infrequently. However, they also show the opportunity for suitable long-duration storage
technologies, with large capacity and low self-discharge.

4. Summary and Conclusions

In this paper, we developed a model to quantify how the reliability of renewable
electricity generation changes with battery energy storage, given the geographic location.
Separate models were developed for offshore wind, onshore wind, and solar power, which
use hourly wind speed and solar irradiance data to estimate generation output. As a
case study, we considered the reliability with which the UK’s electricity demand could be
met with renewable generation. First, we considered a fixed capacity generation mix of
40% offshore wind, 30% onshore wind, 30% solar and investigate how the sizing of total
generation and storage affects the reliability of the system. We showed that introducing
storage to an electricity system significantly increases its reliability, but as the total level of
storage increases, the marginal benefit of further storage quickly diminishes.

Second, we considered how the mix of the generation technologies affects the reliability
of the system. We found that, when capacity is held constant, an entirely offshore wind mix
is the most reliable, but this was largely because the load factor for offshore wind is much
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higher than the other two sources. When energy generation was held constant, the most
reliable mix was approximately three-quarters offshore wind and one-quarter solar power.

Finally, we explored how the storage is used in systems with different generation
mixes. We showed that high-solar systems use shorter duration storage, but the most
reliable systems have storage durations greater 20 h. Given that the economic viability
of energy storage often requires a high usage rate, incentivisation methods or alternative
storage technologies need to be investigated.

The results of the case study provide some insights into the design of a low-carbon
electricity system in the UK. With appropriate amounts of energy storage, electricity
demand can be met with a high degree of reliability using only renewable generation
technologies. In the UK, when total generated energy or generated power is constrained,
the most reliable systems are dominated by offshore wind. When total generated energy
is constrained, adding solar power to the offshore wind increases reliability due to its
complementary nature to offshore wind.

Additionally, more general conclusions about sizing a renewable electricity system
can be formed. In this study, we developed the SCORES model and demonstrated how
it can be used to explore the interactions of different electricity generation technologies,
storage, and electricity demand. The case study showed that neither correlation nor load
factor were accurate predictors for the resulting reliability, meaning that hourly simulations
are necessary.

It is nontrivial to optimally size a renewable electricity system because there are at
least four variables to consider: the quantity of each renewable resource and the amount of
energy storage. Here, we demonstrated example results that can be visualised by fixing
certain quantities, such as the total installed storage capacity. In practice, system planners
will have their own constraints and we hope that our open source model will allow them
to explore potential future system designs.

This study has focused on system reliability as the key metric, but with future work,
we plan to expand SCORES to include optimisation of system cost, which will enable us
to investigate the trade-offs between cost and reliability. By including additional storage
technologies with different performance parameters, we also plan to explore the relative
merits of different generation and storage technologies in more detail.
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Appendix A

The following equations are used convert the actual global horizontal solar irradiation
data I into the radiation seen by a solar panel at a given location and orientation. The
method also accounts for the atmospheric “clearness”, to determine extent to which the
irradiation seen by the panel is “direct” or “diffuse”. This is achieved by comparing the
actual solar irradiance data I to the expected extraterrestrial radiation for the day and time.
The method has been derived from by Duffie and Beckman [25] and is as follows.

https://github.com/constancecrozier/SCORES
https://github.com/constancecrozier/SCORES
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First, the solar declination angle δ is approximated for each day n of a given year:

δ = 23.45 sin
(

360(384 + n)
365

)
(A1)

The hourly angle of incidence θ of direct radiation on the solar panel can then be cal-
culated:

cos(θ) = sin(δ) sin(φ) cos(β)− sin(δ) cos(φ) sin(β) cos(δ)
+ cos(δ) cos(φ) cos(β) cos(ω)
+ cos(δ) sin(φ) sin(β) cos(γ) cos(ω)
+ cos(δ) sin(β) sin(γ) sin(ω)

(A2)

where δ is the solar declination angle; φ is the site’s latitude; β is the panel tilt angle; γ is
the panel azimuth angle (with zero equalling due south); and ω is the hour angle (angle of
the sun relative to the meridian for each hour of the day).

The extraterrestrial radiation acting on a surface perpendicular to the sun is de-
fined based on the solar constant Gsc, which is assumed in the SCORES model to be
1.367 kW/m2 [25]. However, as the earth’s distance from the sun varies throughout the
year, this also affects the level of extraterrestrial radiation seen by the earth. Therefore, an
adjusted solar value Gon for each day of the year n is calculated:

Gon = Gsc

(
1 + 0.033 cos

(
360n
365

))
(A3)

This is then used to calculate the instantaneous horizontal extraterrestrial radiation
G0, adjusting for the solar declination, hour angle, and site latitude:

G0 = Gon(cos(φ) cos(δ) cos(ω) + sin(φ) sin(δ)) (A4)

However, as the actual solar irradiation data I are provided on an hourly basis,
Equation (A4) must be integrated over one hour to give the hourly horizontal extraterrestrial
radiation I0:

I0 =
(

12
π

)
Gon

(
cos(φ) cos(δ)(sin(ω + 7.5)− sin(ω − 7.5)) + 15π

180 (sin(φ) sin(δ))
)

(A5)

Based on this, an hourly “clearness index” kT can be calculated, representing the
relative size of the actual horizontal irradiation I, compared to the extraterrestrial horizontal
radiation I0:

kT =
I
I0

(A6)

The fraction of diffuse radiation is then calculated, using the empirical relationship
proposed by Erbs et al.:

ε =


1.0 − 0.09kT f or kT ≤ 0.22

0.9511 − 0.1604kT + 4.388kT
2 − 16.638kT

3 + 12.336kT
4 f or 0.22 < kT ≤ 0.80

0.165 f or kT > 0.8

(A7)

Finally, the “direct” and “diffuse” (Dd) components of the actual irradiation data,
incident on the panel, can be calculated. The “direct”, or “beam” radiation Db accounts for
the angle at which the beam radiation meets the panel as follows:

Db = I(1 − ε)

(
cos(θ)

cos(φ) cos(δ) cos(ω) + sin(φ) sin(δ)

)
(A8)
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Meanwhile the “diffuse” radiation Dd accounts for the fraction of sky that is seen by
the panel, given that it is tilted at angle θ:

Dd = Iε

(
1 + cos(θ)

2

)
(A9)

The total hourly panel irradiation is then the sum of these components:

D = Db + Dd (A10)
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