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Abstract: The method of symmetrical components is an important mathematical tool for electrical
engineering, as it simplifies the analysis of unbalanced electrical circuits. The method is used almost
exclusively for three-phase networks, but with the advancement of multiphase electrical systems, it
could be convenient to utilize it for such systems as well. In this paper, the method of symmetrical
components is used to analyze a generic five-phase electrical system for various short-circuit faults
and to determine the sequence networks connections for these faults. The analysis performed covers
the derivation of the symmetrical components for voltage/current and of fault currents. The analytical
results and the inferred sequence networks connections are validated by computer simulations. This
paper therefore extends the literature on short-circuit analysis of multiphase electrical systems using
the method of symmetrical components.

Keywords: symmetrical components; sequence networks diagrams; sequence networks connections;
short-circuit faults; multiphase electrical systems

1. Introduction

Single-phase and three-phase electrical systems represent the vast majority of alternat-
ing current (AC) systems, but AC installations and equipment with a different number of
phases also exist. For example, two-phase power distribution is still present in some parts
of Philadelphia—a remnant of the old two-phase power system [1] and pilot six-phase
transmission lines are currently operated by some grid operators [2,3]. Scott transformers
converting three-phase power to two-phase power are used in some traction applications
and to supply special two-phase loads [4], whereas experimental transformers that convert
three-phase power to either five-phase [5,6] or seven-phase power [7,8] have been built for
research purposes. Power converters and rotating machines with four [9,10], five [11–15],
six [16–18], seven [19], nine [20,21], or even more phases have been developed for fault-
tolerant, low torque-ripple electrical drives, of which some have industrial applications.
Moreover, multiphase converters and multiphase machines have attracted substantial
interest in recent years [22,23], so more and more such equipment can be expected to be
introduced to the industry.

Circuit analysis is of great importance for the design, sizing, and operation of electrical
equipment and installations. The method of symmetrical components, based on Fortescue’s
theorem, simplifies the analysis of unbalanced AC networks such as power systems under
short-circuit conditions. For practical reasons, engineers generally apply the method of
symmetrical components to three-phase networks, but theoretically the applicability of
this method is not limited to such networks. In fact, according to Fortescue’s theorem, the
method of symmetrical components can be applied to any multiphase electrical system
with a number of phases that is a prime [24]. However, a comprehensive analysis of AC
systems with more than three phases using the method of symmetrical components is
practically non-existent in the literature. Most papers on this subject present only the
equations for obtaining symmetrical components from base quantities, as for example [25]
for four-phase systems [26,27] for five-phase systems [27,28] for six-phase systems, and [29]
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for twelve-phase systems. Just a few papers include, in addition, a short-circuit analysis
based on Fortescue’s theorem, such as [30] for a five-phase transmission system and a
six-phase transmission system [31,32], but even these papers cover only a small number of
types of short-circuit faults, and the sequence networks diagrams are presented only for
the six-phase system.

In addition to simplifying the analysis of unbalanced AC networks, the method of
symmetrical components, or more specifically the symmetrical components themselves, are
also used in electrical protection [33] and in the calculation formula of several imbalance
indicators [34], all for three-phase power systems. Similar applications of the symmetrical
components could be developed for power systems with more than three phases, thus
further extending the scope of the Fortescue’s theorem in electrical engineering. It remains
to be seen, however, whether multiphase electrical systems will become more popular in
the coming years or not, as this will also influence the future of the method of symmetrical
components for such systems.

In view of the above, this paper aims to complete the existing literature on short-circuit
analysis of multiphase electrical systems using the method of symmetrical components,
with a focus on systems with five phases. The paper presents the derivation of the symmet-
rical components of voltage and/or current, as well as the equivalent sequence networks
connections for several types of short-circuit faults. The analytical results were verified
and validated by simulations using MATLAB Simulink. The rest of this paper is struc-
tured as follows: Section 2 outlines the possible types of short-circuits that can occur in
five-phase electrical systems. Section 3 describes the research methodology applied in this
study. Section 4 performs the short-circuit analysis of a generic five-phase electrical systems
for selected faults using the method of symmetrical components. Section 5 presents the
simulation results, and Section 6 concludes this paper.

2. Classification of Short-Circuit Faults

In a five-phase electrical system, the number of possible short-circuit faults is higher
than in a three-phase electrical system, simply because there are more phase combinations
possible. There are 11 short-circuit faults that may occur in a three-phase system and
which can be classified into 5 types of faults. On the other hand, there are 57 short-circuit
faults that may occur in a five-phase system and which can be classified into 9 types of
faults [35]. The classification of short-circuit faults that may occur in three-phase, and
five-phase electrical systems is given in Table 1, where A, B, C, D, E designate the phases of
the system, and g designates the ground connection. For example, Ag designates a phase A
to ground short-circuit, and BC designates a phase B to phase C short-circuit.

Table 1. Classification of short-circuit faults for three-phase and five-phase electrical systems.

Fault Type Short-Circuit Faults in
Three-Phase Systems

Short-Circuit Faults in
Five-Phase Systems

Single-phase-to-ground Ag, Bg, Cg Ag, Bg, Cg, Dg, Eg

Two-phase-to-ground ABg, ACg, BCg ABg, ACg, ADg, AEg, BCg, BDg, BEg,
CDg, CEg, DEg

Two-phase AB, AC, BC AB, AC, AD, AE, BC, BD, BE, CD, CE, DE

Three-phase-to-ground ABCg ABCg, ABDg, ABEg, ACDg, ACEg, ADEg,
BCDg, BCEg, BDEg, CDEg

Three-phase ABC ABC, ABD, ABE, ACD, ACE, ADE, BCD,
BCE, BDE, CDE

Four-phase-to-ground - ABCDg, ABCEg, ABDEg, ACDEg, BCDEg

Four-phase - ABCD, ABCE, ABDE, ACDE,
BCDE

Five-phase-to-ground - ABCDEg
Five-phase - ABCDE

Total/significant faults 11/5 57/13
Note: The significant short-circuit faults are written in bold.
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Due to the symmetry of an electrical system, a short-circuit analysis does not have
to cover all possible short-circuits, but only those that are distinct or, as they are called in
literature, the significant faults [35]. For example, considering Ag, Bg, and Cg faults in
a three-phase system, it is sufficient to compute the short-circuit current for only one of
these faults, because the short-circuit currents for the other two are equal in magnitude,
but with a phase shift of ±120◦. However, short-circuit calculations using the method
of symmetrical components, with all symmetrical components referred to phase A, are
simpler for an Ag fault compared to a Bg or Cg fault, so the Ag fault is considered to be,
in this case, the significant fault. The same reasoning applies to all types of short-circuits
when identifying the significant ones.

The significant faults are written in bold in Table 1, for both three-phase and five-phase
electrical systems. Unlike three-phase systems, five-phase systems are characterized by
2 significant faults for each of the following types of short-circuits: two-phase-to-ground,
two-phase, three-phase-to-ground and three-phase [35]. This is due to the phase shift
between the phases of five-phase systems, which in absolute value is either 72◦ or 144◦,
as opposed to the unique phase shift of 120◦ in three-phase systems. Accordingly, in a
five-phase system, depending on the specific phases involved, 2 different fault current
magnitudes are possible for the same type of fault. For example, CD and BE faults are
different because the former is a short-circuit between adjacent phases, i.e., their phase shift
is 72◦, whereas the latter is a short-circuit between non-adjacent phases, i.e., their phase
shift is 144◦, so both of these faults would need to be considered in a short-circuit analysis.

It is important to note that some types of faults have a higher rate of occurrence
than others. For example, in three-phase networks, single-phase-to-ground faults are
predominant, whereas three-phase faults are much less common [36]. In general, it can
be argued that the short-circuit faults involving several phases are less likely to occur
compared to those involving fewer phases. Therefore, as there are too many possible types
of faults in a five-phase electrical system for this investigation to cover all of them, this
paper focuses mainly on those types that are expected to be more likely to occur.

3. Investigation Methodology

As mentioned in the introduction, this study aimed to derive the symmetrical compo-
nents of voltage and current for a five-phase electrical system and then to determine the
sequence networks connections for several types of short-circuit faults, or more exactly,
for the significant short-circuit faults. For a five-phase electrical system, the symmetrical
components are obtained from the phase quantities by applying the transformation given
in Equation (1), where χ designates either the phase voltage or the current, each of the
subscripts 0, 1, 2, 3, 4 denote one of the five symmetrical components and each of the
subscripts A, B, C, D, E denote one of the five phase quantities [30].

χ0
χ1
χ2
χ3
χ4

 =
1
5
·


1 1 1 1 1
1 α α2 α3 α4

1 α2 α4 α α3

1 α3 α α4 α2

1 α4 α3 α2 α

 ·


χA
χB
χC
χD
χE

 (1)

In Equation (1), as in the rest of this paper, the symmetrical components are referred
to phase A. α is the phasor rotation operator given in Equation (2), which rotates a phasor
counterclockwise by 72◦ (360◦ divided by 5, the number of phases in a five-phase electrical
system) when multiplied by it [27]. It also satisfies the mathematical relation given in
Equation (3), which is used later in this paper.

α = 1∠72◦ = ej·72◦ (2)

1 + α+ α2 + α3 + α4 = 0 (3)
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The inverse transformation to obtain the phase quantities from the symmetrical compo-
nents is given in Equation (4) and can be applied to both voltage and current quantities [30].

χA
χB
χC
χD
χE

 =


1 1 1 1 1
1 α4 α3 α2 α

1 α3 α α4 α2

1 α2 α4 α α3

1 a α2 α3 α4

 ·


χ0
χ1
χ2
χ3
χ4

 (4)

Ohm’s law correlates the symmetrical components of voltages and currents in the
same way it correlates their phase counterparts, hence, the sequence impedances can be
defined using Equation (5), where Vq and Iq are the symmetrical components of voltage
and current, and Zq is their equivalent sequence impedance.

Zq =
Vq

Iq
, q = 0, 1, 2, 3, 4 (5)

As in the balanced three-phase systems, in balanced five-phase systems, the sequence
networks are decoupled, but under unbalanced conditions, such as with short-circuit faults,
these networks become connected in a fault-dependent manner [26]. Precisely the manner
in which the sequence networks are connected for the significant short-circuit faults is
investigated onwards in this paper. For this, the following investigation methodology
is applied:

− step 1: write the boundary conditions for the selected type of short-circuit fault
assuming no load conditions;

− step 2: derive the symmetrical components of voltage and/or current at fault location,
as well as the relevant relationships between them;

− step 3: determine the mathematical constraints imposed on the sequence networks
connections by the selected fault;

− step 4: draw the equivalent sequence networks connections diagram based on the
mathematical constraints previously determined;

− step 5: check the obtained results using computer simulations.

4. Short-Circuit Analysis in Five-Phase AC Systems
4.1. Single-Phase-to-Ground Fault

The Ag fault is the significant short-circuit for single-phase-to-ground faults and is
characterized by the boundary conditions given in Equation (6), where RF is the fault
resistance, i.e., the resistance between phase A and the ground.{

IB = IC = ID = IE = 0

VA = RF · IA
(6)

The symmetrical components of the fault current are then derived in Equation (7)
using the boundary condition for currents and Equation (1). Relation Equation (7) shows
that the fault current IA is in-phase with I1, this is also the case with the other symmetrical
components in which IA decomposes.

I0 = I1 = I2 = I3 = I4 =
1
5
· IA (7)

The boundary condition for voltage is used together with Equation (4) to obtain
Equation (8).

V0 + V1 + V2 + V3 + V4 = RF · IA (8)
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Relation Equation (8) is then rewritten as in Equation (9) using the current relationships
from (7).

V0 + V1 + V2 + V3 + V4 = 5 · RF · I0 (9)

Relations Equations (7) and (9) represent the mathematical constraints imposed on
the sequence networks connections by the Ag fault and on the basis of which the sequence
networks connections for this type of fault are drawn. From the constraints, it is obvious
that the sequence networks are connected in series for an Ag fault, as shown in Figure 1b,
where E represents the e.m.f of the five-phase network, and Z0, Z1, Z2, Z3, Z4 are its
equivalent sequence impedances. Figure 1a shows the five-phase electrical network with
an Ag short-circuit.
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Finally, the fault current IA is expressed in Equation (10) on the basis of the sequence
networks diagram shown in Figure 1b.

IA = 5 · I1 =
5 · E

Z0 + Z1 + Z2 + Z3 + Z4 + 5 · RF
(10)

4.2. Two-Phase Faults

The BE fault and the CD fault are the significant short-circuits for the two-phase faults
that may occur in five-phase electrical systems, and both are analyzed below.

BE fault
The boundary conditions for the BE fault are given in Equation (11), where RF is the

fault resistance, i.e., the resistance between phase B and phase E.
IE = −IB

IA = IC = ID = 0

VB − VE = RF · IB

(11)

The symmetrical components of the short-circuit currents are derived in Equation (12)
using the boundary conditions for currents and the transformation Equation (1), whereas
the boundary condition for voltages is used together with the inverse transformation
Equation (4) to obtain relation Equation (13).
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I0 = 0

I1 = 1
5 · IB ·

(
α− α4)

I2 = 1
5 · IB ·

(
α2 − α3)

I3 = 1
5 · IB ·

(
α3 − α2)

I4 = 1
5 · IB ·

(
α4 − α

)
(12)

V1 ·
(
α4 − α

)
+ V2 ·

(
α3 − α2

)
+ V3 ·

(
α2 − α3

)
+ V4 ·

(
α− α4

)
= RF · IB (13)

Using Equations (4) and (12), IB can be expressed as given in Equation (14).

IB = I1 ·
(
α4 − α

)
+ I2 ·

(
α3 − α2

)
(14)

IB is then replaced in Equation (13) with its expression from Equation (14), thus
obtaining, after some rearrangements, the relation (15).

(V1 − V4) ·
(
α4 − α

)
+ (V2 − V3) ·

(
α3 − α2

)
= RF · I1 ·

(
α4 − α

)
+ RF · I2 ·

(
α3 − α2

)
(15)

By further refining relations Equations (12) and (15), the mathematical constraints im-
posed on the sequence networks connections by the BE fault are obtained in Equation (16),
where m is the expression given in Equation (17), whose numerical value is in fact a real
number. 

I2 = m · I1

I3 = −I2

I4 = −I1

V1 − V4 − RF · I1 = m · (V3 − V2 + RF · I2)

(16)

m =
α2 − α3

α− α4
∼= 0.618 (17)

The inspection of these constraints indicates that for a BE fault, the sequence networks
of a five-phase electrical network are connected as shown in Figure 2b. Again, E represents
the equivalent e.m.f of the five-phase system, shown in Figure 2a, and Z0, Z1, Z2, Z3, Z4 are
its sequence impedances.
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As seen in Figure 2b, I1 and I4, and I2 and I3, are the primary and the secondary
winding currents of an ideal transformer, respectively, with a turns-ratio of m:1 (m ∼= 0.618),
with I1 in opposition to I4, and I2 in opposition to I3. The polarity of this ideal transformer,
indicated in Figure 2b using a dot convention, ensures that all the constraints given in
(16) are met by the depicted sequence networks diagram for a five-phase system under
a BE fault.
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Based on the diagram shown in Figure 2b, I1 can be written as given in Equation (18).

I1 =
E

Z1 + Z4 + RF + m2 · (Z2 + Z3 + RF)
(18)

By replacing in Equation (14) the current I2 with its expression from Equation (16),
the fault current IB can be rewritten as a function of I1 only, with the final result given in
Equation (19).

IB =
5

(α− α4)
· I1

∼= −2.6287 · j · I1 (19)

This result reveals that the fault current is in quadrature with its symmetrical com-
ponent I1 and that it is sufficient to calculate I1 to determine IB. Of course, IB can also be
expressed as a function of I2, I3, or I4, if desired, and according to Equation (16), IB is in
quadrature with these currents as well.

From Equations (18) and (19), the expression Equation (20) is obtained for the fault
current IB.

IB ∼=
−2.6287 · j · E

Z1 + Z4 + RF + 0.382 · (Z2 + Z3 + RF)
(20)

CD fault
The boundary conditions for the CD fault are given in Equation (21), where RF is the

fault resistance, i.e., the resistance between phase C and phase D.
ID = −IC

IA = IB = IE = 0

VC − VD = RF · IC

(21)

Following the same methodology as for the previous type of fault, the symmetrical
components of the fault currents are obtained in Equation (22).

I0 = 0

I1 = 1
5 · IC ·

(
α2 − α3)

I2 = 1
5 · IC ·

(
α4 − α

)
I3 = 1

5 · IC ·
(
α− α4)

I4 = 1
5 · IC ·

(
α3 − α2)

(22)

The symmetrical components of the voltage at the fault location satisfy relation Equa-
tion (23), which is derived from Equation (4) and the last equation of Equation (21).

V1 ·
(
α3 − α2

)
+ V2 ·

(
α− α4

)
+ V3 ·

(
α4 − α

)
+ V4 ·

(
α2 − α3

)
= RF · IC (23)

Using Equations (4) and (22), IC can be expressed as given in Equation (24).

IC = I1 ·
(
α3 − α2

)
+ I2 ·

(
α− α4

)
(24)

IC is replaced in Equation (23) with its expression from Equation (24) and, after some
rearrangements, the relation Equation (25) is obtained.

(V1 − V4) ·
(
α3 − α2

)
+ (V2 − V3) ·

(
α− α4

)
= RF · I1 ·

(
α3 − α2

)
+ RF · I2 ·

(
α− α4

)
(25)
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After further refinement of Equations (22) and (25), the mathematical constraints im-
posed on the sequence networks connections by the CD fault are obtained in Equation (26),
where m is given in Equation (27).

I2 = m · I1

I3 = −I2

I4 = −I1

V1 − V4 − RF · I1 = m · (V3 − V2 + RF · I2)

(26)

m =
α− α4

α3 − α2
∼= −1.618 (27)

The set of constraints Equation (26), corresponding to a CD fault, is the same as the set
of constraints Equation (16), which corresponds to a BE fault. However, these two faults
are not identical because the value of m differs between them, as Equations (17) and (27)
reveal. As such, their equivalent sequence networks diagrams are also not identical.

The equivalent sequence networks diagram for a CD fault is shown in Figure 3b and,
as can be observed, differs from the diagram of the BE fault only by a different transformer.
Indeed, the ideal transformer involved in the equivalent sequence networks diagram of
the CD fault has a turns-ratio of -m:1 (m ∼= −1.618) and opposite polarity for its secondary
winding compared to the ideal transformer associated with the BE fault. All the constraints
given in Equation (26) are satisfied by the sequence networks connections diagram shown
in Figure 3b.
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Based on the diagram shown in Figure 3b, I1 can be written as given in Equation (28).

I1 =
E

Z1 + Z4 + RF + m2 · (Z2 + Z3 + RF)
(28)

By replacing I2 in Equation (24) with its expression from Equation (26), the fault
current IC can be calculated as a function of I1 only, with the final result given in (29).

IC = I1 ·
(
α3 − α2

)
+ m · I1 ·

(
α− α4

)
∼= −4.2533 · j · I1 (29)

This result reveals that for a CD fault too, the fault current is in quadrature with
its symmetrical component I1, as well as with I2, I3, and I4. Moreover, it is sufficient to
calculate I1 to determine IC.

From Equations (28) and (29), the expression Equation (30) is obtained for the fault
current IC.

IC =
−4.2533 · j · E

Z1 + Z4 + RF + 2.618 · (Z2 + Z3 + RF)
(30)
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5. Simulation Results

The analytical results obtained in the previous section were verified using computer
simulations, this being the last step of the investigation methodology applied in this study.
For this, a five-phase electrical system was implemented in MATLAB Simulink so that
short-circuit faults could be applied to it, as shown in Figure 4. The phase currents were
measured at the fault location and their symmetrical components were computed using
relation Equation (1). The five-phase voltage system was generated by an ideal source with
the phase voltage E = 100 V, star-connected, and with the star-point directly grounded. The
impedance on each phase of this electrical system was Z = 1 + j × 0.1 Ω and there was no
coupling between phases, and between phases and ground, so Z1 = Z2 = Z3 = Z4 = Z0 = Z.
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Several short-circuit conditions were simulated, covering single-phase-to-ground
and two-phase faults with different fault resistances Rf. For each fault, the symmetrical
components of the current given by the described MATLAB Simulink model were compared
with the symmetrical components given by the equivalent sequence networks diagram
determined previously in this paper. Figures 5 and 6 present the symmetrical components
of the current for Ag, BE, and CD faults, for Rf = 0 Ω and for Rf = 2 Ω, respectively. As
can be seen in both figures, there is virtually no difference between the phasors obtained
using the MATLAB Simulink model and those obtained analytically using the short-circuit
analysis and the equivalent sequence networks connections of the five-phase system.

In the case of Ag faults, regardless of the fault resistance, I1 = I2 = I3 = I4 = I0. In
the case of BE and CD faults, regardless of the fault resistance, I1 = I4, I3 = I4, I0 = 0
and I2 = m·I1, with m ∼= 0.618 for BE faults and m ∼= 1.618 for CD faults. Again, these
results were observed both for the phasors obtained by simulations and for those obtained
analytically. Because the relationships between the symmetrical components of the fault
current are independent of the fault resistance but depend on the fault type, they can be
used in practice for the classification of short-circuit faults in a five-phase electrical system.
Accordingly, a protection system could first detect a short-circuit fault by detecting that a
symmetrical component, such as I2, has exceeded a predefined threshold value, and then it
could identify the type of fault by comparing the numerical values of I1, I2, I3, I4 and I0,
and by establishing the relationships between these quantities.

The fault currents for the analyzed short-circuit conditions, the current on phase A
for the Ag fault, the current on phase B for the BE fault, and the current on phase C for
the CD fault are given in Figure 7. As can be seen, there is no difference between the fault
currents obtained using the simulations and the fault currents obtained analytically, namely
by using the Equations (10), (20), and (30), respectively.
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The magnitude of the fault currents depends on the resistance of the fault and the
type of fault. A lower value of the fault resistance obviously results in a higher magnitude
of the fault current, as shown in Figure 7 and by Equations (10), (20), and (30), as well
as higher magnitudes of the symmetrical components of the fault current, as shown in
Figures 5 and 6. Nevertheless, the short-circuit analysis presented in this paper can be
used to compute the fault currents and their symmetrical components for any value of
the fault resistance, thus covering a wide range of fault conditions, from metallic faults to
high-resistance faults. In addition, by appropriately selecting the fault resistance, one can
also capture the evolution of a short-circuit fault which in the incipient stage has a high
resistance, but over time develops into a metallic fault. Regarding the dependence of the
magnitude of the fault current on the type of fault, the most interesting result is that for
the five-phase electrical system implemented in MATLAB Simulink for this paper, the BE
faults cause higher fault currents than the CD faults. This result is in accordance with the
results predicted by Equations (20) and (30) for Z1 = Z2 = Z3 = Z4 = Z0, which are in fact
the impedance parameters of the five-phase network that has been simulated.

All these results practically validate the short-circuit analysis and the equivalent
sequence networks connections derived in the previous section of this paper for single-
phase-to-ground and two-phase short-circuit faults occurring in a five-phase electrical
system. The analytical results are thus confirmed by computer simulations, this being the
last step, i.e., the methodological step 5, of the conducted study.
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6. Conclusions

Single-phase and three-phase systems are the most common and important type of
AC systems, but multiphase AC systems with more than three phases are also used in some
applications, although rarely and mostly for research or special purposes. Even though
some technical papers discuss the analysis of multiphase systems using the Fortescue’s
theorem, the literature is quite limited in regards to the method of symmetrical components
applied to five-phase systems. Therefore, the author of this paper analytically derived
the symmetrical components of voltage and current, as well as the equivalent sequence
networks diagrams for several types of short-circuit faults that could occur in a five-phase
AC system, focusing on those faults that are more likely to occur. The analytical results
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were verified and subsequently confirmed by computer simulations, and these results
represent the main novelty or contribution of this this paper.

The relevance of this study is that it complements the existing literature on short-circuit
analysis of multiphase electrical systems using the method of symmetrical components,
which could be very relevant in the future with the development of five-phase drives,
five-phase power transmission, and other five-phase applications. The possibility for
future work remains and may advance in various directions, including the derivation of
the equivalent sequence networks connections for other types of short-circuit faults, for
combinations of faults or for other unbalanced network conditions, such as open-circuit
faults, as well as the definition of phase imbalance factors for five-phase systems. Moreover,
protection systems based on symmetrical components could be proposed for five-phase
applications, and protection studies could be performed using this work. Ultimately,
the method of symmetrical components could have the same applicability for five-phase
electrical systems as for conventional three-phase electrical systems.
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