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Abstract: Maximum Power Point Tracking (MPPT) is essential for maximizing the efficiency of solar
photovoltaic (PV) systems. While numerous MPPT methods exist, practical implementations often
lean towards conventional techniques due to their simplicity. However, these traditional methods can
struggle with rapid fluctuations in solar irradiance and temperature. This paper introduces a novel
deep learning-based MPPT algorithm that leverages a Long Short-Term Memory (LSTM) deep neural
network (DNN) to effectively track maximum power from solar PV panels, utilizing real-world
data. The simulations of three algorithms—Perturb and Observe (P&O), Artificial Neural Network
(ANN), and the proposed LSTM-based MPPT—were conducted using MATLAB (2021b) and RT_LAB
(24.3.3) with an OPAL-RT simulator for real-time analysis. The data used for this study were sourced
from NASA/POWER’s Native Resolution Daily Data of solar irradiation and temperature specific
to Imphal, Manipur, India. The obtained results demonstrate that the LSTM-based MPPT system
achieves a superior power tracking accuracy under changing solar conditions, producing an average
output of 74 W. In comparison, the ANN and P&O methods yield average outputs of 57 W and
62 W, respectively. This significant improvement, i.e., 20–30%, underscores the effectiveness of the
LSTM technique in enhancing the power output of solar PV systems. By incorporating real-world
data, valuable insights into solar power generation specific to the selected location are provided.
Furthermore, the outputs of the model were verified through real-time simulations using the OPAL-
RT simulator OP4510, showcasing the practical applicability of this approach in real-world scenarios.

Keywords: maximum power point tracking; long short-term memory network; photovoltaic system;
OPAL-RT simulator

1. Introduction

Today, almost every country in the world is showing great interest in the growth of
renewable power because of the growing load demand for power and the lack of fossil
fuels in the coming future [1]. Considered a clean resource of energy and having low
maintenance requirements, photovoltaic (PV) energy is becoming significantly popular
among renewable energy alternatives. However, the high cost of PV panels, low efficiency
and performance deterioration over time are some drawbacks of PV [2]. The efficiency of
the solar PV module in converting electric power from solar irradiation is generally less
than 17%, and the generation of power depends hugely on the weather condition of the
place where the PV panel is installed [3]. A maximum power point tracking (MPPT) system
is applied in solar PV to take out the maximum power from the PV panel in any weather
condition [4]. Tracking maximum power in solar PV mainly relies on two input parameters,
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namely environmental inputs (irradiation & temperature) and electrical inputs (voltage
and current).

In order to reach the maximum power point (MPP), numerous algorithm-based MPPT
approaches have already been developed. Among the various traditional MPPT strategies,
Perturbation and Observation (P&O) and Incremental Conductance (IC) are the most
popular techniques due to their simplicity and ease of application [5,6]. As outlined by
Ratnakar [7], numerous intelligence and optimisation methods are used in addition to
some classical techniques, such as an Artificial Neural Network (ANN), a sliding mode
controller, a fuzzy logic controller, an MPPT based on the Fibonacci series, a technique
based on Gauss–Newton, ant colony optimisation, Grey wolf optimisation, artificial bee
colony optimisation, and cuckoo search. In [8], a PV MPPT system is proposed for a PV
water pumping system to increase its efficiency. Based on ANN, a nonlinear autoregressive
moving average controller is applied to optimise the duty ratio under any irradiation
condition. However, the studied model is tested with the proposed MPPT system only
on a step change irradiation condition. It has been claimed that the proposed controller
is better during performance and rapid in providing a response compared to a classical
PID controller. An MPPT technique is proposed in [9] that is based on fuzzy logic and the
P&O method. The fuzzy logic rules are adopted from a modified P&O approach for the
suggested MPPT system. In [10], a sliding mode control-based MPPT is proposed, where
open circuit voltage technique is used to track maximum power. By changing the duty
cycle, sliding mode control tracks the maximum power. However, the projected MPPT
system is not tested with varying solar irradiances and temperatures. In [11], the authors
proposed an improved Fibonacci search algorithm for the MPPT system consisting of a
photovoltaic array under uniform illumination conditions. Here, in this technique, the
voltage analysis method is adopted for the parallel array, and a current analysis method is
adopted for the series array. No real dataset or varying weather conditions are included in
this research work to verify the MPPT. The PV system normally operates under different
weather conditions and disturbances. Thus, there are so many unpredictable challenges
that a MPPT system faces in the real world. In [12], a brand new Newton-based stochastic
extreme searching MPPT method is suggested to overcome some common problems relating
to existing extreme seeking controllers, such as the fact that the orthogonal requirements
make it difficult for periodic extreme seeking to include situations with many variables
and the fact that the control system is highly influenced by unpredictable and unknown
weather (environmental) conditions. However, all these works did not concentrate further
on the steady state oscillation after it reached the maximum power point. To reduce the
steady state oscillation after reaching MPP, a modified particle swarm optimisation-based
MPPT is proposed for photovoltaic systems [13]. The proposed method in this study was
also performed under partial shading conditions. However, the variable solar irradiance
and temperature are not considered, depending much on real-world conditions. Only a
large step change under uniform solar irradiation and variation in load with the partial
shading condition has been considered. In [14], a grey wolf optimisation-based MPPT is
proposed for solar photovoltaic systems, which includes a single-ended primary-inductor
converter. These techniques employ online measurements to calculate the actual MPP, and
thus dirt does not influence the performance tracking. This is one of their key advantages.
Still, the changes in irradiation that have been considered in order to perform the proposed
method are more stable and predictable. A new MPPT controller is proposed in [15] for
solar photovoltaic systems with partial shading conditions, which is based on the ant colony
optimisation technique. In terms of speed of tracking, stability, accuracy, and robustness, it
provides a better performance compared to other conventional techniques. Every method
has its own advantages, but these also come with some disadvantages. The technique
proposed in this study is so much more complex in terms of operation and is costlier. To
make the photovoltaic MPPT system much simpler, a drone squadron-based algorithm is
proposed in [16]. A direct control method under partial shading conditions for PV MPPT is
proposed in this study. Because of the advantages, such as a fast convergence and higher
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efficiency of the cuckoo search (CS) method, a CS-based maximum power point tracking
system is proposed in [17]. The CS method is only capable of tracking MPP between
100–250 ms under different types of environmental change, and the performance of this
method is better under steady state conditions.

When compared to other optimisation techniques, machine learning or deep learning-
based solutions have a greater accuracy and degree of flexibility [18,19]. This makes
them popular for various applications [20–22]. Artificial neural network-based MPPT
methods are also proposed in many studies, but they face problems in terms of functioning
under long-term variations of environmental conditions. To overcome these issues, a deep
learning transformer-based time series prediction of MPP for solar PV is proposed in [23].
A set of environmental data is applied as input to the studied model, which is collected
from 50 different locations. The levels of temperature and irradiance of different places are
not the same, and only 200 consecutive hours of data are considered. Thus, the trained
system for tracking the MPP of solar PV will not be able to work accurately for a particular
place. Instead, if the dataset is collected from a particular area over a long period of time,
the trained network will have the actual environmental idea and will be able to work more
accurately with the variations in the weather conditions.

In this paper, a deep-learning Long Short-Term Memory (LSTM)-based solar PV MPPT
system is proposed to extract maximum power from the PV system. The solar irradiation
and temperature from Native Resolution Daily Data of NASA/POWER CERES/MERRA2,
for the time range of 1 January 2017 to 31 March 2021, are considered as input parameters to
obtain the system response under real input data [24]. A real set of data input for a particular
location in India (Imphal, Manipur) is utilised for the solar PV system, which will provide
actual weather conditions to the system. The trained LSTM network provides the reference
voltage from the environmental inputs and is compared with the actual inputs to provide a
pulse signal to the boost converter of the solar PV system. The proposed MPPT system is
compared with P&O MPPT and ANN-based MPPT. In terms of tracking, the MPP-proposed
LSTM technique provides a much better, stable, and accurate response compared to P&O
MPPT and ANN-based MPPT. Real-time verification of the studied model is conducted in
an RT-LAB environment with the help of the real-time simulator OP4510.

The remaining part of the paper is structured as follows. The researched model and
suggested technique are introduced in Section 2, the results are analysed in Section 3, and
the conclusions are drawn in Section 4.

2. Modelling and Methods

In this section, the studied model is discussed along with the real-time modeling steps
of the studied PV system. Then, different techniques of solar PV MPPT along with the
proposed MPPT technique are illustrated.

2.1. Modelling

Figure 1 shows the solar PV-MPPT system in use. An MPPT controller, a boost
converter, a PID controller, and a pulse-with-modulation generator are the parts of the solar
panel. The components that make up the system are described below [9,11].

2.1.1. PV Panel

In order to generate electricity from solar irradiation, PV cells typically feature a p-n
junction that is constructed in a tinny layer of semiconductor ingredients. There are two
different PV model types: single-diode and double-diode. Due to their simplicity, single-
diode models are preferred over double-diode models, though double-diode models are
more accurate. Figure 2 depicts an equivalent circuit for a PV solar cell.
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The output current of an ideal cell based on Kirchhoff’s law is given by:

I = Iph − Id − Ish (1)

where Ish is the parallel resistance current, which is given by:

Ish =
V + IRs

Rp
(2)

where Rp and Rs are the resistances in parallel and in series, respectively.
Iph is the light-generated current given by:

Iph = [Isc + K1(Tc − Tr)]×
G

GSTC
(3)

where the short circuit current is denoted by Isc at standard circumstance (T = 25,
GSTC = 1000 W/m2), K1 is the temperature-related short circuit current coefficient, Tc
is the temperature of the cell, Tr is the reference temperature, and the relative irradiance is
denoted by G.

The diode current Id is given by [9]:

Id = I0[exp(
qVd

AKTc
)− 1] (4)
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where the electrical charge q = 1.6 × 10−19, Boltzmann’s constant K = 1.38 × 10−23, A is the
diode ideal factor, the reverse saturation current is denoted by I0, and the diode equivalent
voltage is denoted by Vd. Vd is calculated by [9]:

Vd = V + IRs (5)

In PV modules, PV cells are normally linked in series. The output current of a PV
module actively depends on the solar irradiation and temperature, which is given by:

Ipv = Iph − I0[exp(
q(V + IRs)

AKTcNs
)− 1] (6)

where the number of series-connected cells is denoted by Ns.
The PV panel used in this work is constructed as one parallel string, one series-

connected module string, and 60 cells per module. The measurements of the solar PV panel
are recorded in Table 1 [11].

Table 1. Parameters of PV panel.

Parameters Measurements

VOC 37.3 V
ISC 8.66 A
Vmp 30.7 V

Tcoeff of VOC −0.36901%/deg.C
Tcoeff of ISC 0.086998%/deg.C

2.1.2. DC–DC Boost Converter

A boost A DC–DC boost converter is extensively utilised in photovoltaic (PV) systems
due to its high efficiency and compatibility with Maximum Power Point Tracking (MPPT)
controllers. This converter regulates the output voltage to levels significantly higher than
the input voltage. The core component of the DC–DC boost converter is a transistor,
typically a MOSFET, which is regulated by a controller to manage the voltage amplification.
It takes the input from the solar panel, and the output of the DC–DC boost converter is
connected to the load, as shown in Figure 3. The voltage gain of the converter is defined by
Equation (7) [9]:

G =
V0

Vi
=

1
1 − D

(7)

where V0 is the output voltage, Vi is the input voltage, and the duty cycle is denoted by D,
controlled via the gate driver circuit.
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The operation of the DC–DC boost converter involves two primary states:

• State 1: When the MOSFET is switched on, current flows through the inductor (L) in
the reverse direction, causing it to store energy in the form of a magnetic field. During
this state, the output capacitor (C2) supplies energy to the load or inverter.

• State 2: When the MOSFET is switched off, the stored energy in the inductor combines
with the input source, resulting in a higher output voltage.

• This dual-state operation ensures efficient energy conversion and voltage regulation,
making the DC–DC boost converter a vital component in PV systems.

2.1.3. PID Controller

With the aim of causing the PV system to operate at its optimum productivity, a PID
controller is connected to the anticipated voltage. A Proportional-Integral-Derivative (PID)
controller is a crucial feedback mechanism widely used in PV systems for Maximum Power
Point Tracking (MPPT). It enhances system performance by minimising the error between
the desired and actual outputs, thus ensuring optimal energy harvest.

The PID controller comprises three components: Proportional Control (P), Integral
Control (I), and Derivative Control (D). Proportional Control reacts to the instantaneous
error, thereby enhancing system responsiveness but potentially causing overshoot. Integral
Control accounts for the cumulative sum of past errors, effectively eliminating steady-state
error, though it may slow the system response. Derivative Control responds to the rate
of change of the error, thereby improving system stability and reducing the likelihood
of overshoot.

2.1.4. Real-Time Modelling

For the real-time simulation of any MATLAB model, models need to be designed for
the RT-lab interface. The RT-lab interface supports the subsystem of the MATLAB/Simulink
developed model. The MATLAB/Simulink (2021b) model needs to be designed as several
subsystems, a minimum of two subsystems, namely SM_subsystem2 and SC_subsystem1.
Depending on the complexity of the subsystem, the model can be divided into more than
two subsystems. However, the number of maximum subsystems depends on the core of
the OPAL-RT simulator. SC_subsystem1 is the output part of the model where the result
will be displayed. All the inputs coming to this subsystem will be connected through an
OPCOMM block, and the computational part of the model cannot be placed here.

SM_subsystem2 is the part of the model where all the computational things of the
model will be placed. If, depending on the complexity of the model, the number of
subsystems becomes more than two, then those subsystems will be named SS_subsystem3,
SS_subsystem4. In real-time modelling, the naming of the subsystems plays a critical
role. Without properly naming the subsystems, we will be unable to add OPCOMM
to the model design in the Simulink environment, which is a mandatory component of
real-time modelling. The naming of subsystems must follow the sequence, as discussed
above. The OPCOMM block functions as a communicated system between the Host and
Target simulator.

The studied system is considered for real-time simulation with the help of MATLAB
and RT-lab. The developed model of the studied solar system is shown in Figure 4. The
OPAL-RT simulator OP4510 is connected to the host PC through an ethernet cable. The
PC contains both MATLAB and RT-LAB, referred to as the host system. A Simulink model
must successfully run in MATLAB before it can be executed in RT-lab. The RT-lab interface
allows us to open Simulink models, and if the model is properly designed for real-time
simulation, we can execute it by following the RT-lab execution steps.
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2.2. Data Collection

The effectiveness of a solar panel decides various factors related to weather conditions
and solar irradiation and temperature. Also, parameters of the location where PV panels are
installed play a critical part in determining the MPP. Thus, solar irradiation and temperature
are utilised as input in this work. The data have been collected for the city of Imphal
in India from 1 January 2017 to 31 March 2021, from Native Resolution Daily Data of
NASA/POWER CERES/MERRA2. This dataset of irradiation and temperature is shown in
Figure 5 as the signal response form. Using this daily dataset, one can understand the real
weather conditions that make the model more realistic and effective.
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2.3. Methods

In this section, different MPPT techniques are illustrated along with the proposed
MPPT techniques.

2.3.1. P&O MPPT

A popular solution for solar PV MPPT is P&O-based, since it is simple to construct and
has a straightforward functionality. By altering the PV voltage level or the boost converter’s
duty cycle, the maximum power point is controlled using the voltage of the PV panel as
an input. Figure 6 depicts a flow diagram of the P&O approach, where “K” represents the
voltage or current of the solar PV module [5].
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The direction of the next perturbation will change to move the operating power to
the MPP if altering the PV module’s voltage or current or the boost converter’s duty cycle
results in an increase in power output.

2.3.2. Artificial Neural Network MPPT

The ANN is a summation of several organised neurons, the same as the human brain.
Adjustable weights connect one neuron with another, and signals pass through it. The
learning process of weights is conducted by frequently changing their values. A collection
of input (predictions) and output (targets) values are necessary for training the network.
Every neuron calculates the activation level of the signals that are connected to it. Error is
calculated after each iteration by comparing the output and input values. This process is
repetitive until the error value reaches the desired value [1]. The Simulink model of the
ANN-based method is shown in Figure 7. The Function Fitting Neural Network contains
the trained ANN model, which is developed and trained using MATLAB’s function fitting
toolbox. This trained network receives solar irradiance and temperature as inputs. The
reference voltage is compared with the actual voltage, and it is processed through a PID
controller before being applied to PWM.
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2.3.3. Deep LSTM MPPT

The P&O method is a straightforward and simple technique commonly used for
MPPT. In this method, a daily dataset of irradiation and temperature is provided as input
to the system. The current and voltage of the PV panel are used as input signals for the
MPPT system. In the neural network, MPPT technique Native Resolution Daily Data of
NASA/POWER CERES/MERRA2 of solar irradiation and temperature is given as input to
the main system, and the same set of data is also used as input to the deep LSTM MPPT [24].
The detailed architecture and working principle are discussed by Kah Yung Yap et al. [25].
The LSTM algorithm is taken into consideration for the creation of a deep learning-based
solar MPPT due to its many advantages over other networks. Hochreiter & Schmidhuber
first introduced the LSTM network in 1997, which is a more sophisticated RNN type. This
method has been utilised for power system load forecasting [26], LSTM is used for rapid
detection in power systems [27], and numerous additional studies [28] have demonstrated
that LSTM is becoming more and more popular in the field of power systems because of
its capacity for multitasking learning. In order to provide long-term information storage
and access, a memory cell is introduced into the RNN framework and runs down the
entire chain. The LSTM uses various auxiliary gates to add info to the memory cell. Any
entries from the cell are subject to output gate control. The input gate determines when
the data must be read, and the forget gate performs the cell’s reset. Figure 8 illustrates a
fundamental LSTM construction that is provided in the literature.
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Here, the LSTM unit’s current output and current state quantity, respectively, are
denoted by h and c.
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The control formula of the LSTM is as follows:

ft = σ
(

W f xxi + W f hht−1 + b f

)
,

it = σ(Wixxi + Wihht−1 + bi),
gt = ϕ(Wgxxt + Wghht−1 + bg),
ct = ft ⊙ ct−1 + it ⊙ gt,
ot = σ(Woxxt + Wohht−1 + bo),
ht = ot ⊙ ϕ(ct).

(8)

where it, ft, and ot are the input gate, forget gate, and output gate, respectively, Wfx, Wfh, Wix,
Wih, Wox and Woh are the weight parameters of the network activation function, and bf, bi
and bo are the offset vectors. ϕ is the sigmoid activation function, gt is the candidate memory
cell, whose weight parameters are Wgx and Wgh, and bg is the offset vector. Computation
is similar to the three gates but uses ϕ as a tanh activation function. Ct is the memory cell
and is the multiplication of the Hadamard product matrix. Ct merges the information of
the current candidate memory cell and previous time-step memory cell to control the flow
of information. The hidden state is denoted by ht. The flow of information through the
output gate, from the memory cell to the hidden state, can be controlled, where ϕ ensures
the value range of the hidden state.

This technique aims to trace the maximum power from a real dataset of temperature
and solar irradiance in order to maximise power production. This technique is based on
the LSTM deep-learning model. The proposed approach has three main steps, which are
the collection of historical data from the PV system, filtering and normalising the data, and
lastly training, validating and testing the LSTM model. A block chart of the LSTM tracking
approach is given in Figure 9.
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The developed LSTM network is shown in Figure 10 as a Simulink diagram. This
model is developed with the help of MATLAB/Simulink. The ‘Stateful Predict’ block in
Simulink is used to contain the trained LSTM network. It receives the same input signals as
the P&O and ANN models.
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Figure 10. Simulink model of deep LSTM.

Ten thousand historical input and output data points are used for the LSTM network’s
training, and thirty percent of those data points are used for testing. A total of 200 hidden
units have been spread throughout a total of four layers. LSTM, sequence input, fully
connected, and regression layer make up the layers. There are 250 training epochs. The
model constraint values are listed in Table 2.

Table 2. LSTM model constraints.

Hidden Units Optimiser Initial Learning
Rate Drop Factor Max Epochs

200 adam 0.005 0.2 250

3. Results and Discussion

The studied model for the proposed work is designed and analysed in the MAT-
LAB/Simulink environment. A performance outcome is gathered, such as voltage, current,
and solar power. The suggested Deep LSTM-based approach performance is compared
with existing techniques of P&O and artificial neural networks. Solar PV power is the prod-
uct of solar PV voltage and solar PV current. A solar PV module will produce its maximum
current in the absence of any resistance in the circuit. The solar PV module is called shorted
when the voltage in the circuit is zero. Figure 11 shows the proposed Simulink design of the
solar PV system. The studied model receives real-world data from the ‘From Spreadsheet’
block in Simulink as input. A DC–DC boost converter is connected to a user-defined PV
panel, controlled by the MPPT signal. The MPPT controller is alternately replaced with
P&O, ANN, and LSTM techniques, and the model is simulated for each. The output results
are analysed and compared.

A real-world-based solar irradiation and temperature data signal is used, as shown in
Figure 5, for the simulation of the model. Figure 12a presents the power outputs, Figure 12b
shows voltage outputs, and Figure 12c illustrates the simulation current outputs for all
three MPPT techniques, P&O, ANN, and LSTM.

The MPPT system is used in the studied model under a real-world dataset to predict
the reference voltage under real-life solar irradiation and temperature conditions. As shown
in Figure 5, the solar irradiance and temperature change rapidly. Thus, by considering the
real dataset, the studied model does not need to be tested under different weather condi-
tions, such as partial shading, step change in input, etc. The studied model is simulated
under real-world conditions by considering a real set of data, and the model is verified
for real-time simulation by applying a real-time simulator in the OPAL-RT/Simulink
environment. Figure 13 shows the OPALRT setup for real-time validation.
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Figure 12a shows that there is so much variation in power output for the P&O-based
MPPT technique of solar PV systems. Thus, from the power output signal of Figure 12a, it
is clear that the P&O technique is able to track the MPP, but not so well enough with rapidly
changing inputs. Also, the voltage and current response of the P&O-based technique, as
illustrated in Figure 12b,c, varies continuously with varying input.

The variation in the power output, depending on the varying inputs of the solar PV
system, can also be seen in the ANN-based MPPT method in Figure 12a. The power output
signal of Figure 12a shows that under rapidly changing conditions of inputs, ANN can
track the MPP but that there are still so many variations present in the tracking process.
The variations are also present in the voltage and current signal of ANN-based MPPT, as
shown in Figure 12b,c, respectively.

The proposed deep LSTM technique-based simulation power output is also displayed
in Figure 12a for a better comparison. The output power, as well as the voltage and the
current output signal, gives a more stable response under varying real-world datasets of
inputs (irradiation and temperature), as shown in Figure 12a–c, respectively. This stable
output of power shows so much less oscillation, and for the safety of the equipment
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connected to the solar system, a stable output is very much needed. As a result, the
LSTM-based technique is the most accurate and effective in tracking the MPP.

When comparing the LSTM approach with existing techniques such as P&O and ANN,
its superior performance stems from its ability to handle sequential and time-series data
more effectively. LSTM networks are designed to retain and update information over time,
allowing them to capture temporal dependencies better that P&O, which makes iterative
adjustments, or ANN, which lacks memory capabilities. This enables LSTM to learn from
dynamic patterns in solar irradiance and temperature, leading to more accurate MPPT
predictions and improved stability under varying conditions, making it well-suited for
real-world solar PV systems.

A detailed comparison of the power output of the proposed LSTM technique with
two existing techniques is provided in Table 3. The time durations for the comparison
are considered depending on the output results. Table 4 presents a comparison among
these three MPPT techniques with quantitative data, with three distinct sets of numerical
output power data generated by implementing three different MPPT techniques (denoted
as LSTM, ANN, and P&O) within a PV model. It is noteworthy that the input parameters
remained consistent across all three cases, ensuring comparability of results. To enhance
the robustness of the analysis and mitigate the influence of noise inherent in the data, each
output dataset was partitioned into ten distinct segments, as shown in Table 4. Subsequently,
the average power output values were calculated for each of these segments within each
dataset. By aggregating these segment-wise averages, we obtained three unique average
values representing the overall performance of each MPPT technique. Notably, the observed
disparity in average power outputs underscores the superior performance of the LSTM
technique, which yielded an average output of 74 W, compared to the ANN and P&O
techniques, which yielded averages of 57 and 62 W, respectively.

Table 3. Comparison of LSTM-, P&O- and ANN-based MPPT.

Time (s) P&O-Based MPPT ANN-Based MPPT LSTM-Based MPPT

(0–0.1) s

The power output oscillates so much
throughout this time period,
demonstrating that this technique is
unable to measure MPP accurately under
input changes that are quick.

Oscillation in the power output
is not present, and it is able to
track MPP with more accuracy.

Oscillation in the power output is
the same as for the ANN-based
technique, but better compared to
the P&O technique. It can track the
MPP with accuracy.

(0.1−0.3) s

Here, in this time duration, oscillation in
the power output is higher and
unpredictable compared to the ANN and
LSTM technique. To track the MPP, this
technique faces inaccuracy compared to
other techniques.

Oscillation in power output is
less compared to the P&O
technique, but more compared
to the LSTM technique.

Compared to both the P&O- and
ANN-based techniques, the
LSTM-based technique provides a
significantly greater response
throughout this time period and is
able to more accurately track MPP.

(0.3–0.5) s Depending on the input’s oscillation, it is
less in this time duration.

Oscillation in power output is
less compared to the P&O
technique, but the same as for
the LSTM technique.

In this time duration, oscillation in
the power output is less compared
to the P&O technique but the same
as for the ANN technique.

(0.5–0.65) s
Oscillation in the power output is higher
compared to the ANN and LSTM
techniques.

Here, in this time duration,
oscillation in the power output
is less compared to the P&O
method, but more compared to
the LSTM method.

Oscillation in the power output is
less compared to both P&O and
ANN techniques, tracking MPP
with more accuracy and giving a
stable power output.

(0.65–0.85) s

In this time duration, the P&O-based
technique provides a power output full
of oscillation present in it depending on
the changes in the inputs.

The power output response is
almost the same as for the
LSTM-based technique, but less
compared to the P&O method.

The power output response is
almost the same as for the
ANN-based technique, but less
compared to the P&O method.
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Table 3. Cont.

Time (s) P&O-Based MPPT ANN-Based MPPT LSTM-Based MPPT

(0.85–1) s

The average oscillation in the power
output is less compared to the ANN
method, but more compared to the
LSTM method.

Oscillation is higher compared
to both P&O and
LSTM methods.

Oscillation is less compared to both
P&O and ANN methods.

Table 4. Quantitative comparison of LSTM-, P&O- and ANN-based MPPT.

SL
No.

Simulation
Time
(s)

Data
Range LSTM ANN P&O

1 0.05 to 0.1
*

50,000
to
100,000

Min 56.486 40.912 24.505

Max 103.073 110.342 101.362

Avg 66.920 62.746 63.794

2 0.1 to 0.2
100,001
To
200,000

Min 54.910 37.614 29.333

Max 105.897 110.342 104.600

Avg 91.757 75.534 70.163

3 0.2 to 0.3
200,001
To
300,000

Min 49.161 33.108 33.841

Max 104.810 112.843 103.297

Avg 93.472 69.719 70.594

4 0.3 to 0.4
300,001
To
400,000

Min 30.215 30.278 39.173

Max 93.494 91.602 84.790

Avg 51.127 46.290 59.386

5 0.4 to 0.5
400,001
To
500,000

Min 29.869 30.091 44.216

Max 99.689 94.893 89.820

Avg 66.749 59.886 63.542

6 0.5 to 0.6
500,001
To
600,000

Min 73.709 29.155 47.663

Max 105.826 104.790 88.119

Avg 93.527 68.396 67.965

7 0.6 to 0.7
600,001
To
700,000

Min 25.105 24.605 42.676

Max 99.541 90.101 75.691

Avg 68.822 49.381 58.678

8 0.7 to 0.8
700,001
To
800,000

Min 24.448 24.816 37.028

Max 83.624 83.511 70.298

Avg 46.935 39.902 51.370

9 0.8 to 0.9
800,001
To
900,000

Min 28 24.359 42.524

Max 103 87.427 76.917

Avg 76.46 51.842 57.832

10 0.9 to 1
900,001
To
1,000,000

Min 71.698 24.009 45.663

Max 102 97.707 80.215

Avg 91.625 53.875 60.528

* 0 to 0.05 s of simulation time is not considered in this analysis for a better analysis of averages because there are
null values present in this time duration.
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From the analysis of the power output, it is evident that the proposed LSTM technique
is a superior method for the MPPT of solar systems. This suggests that priority should be
given to this technique when developing MPPT solutions for solar PV systems, as the analy-
sis shows that it yields a higher power output compared to the other techniques evaluated.

However, the proposed technique has been tested using real-world data from a specific
location. Consequently, one could question whether its superior performance is location-
dependent. Nevertheless, deep-learning algorithms, such as the LSTM, have the inherent
ability to learn features from the data, which may allow the technique to continuously
adapt and perform well, even when the location or input data changes.

Additionally, further clarity on the performance of the suggested MPPT technique
could be achieved by testing it on predicted input data over a longer time horizon for solar
PV systems. This would provide a more comprehensive understanding of its potential and
robustness under varying conditions.

4. Conclusions

The proposed LSTM-based deep learning Maximum Power Point Tracking (MPPT)
system demonstrates significant advancements in optimising solar photovoltaic (PV)
power generation. Through the analysis of real-world data sourced from NASA/POWER
CERES/MERRA2’s Native Resolution Daily Data for solar irradiation and temperature in
Imphal, Manipur, India, the effectiveness of the LSTM algorithm under dynamic conditions
has been established. Comparative evaluations reveal that the LSTM technique achieves an
average output of 74 W, representing an increase of approximately 29.82% over the Perturb
and Observe (P&O) method, which yields an average of 57 W, and a 19.35% improvement
over the Artificial Neural Network (ANN), which averages 62 W. These results underscore
the superior tracking accuracy of the LSTM-based MPPT system, especially under rapidly
changing environmental conditions.

The validation of the model was conducted using a solar PV system equipped with a
boost converter connected to a variable load, with real-time simulations performed using
the OPAL-RT simulator OP4510. This approach reinforces the practical applicability of
the LSTM-based MPPT in real-world scenarios. The incorporation of real-world data not
only enhances the model’s reliability but also provides crucial insights into solar power
generation dynamics specific to the studied location. Overall, the findings contribute
to the ongoing development of more efficient MPPT strategies in solar energy systems,
highlighting the potential of deep-learning techniques in this domain.

5. Directions for Future Research

This research work was conducted at the location of Imphal, India, and the results
indicate that the proposed MPPT technique for the solar PV system yields a higher power
output compared to conventional methods. Therefore, this technique can be recommended
for the design of MPPT systems for solar installations in this specific region. Furthermore,
there is a potential to test the proposed LSTM technique using a longer range of future
predicted input data for the location, which would enhance the reliability and robustness
of the proposed method.

Future research could also focus on the scalability of the LSTM MPPT technique
in larger and more complex solar PV systems, including multiple interconnected arrays.
Additionally, exploring the integration of the LSTM-based MPPT method within hybrid
energy systems that combine solar PV with other renewable sources, such as wind or
hydroelectric power, could evaluate its effectiveness in a multi-source environment.
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