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Abstract: The electrodeposition of Al was investigated in an ionic liquid (IL), with 1-ethyl-3-
methylimidazolium tetrachloroaluminate ([EMIm]AlCl4) as the electrolyte with AlCl3 precursor. The
[EMIm]AlCl4 electrolyte exhibited a wide and stable electrochemical window from 3.2 to 2.3 V on
a glassy carbon electrode when temperature was increased from 30 ◦C to 110 ◦C. The addition of
AlCl3 into [EMIm]AlCl4 generated significant well-developed nucleation growth loops, and new
coupled reduction and oxidation peaks in cyclic voltammograms corresponding to the Al depo-
sition and dissolution, respectively. A calculation model was proposed predicting compositions
of anions in AlCl3/[EMIm]AlCl4 system, and [Al2Cl7]− was found to be the active species for Al
deposition. In AlCl3/[EMIm]AlCl4 (1:5), the reduction rate constants were 1.18 × 10−5 cm s−1 and
3.37 × 10−4 cm s−1 at 30 ◦C and 110 ◦C, respectively. Scanning electron microscope (SEM), energy
dispersive spectroscope (EDS), and X-ray diffraction (XRD) microscope results showed that the metal-
lic Al film had been successfully deposited on glassy carbon electrodes through constant-potential
cathodic reductions. The [EMIm]AlCl4 was a promising electrolyte directly used for Al deposition.

Keywords: electrodeposition; aluminum; ionic liquids; imidazolium tetrachloroaluminate; alu-
minum chloride

1. Introduction

Al materials and coatings have been extensively investigated in electronic and au-
tomotive industries due to their excellent conductivity, corrosion resistance, and wear
tolerance [1,2]. Al can be electrochemically deposited from ionic liquids with an aluminum
salt precursor, due to the wide electrochemical window of ionic liquids. The deposits
were affected by factors, such as the substrate materials [3], composition of the mixture
(AlCl3-to-IL ratio) [4–6], operating temperature [7–10], deposition current density [9,11],
substrate pretreatment [11], stirring [7,8,12], and additives [7,13].

The AlCl3-to-IL ratio determines the distribution of various Al anion species and
viscosity of the system, which controls reaction kinetics and diffusion process for Al
deposition. The AlCl3/[BMIm]Cl mixtures with 2:1 molar ratio resulted in a dull Al deposit
whereas the 1.5:1 molar ratio mixture led to a bright Al surface because the AlCl3/[BMIm]Cl
at 1.5:1 is more viscous with less aluminum complex ions [4]. Al deposition is the direct
result from electrochemical reduction of chloroaluminate complexes [14,15].

In general, the chloroacidity determines reactivity and electrochemistry in the ionic
liquid electrolyte. The Al deposition chemistry is complicated because of the chemical
nature of different chloroaluminate complexes species including chemical equilibria and
interconversion [16,17]. The equilibrium composition was highly dependent on the amount
of AlCl3 added to the ionic liquid. The main anions are [AlCl4]−, [Al2Cl7]−, and Cl− in the
alkylimidazolium chloride and AlCl3 solutions [18–20]. When AlCl3 concentration is high,
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more complicated anions such as [Al3Cl10]−, [Al4Cl13]−, and [Al2OCl5]− will be formed,
which are confirmed by Infrared (IR) spectroscopy and the Nuclear Magnetic Resonance
(NMR) spectroscopy [21].

Various ionic liquids have been investigated for Al deposition including 1-methyl-3-
ethylimidazolium chloride ([MEIm]Cl) [18–20,22–25], 1-ethyl-3-methylimidazolium chlo-
ride ([EMIm]Cl) [3,11,26–29], 1-butylpyrrolidine [30], 1-butyl-3-methylimidazolium chlo-
ride ([BMIm]Cl) [4,7–9,31], and 1-(2-methoxyethyl)-3-methylimidazolium chloride ([MoeMIm]
Cl) [32]. One class of ionic liquids, imidazolium-based tetrachloroaluminates, has much
lower melting points than its chloride counterpart. These ionic liquid systems also re-
ceived attention in battery applications [33]. Al metal was found as a deposit in an
ethylimidazolium-contained system [33–37]. A representative of this class is 1-ethyl-3-
methylimidazolium tetrachloroaluminate ([EMIm]AlCl4) with melting point of 9 ◦C while
the melting point for its chloride counterpart [EMIm]Cl is at 77–79 ◦C. [EMIm]AlCl4 can
simplify the preparation process for electrochemical deposition with better control on
mixing and heating. Furthermore, it is commercially available on industrial scale and
makes Al deposition possible directly at lower temperatures. However, there is only some
computational study available for exploring the unique physical properties of the tetra-
chloroaluminate systems recently [38,39]. However, due to the sensitivity of moisture
and oxygen in the experimental performance in ionic liquids, the operations need to be
conducted in protective atmosphere such as an inert gas environment. It makes the pro-
motion and scale-up of the process difficult in larger scales [3,30]. The electrochemical
characteristics of these systems have not received attention and their potential as a medium
for the Al deposition has not been examined.

In this work, the electrochemical window of the [EMIm]AlCl4 will be defined and
thermodynamic models for AlCl3/IL systems at 30 ◦C and 110 ◦C will be developed. By
employing AlCl3/[EMIm]AlCl4 as the electrolyte, electrodepositions will be carried out
on glass carbon substrates in the open air, and the products will be characterized for the
morphology, composition, and phase information. These results will be of academic and
industrial interest in not only the development of metal deposition processes, but also
employing the electrochemistry of the [EMIm]AlCl4 as a model system to deepen our
understanding of the related process chemistry and electrode reactions.

2. Experimental
2.1. Chemicals and Materials

AlCl3 (99%, Alfa Aesar, Tewksbury, MA, USA) and [EMIm]AlCl4 (C6H11AlCl4N2 ≥
95%, Sigma Aldrich, St. Louis, MO, USA) were used for Al electrodepositions. [EMIm]AlCl4
is a light-yellow transparent liquid at room temperature. All chemicals were used as re-
ceived. Glassy carbon disk electrodes were used as working electrode (GC, 1 mm diameter,
eDAQ, Colorado Spring, CO, USA). Aluminum wires were used as counterelectrode and
reference electrode (1 mm diameter, 99.9995% metal basis, Alfa Aesar). Techne Dri-Block®

Digital Block Heater was used for temperature control (±1 ◦C). A 3 mL glass vial (eDAQ
Inc. Colorado Spring, CO, USA) was used for electrodeposition cell. VersaSTAT 4 Potentio-
stat (Princeton Applied Research, Oak Ridge, TN, USA) with VersaStudio was used for all
electrochemical measurements and data acquisition.

2.2. Procedure and Methodology

To determine the stability of [EMIm]AlCl4, cyclic voltammetry (CV) was measured
for [EMIm]AlCl4 in the three-electrode electrochemical cell at a series of temperatures
including 30 ◦C, 50 ◦C, 70 ◦C, 90 ◦C, and 110 ◦C at a scan rate 100 mV s−1.

AlCl3/[EMIm]AlCl4 mixtures were prepared by adding portion of AlCl3 powders
into the [EMIm]AlCl4 liquid at the room temperature and heated up to 110 ◦C for 2 h
until homogeneity was reached. As the electrical conductivity for AlCl3/IL (exclusive of
Al species) started to decrease when the ratio was higher than 1 [25], a small amount of
AlCl3 was added and the final ionic liquid mixture was AlCl3/[EMIm]AlCl4 at a molar
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ratio of 1:5. In order to determine the Al3+ reduction potential, CVs in AlCl3/[EMIm]AlCl4
(1:5) were measured at various scan rates including 10, 20, 50, 100, and 150 mV s−1 at
30 ◦C and 110 ◦C, respectively. The nucleation mechanism was studied by short-time
chronoamperometry (CA) measurements. The current-time transients were measured by
applying a series of constant cathodic potentials in the kinetic regime. After each current-
time transient measurement, a constant potential 1.0 V was applied on the glassy carbon
disk working electrode for 5 min to clean the electrode surface and remove the Al layer on
the working electrode. All potentials were reported versus the Al reference electrode.

The Al electrodepositions in AlCl3/[EMIm]AlCl4 (1:5) were carried out by long-time
CA measurements. The constant potential depositions were controlled a little higher than
the Al/Al3+ potential. A polished and clean Al wire working electrode was used for each
deposition. The Al deposition samples were washed thoroughly in acetonitrile first and
then acetone. The samples were left in air at room temperature for 24 h before any material
characterization.

The Al deposition samples were analyzed using a JEOL JSM-6610LV scanning electron
microscope (SEM, Apollo SDD X-Ray spectrometer, 20 kV) for morphology and elemental
composition information. The X-ray diffraction (XRD) was performed for the Al deposits
from 30◦ to 90◦ (2 theta) at 4◦ min−1 for phase identification (Rigaku SmartLab, Cu Kα

radiation, λ = 1.54056 Å, voltage = 40 kV and current = 44 mA).

2.3. Chloroaluminate Complexes Distribution Calculation

Al anions in the AlCl3/[EMIm]AlCl4 solution included [AlCl4]−, [Al2Cl7]−, [Al3Cl10]−,
and [Al4Cl13]− [18–20]. The distributions of the Al anions for AlCl3/[EMIm]AlCl4 (1:5)
at 30 ◦C and 110 ◦C were calculated based on Ki = exp (−∆Hi

0

RT + ∆Si
0

R ) using standard
entropy and enthalpy (Table 1) [20]. The chloroaluminate species reached equilibrium in
the ionic liquid as following reactions [18–20]:

[AlCl4]
− ↔ 0.5 Al2Cl6 + Cl−, K1 =

[Cl−][Al2Cl6]
0.5

[[AlCl4]−]
(1)

[Al2Cl7]
− ↔ 0.5 Al2Cl6 + [AlCl4]

−, K2 =
[[AlCl4]−][Al2Cl6]

0.5

[Al2Cl7]−]
(2)

[Al3Cl10]
− ↔ 0.5 Al2Cl6 + [Al2Cl7]

−, K3 =
[[Al2Cl7]−][Al2Cl6]

0.5

[[Al3Cl10]−]
(3)

[Al4Cl13]
− ↔ 0.5 Al2Cl6 + [Al3Cl10]

−, K4 =
[[Al3Cl10]

−][Al2Cl6]
0.5

[[Al4Cl13]−]
(4)

Table 1. Thermodynamic equilibrium parameters for Al2Cl6 equilibria reactions.

Reaction * ∆H0 /kJ mol−1 * ∆S0 /J mol−1 K−1 K (30 ◦C) K (110 ◦C)

1 69.547 −172.17 1.04 × 10−21 3.32 × 10−19

2 40.940 37.89 8.34 × 10−6 2.49 × 10−4

3 25.574 36.78 3.25 × 10−3 2.71 × 10−2

4 25.704 47.90 1.18 × 10−2 9.92 × 10−2

* The activity coefficient γAl2Cl6 is 3 [20].

The total mole fraction for all species was unity:

χCl− + χ[AlCl4]
− + χ[Al2Cl7]

− + χ[Al3Cl10]
− + χ[Al4Cl13]

− + χAl2Cl6 = 1 (5)

where χi was the modified Temkin ion fraction [40] for the species i, χi = ni
nT

, and nT
was the total molar amount of anions: nT = nCl− + n[AlCl4]

− + n[Al2Cl7]
− + n[Al3Cl10]

− +
n[Al4Cl13]

− + nAl2Cl6 .
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In addition, the charge balance also met the equation:

n[EMIm]+ = nCl− + n[AlCl4]
− + n[Al2Cl7]

− + n[Al3Cl10]
− + n[Al4Cl13]

− (6)

By assuming a complete dissociation of the IL, it gave n[EMIm]+ = nIL.
The materials balance for Al species was

nAlCl3 n[AlCl4]
− + 2n[Al2Cl7]

− + 3n[Al3Cl10]
− + 4n[Al4Cl13]

− + 2nAl2Cl6 (7)

χAlCl3 was introduced as the initial molar ratio of AlCl3: χAlCl3 =
nAlCl3

nAlCl3
+nIL

.

Combining the mass balance equations and charge balance equation, the following
equation was established:

χ[AlCl4]
− + 2χ[Al2Cl7]

− + 3χ[Al3Cl10]
− + 4χ[Al4Cl13]

− + χAl2Cl6
2− χAlCl3
1− χAlCl3

=
χAlCl3

1− χAlCl3
(8)

Equations (1)–(8) were solved simultaneously using numerical method within EXCEL
for χAlCl3 in the range of 0 and 1 at interval 0.0001.

3. Results and Discussion
3.1. Stability Window of [EMIm]AlCl4 at Various Temperatures

CVs in [EMIm]AlCl4 at different temperatures were measured to determine the sta-
bility window (Figure 1). The CVs displayed wide flat zones between the fast-growing
oxidation and reduction currents. The onset potentials for oxidation-current growth were
very close to 1.5 V which is the oxidation of chloride anions [41,42]. In contrast, the onset
potentials for the reduction-current growth were strongly dependent on temperatures,
characteristic of a positive shift with increasing temperatures. At the negative potential
limits, the cathodic peaks were attributed to the reduction of imidazolium ring [41]. Based
on the onset potential differences for the oxidation and reduction current growth, the
electrochemical windows of [EMIm]AlCl4 on the GC electrode were determined. The
potential windows decreased from 3.2 to 2.3 V as the temperature was increased from
30 ◦C to 110 ◦C. These results are consistent with literature data measured under similar
conditions [41,43]. No oxidation peak was observed in the electrochemical windows in the
CVs indicating that the Al anion [AlCl4]− dissociated from [EMIm]AlCl4 was a very stable
Lewis neutral anion and could not lead to Al electrodeposition [44–46].
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Figure 1. CVs in [EMIm]AlCl4 at 30 ◦C, 50 ◦C, 70 ◦C, 90 ◦C and 110 ◦C at a scan rate 100 mV s−1.
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3.2. Cyclic Voltammetry in AlCl3/[EMIm]AlCl4 (1:5)

The advantage of using the [EMIm]AlCl4 is mostly its simple operation. Though
[EMIm]AlCl4 can be generated by mixing equimolar [EMIm]Cl and AlCl3, the mixing
process requires heating to melt the [EMIm]Cl and continuous stirring to release heat
generated by the combination reaction [27]. In contrast, by using [EMIm]AlCl4, it is a
liquid at the room temperature and the operation of mixing with AlCl3 does not need extra
heating or stirring.

The CVs in AlCl3/[EMIm]AlCl4 (1:5) at 30 ◦C and 100 ◦C were shown in Figure 2a,b,
respectively. At 30 ◦C, the onset potentials for Al deposition became higher from −0.25 V
to −0.3 V as the scan rates increased from 10 mV s−1 to 150 mV s−1. At 110 ◦C, the onset
potentials for Al deposition at different scan rates were concentrated at approximately
−0.14 V, much lower than those in CVs at 30 ◦C. The potential range for CVs at 30 ◦C was
from OCP to −0.9 V, and the current intensity at 150 mV s−1 was responded at 12.5 to
−15.2 mA cm−2, the highest current range. For CVs at the same scan rate 150 mV s−1 at
110 ◦C, the current response was much higher in a range of −63.8 to 87.2 mA cm−2. At
both temperatures, the re-oxidation charges were smaller than the reduction charges. At
30 ◦C, the Al dissolution was around 26.5% to 36.4% of the charge used in the reduction
reaction, compared with the proportion of 61.8% to 79.2% in CVs at 110 ◦C.
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Figure 2. CVs at various scan rates in AlCl3/[EMIm]AlCl4 (1:5) at 30 ◦C (a) and 110 ◦C (b).

For AlCl3/[EMIm]AlCl4 (1:5, χAlCl3 = 0.55), the system is composed of similar alu-
minum ions at 30 ◦C and 110 ◦C with 80.0 mol% [AlCl4]− and 20.0 mol% [Al2Cl7]− at 30 ◦C
while 80.2 mol% [AlCl4]− and 19.8 mol% [Al2Cl7]− at 110 ◦C (Figure 3). In the system,
[AlCl4]−, as the major component, could not be reduced to Al. Moreover, the minor com-
ponent [Al2Cl7]− was the active species for Al deposition [47–50]. During the electrolysis,
[Al2Cl7]− was reduced to aluminum metal and the generated [AlCl4]− migrating to the
anode (Equation (9)) [51,52].

4[Al2Cl7]
− + 3e− → Al + 7[AlCl4]

− (9)
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The CVs in AlCl3/[EMIm]AlCl4 (1:5) (Figure 2) at both temperatures exhibited the
cathodic and anodic peaks potentials were more separated at higher scan rates. The
separations of the Al reduction and re-oxidation peaks were more than 330 mV, which
was larger than the critical peak splitting of 282 mV ( 212

n mV, n is the number of electrons
involved in the charge-transfer step, n = 0.75) [53,54], suggesting an irreversible system.

For an irreversible electrode reaction, the rate constant (k0) for the Al deposition was
estimated from the shift of the cathodic peak potential (Epc) with the scan rates in CVs,
based on Equation (10) [55]:

Epc = E0 − RT
αnaF

[
0.78− ln

k0

D1/2 + ln
(

αnaFν

RT

)1/2
]

(10)

where E0 is the standard potential (E0 = 0 for the current system), F is the Faraday’s constant
96,485 C mol−1, R is the gas constant 8.314 J mol−1 K−1, D is the diffusion coefficient of
active species [Al2Cl7]−, and α is the transfer coefficient. Figure 4a showed linear relations
of Epc and lnv1/2. The values of αna could be derived from the slopes of lines at different
temperatures, which were 0.38 and 0.74 for reactions at 30 ◦C and 110 ◦C, respectively.
The diffusion coefficients were calculated from the Randles–Sevcik equation, based on the
relationship between the cathodic peak current densities (jpc) correlating with scan rate (v)
for an irreversible system in Equation (11) [56]:

jpc = 0.4958× nFCD1/2
(

αnaF
RT

)1/2
ν1/2 (11)

where C is the concentration of active species [Al2Cl7]− and n is the number of electrons
involved in the charge-transfer step, n = 0.75. The cathodic peak current densities and the
square root of scan rate showed good linearity at 30 ◦C and 110 ◦C (Figure 4b), indicating
that the cathodic reaction was diffusion-controlled. The values of D were estimated to
be 9.71 × 10−8 cm2 s−1 at 30 ◦C and 1.04 × 10−6 cm2 s−1 at 110 ◦C. In the literature,
Lai et al. reported the αna at 0.44 and the diffusion coefficient of [Al2Cl7]− was about
6.2 × 10−8 cm2 s−1 at 40 ◦C in AlCl3/[EMIm]Cl with 0.47 mol L−1 of [Al2Cl7]− [50].
Based on the intercept in Figure 4a, the values of the cathodic reduction rate constant were
determined as 1.18× 10−5 cm s−1 and 3.37× 10−4 cm s−1 at 30 ◦C and 110 ◦C, respectively.
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The Al deposits and the nucleation mechanisms can be achieved from the chronoam-
perometry studies. Al deposition potentials at both 30 ◦C and 110 ◦C were chosen as the
values achieved at 200 mV s−1 in CVs. In this way, it guaranteed the constant potentials
in CA measurements were higher than the Al deposition potentials. The current-time
profiles showed an initial slight decrease in current density followed by a sharp increase
and gradual decrease to a plateau (Figure 5a,b). The initial decrease was due to the charging
of the double layer and a decayed current during the nucleation process [50,57,58]. The
current increase was the result of independent nucleus size growing and consequently the
increase of total electroactive Al surface area. The following current decrease was because
of the overlap of the diffusion zone leading to the formation of one diffusion layer [50]. As
the applied potential being more significant, the current density peak became sharper with
higher intensity and reached a higher plateau.

Initial stages of metal deposition were usually associated with a three-dimensional
(3D) nucleation. For the diffusion controlled 3D nucleation, the instantaneous and pro-
gressive nucleation mechanisms were normally expressed in Equations (12) and (13),
respectively [59].

(
j

jm
)

2
= 1.9542[(t− t0)/(tm − t0)]

−1{1− exp[−1.2564(t− t0)/(tm − t0)]}2 (12)

(
j

jm
)

2
= 1.2254[(t− t0)/(tm − t0)]

−1{1− exp[−2.3367(t− t0)
2/(tm − t0)

2]}2
(13)

where j is the current density at time t, t0 is the induction time, and tm is the time at the
maximum current density jm. Figure 5c,d gives a graphic analysis of the Al nucleation
mechanism with the data extracted from Figure 5a,b for the Al deposition onto the GC
electrode at 30 ◦C and 110 ◦C, respectively. The theoretical model curves were generated
from Equations (12) and (13). At 30 ◦C, the nucleation process correlated with the progres-
sive nucleation mechanism in the initial stage. After reaching the maximum current, the
deposition was close to the progressive nucleation curve, but the process may be affected
by other factors. At 110 ◦C, the phenomenon was more complicated. It followed the
progressive nucleation mechanism for a short time, but the data lines fell on progressive
and instantaneous nucleation mechanisms, and in the region in between. This nucleation
kinetic was different from literature results for the Al deposition from AlCl3/[EMIm]Cl
which exhibited a better fit with the 3D instantaneous nucleation [3,9]. It is possibly the
results of electrode surface changes during the depositions. Initially, the electrode sur-
face was flat and small. Next, the surface gradually grew to a hemispheric shape with
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a large surface area. The changes happened in such a short time that the mass transfer
and nucleation kinetics were complicated and could not be simply explained with only
one mechanism. In addition, the existence of side reactions during the nucleation, such
as the reduction of moisture and oxygen dissolved in the ionic liquid mixture, made the
electroplating processes more complicated [60]. Al-contained species would precipitate
due to the hydrogen extraction in water electrolysis and oxidized by oxygen generated.
Charges were consumed not only by the Al deposition from [Al4Cl7]−, but also by the side
reaction discussed above. Therefore, the process resulted in a lower current efficiency and
aluminum extraction ratio.

 

2 

 
Figure 5. Current-time transients from potential step experiments on glassy carbon electrodes for AlCl3/[EMIm]AlCl4
(1:5) at 30 ◦C (a) and 110 ◦C (b). The comparison of the dimensionless experimental current-time transients (j/jm)2 vs. (t −
t0)/(tm − t0) plots (c,d), which derived from subfigures (a,b), respectively, comparing with the theoretical models for the
diffusion-controlled three-dimensional nucleation.

Al electrodepositions were studied at 110 ◦C on the glassy carbon substrates. Constant
potentials were applied at the Al deposition potential defined with CV measurements.
Figure 6a,b shows the SEM images for two Al deposits under constant-potential polariza-
tion after the charge reached 2.9 C cm−2 and 14.5 C cm−2, respectively. The deposit with
less charges exhibited both bright and black regions. Further growth of the deposit layer
with more charges lead to the complete coating of the substrate, accompanied by the for-
mation of minor cracks. The elemental analysis (Figure 6c) of the bright zone and the dark
zone in Figure 6a confirmed that the polyhedral particles were 100% Al, and the black zone
corresponded to the GC substrate. The XRD pattern of the Al layer deposited in Figure 6b
was shown in Figure 6d. The peaks were sharp and matched well with the standard Al
(JCPDS 03-065-2869), indicative of a well-crystallized face-centered-cubic (fcc) structure
based on the patterns in [111], [200], [220], [311] and [222]. The particle size for Al particles
is estimated based on the Scherrer equation: d = Kλ

β cosθ . K is the shape factor at 0.9; λ is
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the X-ray wavelength at 1.5406 A; β is the line broadening at half the maximum intensity
in radians, 0.008378; and θ is the Bragg angle. The size of Al particles was calculated at
8.77 nm. Therefore, the result strongly supported the deposition of nano-size metallic Al
during the cathode polarization.
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4. Conclusions

In this work, we explored the potential of the [EMIm]AlCl4 as the ionic liquid elec-
trolyte and AlCl3 as the precursor for the electrodeposition of Al. Because of its wide
electrochemical window and low melting point, the [EMIm]AlCl4 is a prospective ionic
liquid for the electrodeposition of Al. Thermodynamic models were established to show the
composition of Al anions in AlCl3/IL mixtures at 30 ◦C and 110 ◦C. It was demonstrated
that nano-sized Al was successfully deposited on glassy carbon after AlCl3 was added to
the tetrachloroaluminate. The results from this work prove that the AlCl3/[EMIm]AlCl4
mixture is a promising electrodeposition both in developing the process chemistry and
improving the control of Al coating.
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