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Abstract: The stochastic gradient matching pursuit algorithm requires the sparsity of the signal as
prior information. However, this prior information is unknown in practical applications, which
restricts the practical applications of the algorithm to some extent. An improved method was
proposed to overcome this problem. First, a pre-evaluation strategy was used to evaluate the sparsity
of the signal and the estimated sparsity was used as the initial sparsity. Second, if the number of
columns of the candidate atomic matrix was smaller than that of the rows, the least square solution
of the signal was calculated, otherwise, the least square solution of the signal was set as zero. Finally,
if the current residual was greater than the previous residual, the estimated sparsity was adjusted
by the fixed step-size and stage index, otherwise we did not need to adjust the estimated sparsity.
The simulation results showed that the proposed method was better than other methods in terms of
the aspect of reconstruction percentage in the larger sparsity environment.

Keywords: compressed sensing; estimated sparsity; least squares solution; stochastic gradient;
reconstruction probability

1. Introduction

Compressed sensing (CS) [1–3] theory has aroused significant concern over the past few
years. It asserts that a signal can be conducted using compressive sampling, which has a much
lower frequency than that of Nyquist. The signal processing of an electrical circuit includes an
analog-to-digital converter (ADC). The ADC receives an analog input signal, samples the analog
input signal based on a sampling clock signal and converts the sampled analog input signal into a
digital output signal. The compressed sensing method can be used to sample the analog signal with a
lower sample rate than the Nyquist sampling rate. CS theory mainly includes three core issues [4]: (1)
The signal sparsity representation, which designs the sparsity basis or the over-complete dictionary
with the capability of sparse representation; (2) The compressive measurement of the sparse signal
or compressive signal for designing the sensing matrix, which satisfies the incoherence of atoms or
restricted isometry property (RIP) [5]; and (3) The reconstruction of the sparse signal is to design the
efficiency signal recovery algorithm. In terms of the aspects of signal sparse representation and sensing
matrix design, there have been several better solutions. However, extending CS theory to practical
applications requires a crucial step to implement, which is the design of a signal recovery algorithm.
Therefore, the design of a recovery algorithm is still an important topic in the field of CS research.

Currently, several mature signal recovery algorithms have been proposed. Among the existing
recovery algorithms, two major approaches are the l1-norm minimization (or convex optimization) and
l0-norm minimization (or greedy pursuit) methods. Convex optimization methods approach the signal
by changing the non-convex problem into convex ones such as the basis pursuit (BP) [6] algorithm, the
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gradient projection for sparse reconstruction (GPSR) [7] algorithm, the interior-point method Bergman
iteration (BT) [8] and total-variation (TV) [9]. While the convex optimization methods work correctly for
all sparse signals and provide theoretical performance guarantees, its high computational complexity
may prevent it from encountering practical large-scale recovery problems. The other category is
the greedy pursuit algorithm, which iteratively identifies the true support of the original signal and
constructs an approximation signal based on a set of chosen supports until the halt iteration stop
condition is satisfied. This can more efficiently solve large-scale data recovery problems. An example
of an earlier typical greedy algorithm is the matching pursuit (MP) [10] algorithm. The orthogonal
matching pursuit (OMP) [11] algorithm was developed based on the MP algorithm to optimize MP by
orthogonalizing the atoms of the support set. However, the OMP algorithm selects one of the columns
of preliminary atoms to add the candidate atoms set, which will increase the number of iterations,
thereby reducing the speed of the OMP algorithm. Subsequently, some researchers have proposed
several modified methods and as for the shortcoming where OMP places only one atom (or column)
onto the support atom set at each round of iteration, the stage-wise OMP (StOMP) [12] algorithm has
been proposed. StOMP can select multiple atoms to add to the support atom set by using the thresholds.
Regularization is introduced in OMP and can provide a powerful theoretical guarantee. This recovery
algorithm is called the regularized OMP (ROMP) [13] algorithm. The computational complexity of
these algorithms is significantly lower than that of the convex optimization methods; however, they
require more measurement of values for exact recovery and have poor reconstruction performance
in a noisy environment. To date, subspace pursuit (SP) [14] and compressive sampling matching
pursuit (CoSaMP) [15,16] algorithms have been proposed by incorporating a backtracking strategy.
These algorithms offer strong theoretical guarantees and provide robustness to noise. However, both
of these algorithms require the sparsity K as priority information, which may not be available in
most practical applications. In order to overcome this weakness, the sparsity adaptive matching
pursuit (SAMP) [17] algorithm was proposed for blind signal recovery when the sparsity is unknown.
The SAMP algorithm divides the recovery process of the algorithm into several stages with a fixed
step-size and without the prior information of the sparsity. In the SAMP algorithm, the step-size is fixed
at the initial stage of the SAMP algorithm. Additional iterations are required if the step-size is much
smaller than the signal’s sparsity. This will lead to a long reconstruction time. Furthermore, the fixed
step-size cannot estimate the real sparsity precisely because this method can only set the estimated
sparsity to a multiple integer of the step-size. Although these traditional greedy pursuit algorithms
are widely used due to their simple structure, convenient calculation and better reconstruction effect,
they still have many drawbacks. These methods do not directly solve the original optimization
problem, which will result in the quality of the signal recovery being of poorer quality than the
convex optimization method-based l1-norm. In addition, these greedy pursuit algorithms have the
disadvantage of a high computing complexity and large storage capacity for large-scale date recovery.

Since calculating the orthogonal projection requires a large number of calculations using
traditional greedy algorithms, this will result in a decline in the recovery efficiency of the greedy
algorithm. Thomas et al. first proposed a gradient pursuit (GP) [18] algorithm for the sake of
overcoming this shortcoming. This algorithm uses the update of the gradient direction to replace
the calculation of the orthogonal projection, which reduces the computational complexity of the
greedy pursuit algorithms. Their successors include the Newton pursuit (NP) [19] algorithm,
the conjugate gradient pursuit (CGP) [20] algorithm, the approximate conjugate gradient pursuit
(ACGP) [21] algorithm and the variable metric method-based gradient pursuit (VMMGP) [22]
algorithm. These methods reduce the computational complexity and storage space of the traditional
greedy algorithm in terms of the large-scale recovery problem but the reconstruction performance
still requires improvement. Therefore, based on the GP algorithm, the stage-wise weak gradient
pursuit (SwGP) [23] algorithm was proposed to improve the reconstruction efficiency and convergence
speed of the GP algorithm via the weak selection strategy. Although the SwGP algorithm makes
the fashioning of atom selection more flexible and improves the reconstruction precision, the time
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taken for atom selection is greatly increased. Recently, motivated by the stochastic gradient descent
methods, the stochastic gradient matching pursuit (StoGradMP) [24] algorithm was proposed for the
optimization problem with sparsity constraints. The StoGradMP algorithm not only improves the
reconstruction efficiency of the greedy recovery algorithm for the large-scale data recovery problem but
also reduces the computational complexity of the algorithm. However, the StoGradMP algorithm still
requires the sparsity of the signal as a priori information, which restricts the capacity of the algorithm’s
availability in practical situations. This study proposed a sparsity pre-evaluation strategy to estimate
the sparsity of the signal and utilized the estimated sparsity as the input parameter of the algorithm.
This strategy will make the algorithm eliminate the dependence on signal sparsity and decrease the
number of iterations of the algorithm. This algorithm then approaches the real sparsity of the signal by
adjusting its initial sparsity estimation, thereby realizing the expansion of the support atoms set and
the signal reconstruction.

In recent years, a variety of reconstruction algorithms have been proposed, which have further
enhanced the application prospect of CS theory in the field of signal processing such as channel
estimation and blind source separation. There is no denying that the application research of
reconstruction algorithms will even further highlight the importance of such algorithms. In the
literature [25], novel subspace-based blind schemes have been proposed and applied to the sparse
channel identification problem. Moreover, the adaptive sparse subspace tracking method was proposed
to provide efficient real-time implementations. In Reference [26], a novel unmixing method based on
the simultaneously sparse and low-rank constrained non-negative Matrix factorization (NMF) was
applied to the remote sensing image analysis.

2. Preliminaries and Problem Statement

In CS theory, for x ∈ Rn×1, here, n is the length of signal x. If the number of non-zero entries is K
in original signal, then we regard the signal x as the K-sparse signal or compressive signal (in noiseless
environments). Generally, the signal x can be expressed as follows:

x =
n

∑
i=1

βiψi = Ψβ (1)

‖ β ‖0 = K (2)

where ψi(i = 1, 2, . . . , n) are the basis vectors of the sparse basis matrix Ψn×n, that is, Ψ is the matrix
constituted by the {ψi}n

i=1. β ∈ Rn is a projection coefficient vector and K � n. ‖ . ‖0 denotes that the
number of non-zero entries in the projection coefficient vector β.

When the sparse representation of the original signal is completed, we need to construct a
measurement matrix Φ for the compression measurement of the sparse signal x to obtain the
observation values u, this process can be described as follows:

u = Φx (3)

where Φ ∈ Rm×n, u ∈ Rm×1 and m � n. According to Equation (3), the observation vector
nearly contains the whole information of the n-dimensional signal x. Furthermore, this process
is non-adaptive, which will ensure that the crucial information of the original signal is not lost when
the dimensional signal is decreased from n to m. The m is called the number of observation values in
the later description.

When the original signal x itself is not sparse, the original signal measurement process cannot
be directly utilized in Equation (3). Thus, we need the compressive measurement on the projection
coefficient vector β to obtain the measurement value. According to Equations (1) and (3), we can obtain
the follow equation:

u = ΦΨβ = Γβ (4)
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where Γ = ΦΨ ∈ Rm×n is the sensing matrix. According to Equation (4), we know that the dimensional
of the observation vector u is much lower than the dimensional of signal x, that is, m� n. Therefore,
Equation (4) is regarded as an under-determined problem and indicates that Equation (4) has an
infinite number of solutions. That is to say, it is hard to reconstruct the projection coefficient vector β

from observation vector u.
Whereas, according to the literature [27], we know that the sufficient condition for exact sparse

signal recovery is that sensing matrix Γ satisfies the RIP condition. Thus, if the sensing matrix satisfies
the RIP condition, the reconstruction on signal β is equivalent to the l0-norm optimization problem [28]:

min
β∈Rn×1

‖ β ‖0 subject to u = Γβ (5)

where ‖ . ‖0 represents the number of non-zero entries in projection coefficient β. Unfortunately,
Equation (5) is a NP-hard optimization problem. When the isometry constant δK of the sensing matrix
Γ is less than or equal to

√
2− 1, Equation (5) is equivalent to the l1-norm optimization problem:

min
β∈Rn×1

‖ β ‖1 subject tou = Γβ (6)

where ‖ . ‖1 denotes that the absolute sum of the non-zero entries in projection coefficient β. Equation
(6) is a convex optimization problem. Meanwhile, when the sparse basis is determined, in order to
ensure that the sensing matrix Γ also satisfies the RIP condition, the measurement matrix Φ must meet
certain conditions. However, in Reference [29,30], the researchers found that when the measurement
matrix Φ was a random matrix with a Gaussian distribution, the sensing matrix Γ could satisfy the
RIP condition with a large probability. This will greatly reduce the difficultly of the design of the
measurement matrix.

However, in most practical applications and conditions, the original signal ordinarily contains
noise signals. In this setting, this sensing process can be represented in the following equation:

u = Γβ + ε (7)

where ε ∈ Rn×1 is the noise signal. In this study, for simplicity, we supposed that the signal x itself
was K-sparse, thus, the original signal x and sensing matrix Γ were equal to the projection coefficient β

and measurement matrix Φ, respectively. According to Equation (7), it can be written as u = Φx + ε.
We minimized the follow equation to reconstruct the original sparse signal x:

min
x∈Rn×1

1
2m
‖ u−Φx ‖2

2 subject to‖ x ‖0 ≤ K (8)

where u−Φx is the residual of the original signal x, which is represented as rk. That is, rk = u−Φx.
‖ . ‖2 represents the square of l2-norm of the signal residual vector rk. To analyze Equation (8), we
combined Equation (1). In Equation (1), βi is the projection coefficient of the sparse signal x. This
notion is general enough to address many important sparse models such as group sparsity and low
rankness (see studies [31,32] for examples). Then, we can express Equation (9) in the form of

min
x

1
M

M

∑
i=1

fi(x)︸ ︷︷ ︸
F(x)

subject to‖ x ‖0,Ψ ≤ K (9)

where fi(x) is a smooth function, that is, it is a non-convex function. ‖ x ‖0,Ψ is defined as the norm
that captures the sparsity of signal x.

For a sparse signal recovery problem, the sparse basis Ψ consists of n basic vectors, each of size n
in the Euclidean space. This problem can be regarded as a special case of Equation (9) with fi(x) =
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(ui− < φi, x >)2 and M = m. The observation vector u is decomposed into the non-overlapping block
observation vectors ubi

with a size of b. Φbi×n denotes the block-matrix of the measurement matrix
of size b. According to Equations (8) and (9), the objective function F(x) can be represented as in the
following form:

F(x) =
1
M

M

∑
i=1

1
2b
‖ ubi

−Φbi
x ‖

2

2

=
1
M

M

∑
i=1

fi(x) (10)

where M = m/b, which is a positive integer. According to the equation, each smooth function fi(x) can
be represented as fi(x) = 1

2b‖ ubi
−Φbi

x ‖2
2. Obviously, in this case, each sub-function fi(x) accounts

for a collection (or block) of measurements of size b, rather than only one observation. Here, the
smooth function F(x) is divided into multiple smooth sub-functions fi(x) and the measurement matrix
Φ block into multiple block matrix Φbi

, which will contribute to the computation of the gradient in the
stochastic gradient matching pursuit algorithm, thereby improving the reconstruction performance of
the algorithm.

3. StoGradMP Algorithm

The CoSaMP algorithm is fast for small-scale signals with a lower dimensional but for large-scale
signals with a higher dimensional and noise signal, the reconstruction precise is not very accurate and
the robustness of the algorithm itself is poorly. Therefore, in Reference [30], the researchers generalized
the idea of the CoSaMP algorithm and proposed the GradMP algorithm for the reconstruction problem
of large-scale signals with sparsity constraints and noise signals. Regrettably, the GradMP algorithm
needs to calculate the overall gradient of the smooth function F(x), which increases the computational
complexity of the GradMP algorithm. After the GradMP algorithm, Needell et al. proposed a stochastic
version of the GradMP algorithm called the StoGradMP [24] algorithm. This algorithm only computes
the gradient of the sub-function fi(x) at each round of iterations.

According to the literature [24], the StoGradMP algorithm is described in Algorithm 1, which
consists of the following steps at each round of iterations:

Randomize: The measurement matrix Φ is randomly divided into blocks, that is, it searches the
row index of the measurement matrix constituting a block matrix Φbi

of size bi × n by the row vector
corresponding to those row indexes. Then, according to Equation (10) and the block matrix, execute
the calculation operation of sub-function fik (xk).

Proxy: Compute the gradient Gk of fik (xk), where the gradient Gk is a n× 1 column vector.
Identify: The absolute value of the gradient vector is ranked in descending order, the first

2K absolute value of the gradient coefficients are selected, the column index (atomic index) of the
measurement matrix corresponding to those coefficients is found, then form a preliminary index set Pk.

Merge: Constitute the candidate atomic index set Ck, which is consists of the preliminary index
set Pk and the support index set Sk−1 of the previous iteration.

Estimation: The transition estimation of the signal bk by the least square method.
Prune: The absolute value of the estimation vector of the signal transition is ranked in descending

order, the first K absolute value of signal estimation coefficients is determined, then conduct a search
for the atomic index of the measurement matrix corresponding to those coefficients, forming the
support atomic index set Sk.

Update: Update the final estimation of signal xk = bkS at the current iteration, which corresponds
to the support atomic index set Sk.

Check: When the l2-norm of the signal residual is less than the tolerance error of the StoGradMP
algorithm, the iteration is halted. Or, if the loop index k is greater than the maximum number of
iterations, the proposed method ends and the approximation of signal x̂ = xk is the output. Otherwise,
continue the iteration until the halting condition is met.
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4. Proposed Algorithm

The StoGradMP algorithm selects 2K atoms in each preliminary stage of iteration. Here, K is
a fixed number. Therefore, the StoGradMP algorithm requires the sparsity as a priori information,
which is not available in practical applications. We first proposed a sparsity pre-evaluation strategy to
obtain an estimation of sparsity as a way to overcome this problem. The next step was to put forward
a sparsity adjustment strategy to adjust the estimation of sparsity, approaching the real sparsity of
the signal.

4.1. Pre-Evaluation Strategy

In this section, we propose a sparsity pre-evaluation strategy to estimate the real sparsity of the
original signal. This process is described below.

Firstly, we provided an initial estimation of sparsity, which is K0 = 1. Next, we calculate the atom
correlation g, which is expressed as:

g = ΦTu (11)

where Φ, u represents the measurement matrix and observation vector, respectively.
Second, when the calculation of atom correlation is completed, we selected the K0 atoms from the

measurement matrix Φ to expand the support atom set ΦV , where the support atomic index can be
expressed as:

V = max(|g|, K0) (12)

where |g| is the absolute value of the atom correlation coefficients g. max(|g|, K0) represents finding
the atomic (or column) index of matrix Φ, corresponding to the K0 maximal value from |g|.

Finally, we checked the iterative stopping condition of the sparsity evaluation to determine
whether to continue to the next iteration and update the iterative parameters. This condition is
expressed as:

‖ ΦT
Vu ‖2 ≥

1− δK√
1 + δK

‖ u ‖2 (13)

where ΦV represents the support atomic set (or matrix) corresponding to the support atomic index set
V. ‖ . ‖2 denotes the l2-norm of a vector. The element δK is the isometry constant and δK ∈ (0, 1). If
the iteration stopping criteria is satisfied, then the output is the estimated sparsity K0 and the support
atomic index set V, otherwise, the iteration is continued and the estimated sparsity K0 = K0 + 1 is
updated to gradually approach the real sparsity of the original signal until the conditions are satisfied.
In addition, the set V will be used for the initial support atomic set estimation in the recovery algorithm.
This is S0= V, which will be used to reduce the selection time of the support atoms set in the recovery
algorithm and improve the reconstruction precision.

4.2. Adjustment Strategy

In Section 4.1, we utilized the sparsity pre-evaluation strategy to obtain the sparsity estimation
K0 and the support atomic index set V. However, the sparsity estimation level was lower than the
real sparsity of the original signal. If we used it as an input for the recovery algorithm, it would have
resulted in the lack of sparsity estimation, which would have led to a decline in the proposed method
in terms of reconstruction performance.

Therefore, we proposed an adjustment strategy for the sparsity estimation to control the
convergence conditions of the recovery algorithm and adjust the estimated sparsity K0. This strategy
is described below.

We started by checking the iterative stopping condition that is expressed as:

‖ rnew ‖2 ≤ tol ork ≥ maxIter (14)
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where tol is a threshold and k and maxIter is the number of iterations and the maximum number of
iterations, respectively. In addition, rnew is the residual at the k-th iteration. It can be expressed as:

rnew = u−Φxk (15)

xk = bkS (16)

where xk is the approximation of the signal x at the k-th iteration. Furthermore, bkS is the estimation
vector corresponding to the support atomic index set S. The set S is expressed as:

S = max(|bk|, K0) (17)

bk = Φ+
Ck

u (18)

where bk, K0 is the least solution of the signal and the estimated sparsity at the k-th iteration. In
addition, max(|bk|, K0) represents finding the atomic (or column) index of the measurement matrix
Φ corresponding to the largest K0 value from |bk| and constitutes the final (or support) atomic set S.
Furthermore, Φ+

CK
is the pseudo inverse matrix of the candidate atomic set (or matrix) ΦCk and its

definition is consistent with the definition in the StoGradMP algorithm.
Second, according to Equation (13), we can see that if the iteration stopping condition is not

satisfied, we can judge the stage switching condition to complete the goal of adjusting the estimated
sparsity. The condition can then be described as:

‖ rnew ‖2 ≥ ‖ rk−1 ‖2 (19)

then
j = j + 1 andK0 = j ∗ s (20)

where j, s are the stage index and the iterative step-size, respectively. Among these, s is a fixed number.
In this paper, we set the step-size set as s = 1, 5, 10, 15, with K0 as the estimated sparsity at the j-th
stage. If

‖ rnew ‖2 ≤ ‖ rk−1 ‖2 (21)

then continue to iterate and update the parameters:

Sk = S and rk = rnew (22)

where rk and Sk are the current residual and the support index set at the k-th iteration, respectively.

4.3. Reliability Verification Condition

Finally, according to Equation (18), before obtaining the least square solutions of the signal, we
needed to add a reliability verification condition to ensure that the proposed method was correct and
effective. This condition was that the number of rows was greater than the number of columns in the
candidate atomic matrix ΦCk , that is, ΦCk is a full column-rank matrix. This condition can then be
described as:

length(Ck) ≤ m (23)

then
bk = Φ+

Ck
u (24)

where m is the number of the rows in the measurement matrix. The definition of bk, Φ+
Ck

and u keep
pace with the definition in Equation (18). If the condition is not met, that is to say, the candidate atomic
matrix is not inverse, then we set bk = 0 and the exit loop.
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Figure 1 is a block diagram of the proposed algorithm. As can be seen from Figure 1, the algorithm
includes sparsity estimation and restoration. In the sparsity estimation part, the real sparsity estimation
is obtained by using the sparsity pre-evaluation strategy. In the recovery part, the sparsity adjustment
strategy is proposed to approach the real sparse gradually. This improves the reconstruction accuracy
and convergence of the proposed algorithm. The key innovation of the algorithm is that the signal can
be recovered without prior sparsity information K.
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The entire procedure is shown in Algorithm 1.

Algorithm 1 Proposed algorithm

Input: Measurement matrix Φm×n, Observation vector u, Block size b
Step-size s, Isometry constant δK , Initial sparsity estimation K0 = 1
Tolerance used to exit loop tol, Maximum number of iterations maxIter
Output1: K0 sparsity estimation of the original signal
V the support atomic index set
Output2: x̂ = xk K-sparse approximation of signal x
Set parameters:
x̂ = 0 {initialize signal approximation}
k = 0 {loop index used to loop 2}
kk = 0 {loop index used to loop 1}
done1 = 0 {while loop 1 flag}
done2 = 0 {while loop 2 flag}
rk = u {initialize residual}
M = floor(m/b) {number of blocks}
P0 = [] {empty preliminary index set}
C0 = [] {empty candidate index set}
V = [] {empty support index set used to loop 1}
S0 = [] {empty support index set used to loop 2}
j = 0 {stage index}
Part 1: Sparsity Estimation
While (∼ done1)
kk = kk + 1

(1) Compute the atom correlation: g = ΦT ∗ u
(2) Identify the support index set: V = max(|g|, K0)

(3) Check the iteration condition If (‖ ΦT
Γ u ‖2 > 1−δK√

1+δK
‖ u ‖2) done1 = 1 quit iteration

else K0 = K0 + 1 Sparsity approach end

end
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Part 2: Recovery part
S0 = V Update the support index set
While (∼ done2)
k = k + 1

(1) Randomize

ii = ceil(rand ∗M)→block = b ∗ (ii− 1) + 1 : b ∗ ii→ fik
(xk) =

1
2b ‖ ubik

−Φbik
x ‖ 2

2

(2) Computation of gradient: Gk = ∇ fik
(xk) = −2 ∗ΦT

bik
(ubik

−Φbik
xk−1)

(3) Identify the large K0 components: Pk = max(|Gk|, K0)

(4) Merge to update candidate index set: ΦCk = ΦPk ∪ΦSk−1
Reliability verification condition

If length(Ck) ≤ m
bk = Φ+

Ck
u Signal estimation by the least square method

else
bk = 0
break;
end

(5) Prune to obtain current support index set: S = max(|bk|, K0)

(6) Signal approximation by the support set: xk = bkS, rnew = u−Φxk

(7) Check the iteration condition

If (‖ rnew ‖2 ≤ tol or k ≥ maxIter)
done2 = 1 quit iteration
else if (‖ rnew ‖2 ≥ ‖ rk−1 ‖2) sparsity adjustment condition
j = j + 1 shift into stage
K0 = j ∗ s approach the real sparsity
else
rk = rnew update the residual
Sk = S update the support index set
end
end

5. Proof of the Proposed Algorithm

In this section, we prove the correctness of the pre-evaluation strategy. The main idea of this
strategy is to carry out the matching test of atoms to obtain the support atomic index set V. The size
of the potential of the set V is K0 and K0 is smaller than K. Here, K0, K is the estimated sparsity and
the real sparsity of the original signal, respectively. The potential of a set is represented by supp( .).
We assumed that the real support of the original signal x could be represented by F and supp(F) =K.
ΦF represents a sub-matrix formed by the atoms (or columns) of the measurement matrix Φ, whose
indices correspond to the real support index set F. Moreover, g = ΦTu, gi is the i-th element of the
atomic correlation coefficient g. In addition, the set V consists of indices corresponding to the K0

largest absolute value of gi and supp(V) =K0. Finally, the proposition can be explained as follows.

Proposition 5.1. Assume that measurement matrix Φ satisfies the restricted isometry property with parameters
K and δK. If K0 ≥ K, then we can obtain the formula in the form:

‖ ΦT
Vu ‖ 2 ≥

1− δK√
1 + δK

‖ u ‖2 (25)

Proof. Select the atomic index of matrix Φ corresponding to the K largest value from |g| and form the
real support atomic index set F. When K0 ≥ K, F ⊆ V. Then, we can obtain

‖ ΦT
Vu ‖ 2 ≥ ‖ ΦT

F u ‖ (26)
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Furthermore, we have
‖ ΦT

Vu ‖ 2 = max
|F|=K

√
∑

i∈F
|〈Φi, u〉|2

≥ ‖ ΦT
F u ‖ 2 = ‖ ΦT

F ΦFx ‖ 2

(27)

According to the definition of RIP, the range of the singular value of ΦF is
√

1− δK ≤ σ(ΦF) ≤
√

1 + δK.
Here, σ(.) represents a singular value of the matrix. If we denote λ

(
ΦT

F ΦF

)
as the eigenvalue of matrix

ΦT
F ΦF, we have 1− δK ≤ λ

(
ΦT

F ΦF

)
≤ 1 + δK. Therefore, we can obtain a formula in the form:

‖ ΦT
F ΦFx ‖ 2 ≥ (1− δK)‖ x ‖2 (28)

On the other hand, according to the definition of RIP properties, we can obtain the following
formula:

‖ x ‖2 ≥
‖ u ‖2√
1 + δK

(29)

Combining the inequalities of Equations (27)–(29), the following formula can be obtained:

‖ ΦT
Vu ‖ 2 ≥

1− δK√
1 + δK

‖ u ‖2 (30)

Therefore, the proof is completed. �

In light of the relationship between Proposition 5.1 and its converse-negative propositions, that
is to say, if Proposition 1 is true, then its converse-negative proposition is also true. Therefore, for
Proposition 1 in this paper, we have

‖ ΦT
Vu ‖ 2 <

1− δK√
1 + δK

‖ u ‖2 (31)

Then K0 < K.
According to Proposition 1, we can obtain an estimation method of true sparsity K. That is, if we

obtain an index set V satisfying the inequality (Equation (31)), then the sparsity estimation K0 can be
obtained. We can describe this as follows: first, we set the initial estimated sparsity as K0 = 1 and if
the inequality (Equation (31)) is true, then K0 = K0 + 1. Exit the loop when inequality (Equation (31)
is false. Meanwhile, we can obtain an initial index set V, which is the estimation of the true support
index set F.

6. Discussion

In this section, we used the signal with different K-sparsity as the original signal. The measurement
matrix was randomly generated with a Gaussian distribution. All performances were an average
calculated after running the simulation 100 times using a computer with a 32-core, 64-bit processor,
two processors and a 32 G memory. We also set the recovery error of all recovery methods as 1× e−6

and the tolerance error as 1× e−7. The maximum number of iterations of the recovery part of the
proposed method was 500 ∗M.

In Figure 2, we compared the reconstruction percentage of different step-sizes of the proposed
method with different sparsities in different isometry constants. We set the step size set and the range
of sparsity as s ∈ [1, 5, 10, 15] and K ∈ [10 100], respectively. The isometry constant parameter set was
δK ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]. From Figure 2, we can see that the reconstruction percentage was very
close, with almost no difference for all isometry constants δK. This means that the selection of the
isometry constants had almost no effect on the reconstruction percentage of the signal.
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Figure 2. Reconstruction percentage of different step-sizes with different sparsities in different
isometry constant conditions (n = 400, s ∈ [1, 5, 10, 15], δK ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] and m = 170,
Gaussian signal).

In Figure 3, we compared the reconstruction percentage of different isometry constants δK with
different sparsities in different step-size conditions. In order to better analyze the effects of different
step-sizes on the reconstruction percentage, the setting of parameters in Figure 3 was consistent with
the parameters in Figure 2. From Figure 3, we can see that when the step-size s was 1, the reconstruction
performance was the best for different isometry constants. When the step size continued to increase,
the reconstruction percentage of the proposed method gradually declined. In particular, when the
step-size s was 15, the reconstruction performance was the worst. This shows that a smaller step-size
benefits the reconstruction of the signal.
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Figure 3. Reconstruction percentage of different isometry constants with different sparsities in different
step-size conditions (n = 400, s ∈ [1, 5, 10, 15], δK ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] and m = 170, Gaussian
signal).

In Figure 4, we compared the average estimate of the sparsity of different isometry constants
δK of the proposed method with different real sparsity K. We set the range of the real sparsity and
isometry constant set as K ∈ [10 60] and δK ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], respectively. From Figure 4, we
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can see that when the isometry constant was equal to 0.1, the estimated sparsity K0 was closer to the
real sparsity of the original, rather than the other isometry constant. When the isometry constant was
equal to 0.6, the estimated sparsity was much lower than the real sparsity of the signal. Therefore,
we can say that a smaller isometry constant may be useful for estimating sparsity. Furthermore, this
indicates that a smaller isometry constant can reduce the runtime of sparsity adjustments, making the
recovery algorithm able to more quickly approach the real sparsity of the signal, thereby decreasing
the overall recovery runtime of the proposed method.Electronics 2018, 7, x FOR PEER REVIEW  13 of 22 
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(n = 400, δK ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] and m = 170, Gaussian signal).

In Figure 5, we compared the reconstruction percentage of different algorithms with different
sparsities in different real sparsity conditions. We set the range of the real sparsity of the original
signal and the assumed sparsity as K ∈ [20, 30, 40, 50] and L ∈ [10 100], respectively. From Figure 4,
we can see that when the isometry constant was equal to 0.1, the estimated level of sparsity was higher
than the other isometry constants. Therefore, we set the isometry constant as 0.1 in the simulation in
Figure 5. In Figure 5a,b, we can see that the proposed method had a higher reconstruction percentage
than other algorithms when the real sparsity was equal to 20 and 30, almost all of them reached
100%. In Figure 5a, for real sparsity K = 20, we can see that when the assumed sparsity L < 20, the
reconstruction percentage of the StoIHT, GradMP and StoGradMP algorithms was 0%, that is to say,
these algorithms could not complete the signal recovery. When 20 ≤ L ≤ 28, all recovery methods
almost achieved a higher reconstruction percentage. When 28 ≤ L ≤ 34, the reconstruction percentage
of the StoIHT algorithm began to decline from approximately 100% to 0%, while the other algorithms
still had a higher reconstruction percentage. When 34 ≤ L, the reconstruction percentage of the StoIHT
algorithm was 0%. For 63 ≤ L ≤ 72, the reconstruction percentage of the GradMP and StoGradMP
algorithms began to decline from approximately 100% to 0%. Moreover, the reconstruction percentage
of the GradMP algorithm was higher than the StoGradMP algorithm in the variation range of this
sparsity. In Figure 5b, we can see that the reconstruction percentage of the StoIHT algorithm was
still 0% for all assumed sparsity. When L < 30, the reconstruction percentage of the GradMP and
StoGradMP algorithms was equal to 0%, while the proposed method had a higher reconstruction
percentage and was approximately 100%. For 30 ≤ L ≤ 61, the reconstruction percentage of all
recovery methods was approximately equal to 100%. When 61 ≤ L ≤ 65, the reconstruction percentage
of the StoGradMP algorithm began to decline from approximately 99% to 1%, while the GradMP
algorithm still had a higher reconstruction percentage. In Figure 5c,d, we can see that the reconstruction
percentage of the proposed method with s = 15 decreased from approximately 99% to 84% and 69%,
respectively. Furthermore, from all of the sub-figures in Figure 5, we can see that when the assumed
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sparsity was close to the real sparsity, the reconstruction percentage of the GradMP and StoGradMP
algorithms were very close, with almost no difference. In addition, when the real sparsity of the
original signal gradually increased, the range of sparsity that maintained a higher reconstruction
percentage became smaller. This means that the GradMP and StoGradMP algorithms were more
sensitive to larger real sparsity.Electronics 2018, 7, x FOR PEER REVIEW  15 of 22 
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sparsity K conditions (n = 400, s ∈ [1, 5, 10, 15], δK = 0.1, and m = 170,L ∈ [10 100], Gaussian signal).

In Figure 6, we compared the reconstruction percentage of different algorithms with different
measurements in different real sparsity conditions. We set the range of real sparsity as K ∈
[20, 30, 40, 50] in the simulation of Figure 6 to keep it consistent with Figure 5. The range of the
measurement was m = 2 ∗ K : 5 : 300. From Figure 6, we can see that when the real sparsity ranged
from 20 to 50, the proposed method was gradually higher than the other algorithms. In Figure 6a, we
can see that when 50 ≤ m ≤ 65, the reconstruction percentage of the proposed method with s = 1 was
higher than other methods. For 65 ≤ m ≤ 115, the reconstruction percentage of the proposed method
was lower than the StoGradMP and GradMP algorithms, except for the StoIHT algorithm. When
65 ≤ m ≤ 145, the reconstruction percentage that the StoIHT algorithm was superior to the proposed
method was s = 15. When 150 ≤ m, all of the recovery methods almost achieved higher reconstruction
probabilities. In Figure 6b, we can see that when 65 ≤ m ≤ 92, the reconstruction percentage of the
proposed method with s = 1 and s = 5 was higher than the StoGradMP and StoIHT algorithms.
When 92 ≤ m ≤ 165, the recovery percentage of the proposed method with s = 5, 10, 15 was higher
than the StoIHT algorithm, except for the StoGradMP and GradMP algorithms. For 95 ≤ m ≤ 145, the
reconstruction percentage of the proposed method with s = 5 was higher than the proposed method
with s = 10 and s = 15, while the StoIHT algorithm still could not complete a recovery of the signal.
When 145 ≤ m ≤ 165, the reconstruction percentage of the SoIHT algorithm began to dramatically
increase from approximately 0% to 100%, while the other algorithms still had a higher recovery
percentage. When 165 ≤ m, all of the methods almost achieved higher reconstruction probabilities. In
Figure 6c, we can see that when 90 ≤ m ≤ 127, the reconstruction percentage of the proposed method
with s = 1 and s = 5 was superior to the StoGradMP and StoIHT algorithms. For 130 ≤ m ≤ 185,
the recovery percentage of the proposed method with s = 5 was higher than the proposed method
with s = 10 and s = 15 and the StoIHT algorithm, except for the StoGradMP algorithm. In Figure 6d,
we can see that the reconstruction percentage of the proposed method with s = 1 still had a higher
recovery percentage than the other methods. When 105 ≤ m ≤ 153, the reconstruction percentage of
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the proposed method with a random step-size was higher than the StoGradMP and StoIHT algorithms.
For 110 ≤ m ≤ 150, the reconstruction percentage of the proposed method with s = 1 and s = 5 was
higher than the other methods. When 155 ≤ m ≤ 215, the reconstruction percentage of the proposed
method with s = 5 and s = 10 was superior to the StoIHT algorithm. When 245 ≤ m ≤ 270, the
reconstruction percentage of the StoIHT algorithm ranged from approximately 0% to 100%. When
m ≥ 270, all of the methods could achieve complete recovery. Overall, based on all of the sub-figures
in Figure 6, we can see that the reconstruction performance of the proposed method with s = 1 was the
best and the proposed method was more suitable for signal recovery under larger sparsity conditions.
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real sparsity K conditions (n = 400, s ∈ [1, 5, 10, 15], δK = 0.1 and m = 2 ∗ K : 5 : 300, Gaussian signal).

Based on the above analysis, in a noise-free signal interference environment, the proposed method
with s = 1 and δK = 0.1 has a better recovery performance for different sparsity and measurements in
comparison to other methods. Furthermore, the proposed method is more sensitive to larger sparsity
signals. In other words, signals are more easily recovered in large sparsity environments.

In Figure 7, we compared the average runtime of different algorithms with different sparsities.
From Figure 5a, we can see that the reconstruction percentage was 100% for the StoIHT algorithm with
sparsity L ∈ [20 28] and the real sparsity of K = 20 and for the GradMP, StoGradMP and the proposed
method with s = 1, 5, 10 with L ∈ [20 60]. Therefore, we set the range of the assumed sparsity as
L ∈ [20 28] and L ∈ [20 60] in Figure 7a, respectively. From Figure 7a, we can see that the average
runtime of the proposed algorithm with s = 5, 10 was less than the StoGradMP algorithm, except for
the proposed method s = 1.

From Figure 5b, we can see that the reconstruction percentage of all algorithms was 100% when
the range of the assumed sparsity was L ∈ [30 60] and the real sparsity was K = 30, except for the
StoIHT and the proposed method with s = 1, 5. Therefore, the range of the assumed sparsity was set
as L ∈ [30 60] in the simulation of Figure 7b. From Figure 7b, we can see that the average runtime of
the proposed method with s = 5, 10 was still lower than the StoGradMP algorithm.



Electronics 2019, 8, 165 15 of 21

Electronics 2018, 7, x FOR PEER REVIEW  16 of 22 

 

as 30[   60] L∈ in the simulation of Figure 7b. From Figure 7b, we can see that the average runtime of 
the proposed method with 5 10,s = was still lower than the StoGradMP algorithm.  

From Figures 5c,d, we can see that the reconstruction percentage of all reconstruction methods 
was 100% when the assumed sparsity level was 40[   58]L =∈ and 50[   56]L =∈ , respectively, except 
for the StoIHT and the proposed method with 10s =  and 15s = . Therefore, we set the range of the 
assumed sparsity as 40[   58]L∈ and 50[   56]L =∈  in the simulation of Figures 7c,d, respectively. 
From Figures 7c,d, we can see that the proposed algorithm with 5s =  had a shorter runtime than 
the StoGradMP algorithm. Although the proposed method with 1s =  had a longer runtime than 
the other method, it required less measurements to achieve the same reconstruction percentage as 
the others shown in Figure 6. Furthermore, from all sub-figures in Figure 7, we discovered that the 
average runtime of all algorithms increased when the assumed sparsity was gradually greater than 
the real sparsity, except for in the proposed method. This means that the inaccuracy of the sparsity 
estimation will increase the computational complexity of these algorithms. Meanwhile, it is 
indicated that the proposed method removes the dependence of the state-of-the-art algorithms on 
real sparsity and enhances the practical application capacity of the proposed algorithm.  

 

Figure 7. The average runtime of different algorithms with different sparsities in different sparsity 
conditions. ( 400n = , [1,5,10,15]s∈ , =0.1Kδ  and 170m = , Gaussian signal). 

In Figure 8, we compared the average runtime of different algorithms with different 
measurements in different real sparsity conditions. From Figure 6, for the different sparsity levels, 
we can see that all algorithms could achieve 100% reconstruction when the number of measurements 
was greater than 180, 200, 220 and 240, respectively, except for the StoIHT algorithm. Therefore, we 
set the range of measurements as 180[   300]m∈ , 200[   300]m∈ , 220[   300]m∈ , and 240[   300]m∈  in 
Figures 8a–d, respectively. In particular, in Figures 6c,d, we can see that the reconstruction 
percentage was 100% when the number of measurements of the StoIHT algorithm was greater than 
230 and 270, respectively. Therefore, we set the range of measurements as 230[   300]m∈  and 

270[   300]m∈  in the simulation of Figures 8c,d, respectively.  
From Figure 8, we can see that the GradMP algorithm had the lowest runtime, the next lowest 

were the StoIHT algorithm, the proposed algorithm with 5 10 15, ,s =  and the StoGradMP 
algorithm. This means that the proposed method with 5 10 15, ,s =  had a lower computational 
complexity than the StoGradMP algorithm, except for the GradMP and StoIHT algorithms. 
Meanwhile, in terms of the proposed algorithm, we can see that when the size of the step-size was 

15s = , the average runtime was the shortest, the next shortest were the proposed method with 
10s = , the proposed method with 5s =  and the proposed method with 1s = , respectively. This 

shows that a larger step-size will be beneficial to approach the real sparsity K of the original signal, 
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From Figure 5c,d, we can see that the reconstruction percentage of all reconstruction methods
was 100% when the assumed sparsity level was L =∈ [40 58] and L =∈ [50 56], respectively, except
for the StoIHT and the proposed method with s = 10 and s = 15. Therefore, we set the range of
the assumed sparsity as L ∈ [40 58] and L =∈ [50 56] in the simulation of Figure 7c,d, respectively.
From Figure 7c,d, we can see that the proposed algorithm with s = 5 had a shorter runtime than
the StoGradMP algorithm. Although the proposed method with s = 1 had a longer runtime than
the other method, it required less measurements to achieve the same reconstruction percentage as
the others shown in Figure 6. Furthermore, from all sub-figures in Figure 7, we discovered that the
average runtime of all algorithms increased when the assumed sparsity was gradually greater than
the real sparsity, except for in the proposed method. This means that the inaccuracy of the sparsity
estimation will increase the computational complexity of these algorithms. Meanwhile, it is indicated
that the proposed method removes the dependence of the state-of-the-art algorithms on real sparsity
and enhances the practical application capacity of the proposed algorithm.

In Figure 8, we compared the average runtime of different algorithms with different measurements
in different real sparsity conditions. From Figure 6, for the different sparsity levels, we can see that
all algorithms could achieve 100% reconstruction when the number of measurements was greater
than 180, 200, 220 and 240, respectively, except for the StoIHT algorithm. Therefore, we set the range
of measurements as m ∈ [180 300], m ∈ [200 300],m ∈ [220 300], and m ∈ [240 300] in Figure 8a–d,
respectively. In particular, in Figure 6c,d, we can see that the reconstruction percentage was 100%
when the number of measurements of the StoIHT algorithm was greater than 230 and 270, respectively.
Therefore, we set the range of measurements as m ∈ [230 300] and m ∈ [270 300] in the simulation of
Figure 8c,d, respectively.

From Figure 8, we can see that the GradMP algorithm had the lowest runtime, the next lowest
were the StoIHT algorithm, the proposed algorithm with s = 5, 10, 15 and the StoGradMP algorithm.
This means that the proposed method with s = 5, 10, 15 had a lower computational complexity than
the StoGradMP algorithm, except for the GradMP and StoIHT algorithms. Meanwhile, in terms of the
proposed algorithm, we can see that when the size of the step-size was s = 15, the average runtime was
the shortest, the next shortest were the proposed method with s = 10, the proposed method with s = 5
and the proposed method with s = 1, respectively. This shows that a larger step-size will be beneficial
to approach the real sparsity K of the original signal, thereby reducing the computational complexity
of the proposed method. Furthermore, from Figures 6 and 8, although the proposed method with
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s = 1 had the highest runtime, it could achieve reconstruction with fewer measurements than the
other algorithms.
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Based on the above analysis, in a noise-free signal interference environment, the proposed
algorithm had a lower computational complexity with a larger step-size than a smaller step-size.
Although, the proposed method had a higher computational complexity than some existing algorithms
in some conditions, it is more suitable for applications without knowing the sparsity information.

In Figure 9, we compared the average mean square error of different algorithms with different
SNR levels in different real sparsity conditions to better analyze the reconstruction performance of
the different algorithms when the original sparse signal was corrupted with different levels of noise.
We set the range of the noise signal level as SNR = 10 : 5 : 50 in simulation of Figure 9. Furthermore,
to better analyze the reconstruction performance of all reconstruction algorithms in different real
sparsity levels conditions, we set the real sparsity level K as 20, 30, 40 and 50, respectively. Here, the
noise signal was a Gaussian white noise signal. In particular, all of the experimental parameters were
consistent with Figure 5. In Figure 5a,b, the reconstruction percentage of the proposed method was
100% with a step-size of s = 1, 5, 10. Therefore, we set the size of s as 1, 5 and 10 in the simulation of
Figure 9a,b, respectively. In Figure 5c,d, the reconstruction percentage of the proposed method was
100% with a step-size of s = 1, 5. Thus, we set the size of the step-size of the proposed method as 1 and
5 in Figure 9c,d, respectively.

From Figure 9, we can see that the proposed methods with different step-sizes had a higher error
than other algorithms for different SNR levels. This is because the proposed methods supposed that
the sparsity prior information of the source signal was unknown, while the other methods used the
real sparsity as prior information. The estimated sparsity by our proposed method was still different to
the real sparsity. This made the proposed method have a higher error than the others. In particular, the
error was very small for all algorithms with a larger SNR, which had little effect on the reconstruction
signal. Although the proposed method was inferior to other algorithms in terms of reconstruction
performance when the original sparse signal was corrupted by different levels of noise, it provides
a reconstruction scheme that is more suitable for practical applications. In this paper, we mainly
focused on the no noise environments. Recently, in Reference [33–36], the researchers focused on
the reconstruction solutions for the original signal in the presence of noise corruption and several
algorithms were proposed. In the future, we can use their ideas to improve our proposed method in
anti-noise interference performance.



Electronics 2019, 8, 165 17 of 21

Electronics 2018, 7, x FOR PEER REVIEW  18 of 22 

 

corruption and several algorithms were proposed. In the future, we can use their ideas to improve 
our proposed method in anti-noise interference performance. 

 

Figure 9. The average mean square error of different algorithms with different SNR  levels in 
different real sparsity conditions ( 400n = , 1 5 10[ , , ]s∈ , 0 1.Kδ =  and 170m = , 10 5 50: :SNR = , 

Gaussian signal). 

In Figure 10, we test the application efficiency of our proposed method in remote sensing image 
compressing and reconstructing. The figure 10a-10d show the original  remote sensing image, its 
sparse coefficient, compressed image(observation signal) and reconstructed image by our proposed 
method. By comparing the Figure11a with Figure 10d, we can see that our proposed method 
reconstructs the compressed remote sensing image successfully. 

 

Figure 10. Application in remote sensing image compressing and reconstructing with our proposed 
method. 

In Figure 11, we test the efficiency of our proposed method in application of power quality 
signal compressing and reconstruction. The Figure 11a-11c show the inter-harmonic signal, 
compressed signal (observation signal) and reconstructed inter-harmonic signal by our proposed 
method respectively. It can be seen from Figure 11a and 11c that the waveforms of two figures are 
basically the same. This proves that our proposed method is efficiency for inter-harmonic 
reconstruction.  

Figure 9. The average mean square error of different algorithms with different SNR levels in different
real sparsity conditions (n = 400, s ∈ [1, 5, 10], δK = 0.1 and m = 170, SNR = 10 : 5 : 50,
Gaussian signal).

In Figure 10, we test the application efficiency of our proposed method in remote sensing image
compressing and reconstructing. The Figure 10a–d show the original remote sensing image, its sparse
coefficient, compressed image(observation signal) and reconstructed image by our proposed method.
By comparing the Figure 11a with Figure 10d, we can see that our proposed method reconstructs the
compressed remote sensing image successfully.
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Figure 10. Application in remote sensing image compressing and reconstructing with our proposed method.

In Figure 11, we test the efficiency of our proposed method in application of power quality signal
compressing and reconstruction. The Figure 11a–c show the inter-harmonic signal, compressed signal
(observation signal) and reconstructed inter-harmonic signal by our proposed method respectively.
It can be seen from Figure 11a,c that the waveforms of two figures are basically the same. This proves
that our proposed method is efficiency for inter-harmonic reconstruction.
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Figure 11. Application in power quality signal compressing and reconstructing with our proposed method.

We also used the National Instruments PXI (peripheral component interconnect extensions for
instrumentation) system to test the efficiency of our proposed method in application. The hardware of
the PXI system includes an arbitrary waveform and signal generator and oscilloscopes. The hardware
architecture of arbitrary waveform and signal generator is shown in Figure 12. The hardware
architecture of oscilloscopes is shown in Figure 13. Figure 14 shows the PXI chassis and controller,
which are used to control the arbitrary waveform and signal generator and oscilloscopes. We insert the
arbitrary waveform and signal generator and oscilloscopes into PXI chassis to construct the complete
measurement device. As is shown in Figure 15. Mixed programming of Labview and MATLAB were
used to realize the compressed and reconstructed algorithm. From the experimental results, it can be
seen that the proposed method successfully reconstructed the source signal from the compressed signal.
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7. Conclusions

This paper proposed a new recovery method. This method first utilized the sparsity pre-evaluation
strategy to estimate the real sparsity of the original signal and used the estimated sparsity as the length
of the support set in the initial stage, which allows the proposed method to eliminate the dependency
of sparsity, thereby reducing the computational complexity of the proposed method. The proposed
algorithm then adopts the adjustment strategy of sparsity estimation to control the convergence of
the proposed method and adjust the estimated sparsity, which makes the proposed method more
accurately approach the real sparsity of the original signal. Furthermore, a reliability verification
condition was added to ensure the correctness and effectiveness of the proposed method. The proposed
method not only solved the problem of the sparsity estimation of the original signal but also improved
the recovery performance of the practical applications of the proposed method. The simulation results
proved that the proposed method performed better than other stochastic greedy pursuit methods in
larger sparsity environments and smaller step-sizes.
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