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Abstract: A planar flexibly extensible multiple-input–multiple-output (MIMO) antenna array with a
self-isolation property is proposed. The main characteristics of the proposed array are: (i) no extra
isolation structure is required to improve isolation between elements; (ii) elements are arranged with
each other with a spacing of 0 mm, (iii) the configuration can be flexibly extended to a large antenna
array according to actual requirements. For a test example, the practical processing and testing of an
eight-element array is conducted. The tested results demonstrate that the proposed design possesses
wide impedance bandwidth (IBW) of 65% and very good isolation (>18 dB) across the operating
bandwidth, which match well with the simulated ones. Moreover, envelope correlation coefficient
(ECC) is calculated to valuate MIMO performance; an acceptable ECC (lower than 0.05) suggests
that the proposed configuration has good diversity performance and can be a potential candidate for
MIMO communications.
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1. Introduction

With the high requirement for high data rates and large channel capacity, the expectations for
modern wireless communication systems are ratcheted up. The fifth generation (5G) communication
is considered a prospective option to meet the demand for explosive growth of data rate and super
high channel capacity, which is developing rapidly [1,2]. However, limited spectral resources will be a
bottleneck in the development of modern wireless communication in the near future. As we all know,
the Multiple Input Multiple Output (MIMO) technique can obviously increase channel capacity [3]
without occupying additional bandwidth. On the view of MIMO antenna, channel capacity can be
highly improved by increasing the quantity of antennas at the receiver and transmitter in MIMO
systems. However, more antenna elements and closer distances between elements will cause a more
intense mutual coupling, which may decrease the performance of the MIMO system. To solve this
problem, some MIMO antenna designs with diverse decoupling methods have been investigated,
which can be classified into three categories. The first one introduces decoupling structures to improve
isolation, which includes neutralization lines [4,5], defected ground structures [6,7], decoupling
networks [8,9], etc. The second category applies a diversity technique to improve isolation; it includes
spatial, polarization, and pattern diversity. The last one is a combination of the two methods mentioned
above, which can be used widely to further improve the isolation.

By utilizing decoupling structures, significant isolation improvement can be obtained. However,
the introduction of decoupling structures will make the MIMO antenna system complex. Meanwhile,
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a certain space between antenna elements is needed to add the decoupling structures, which limits the
miniaturization design of the MIMO antenna systems. For example, an eight-element UWB-MIMO
antenna array is reported in [10]. The isolation of 20 dB is achieved by using three distinct isolation
mechanisms, including a closed-loop frequency selective surface (CL-FSS), defected ground planes, and
decoupling structure of quad strip-connected circular arc. However, their relatively large size makes
the multi-element MIMO antenna bulky. In [11], inversed I-shape slots and neutralization line (NL)
are used to improve the isolation of an eight-element MIMO antenna array. Although neutralization
line is a simple method to cancel the original coupling, ingenious design is required. The author
of [12] describes the design of a novel planar MIMO antenna, in which coupling parasitic elements are
incorporated to enhance isolation. However, mutual couplings between ports exhibit isolation of only
10 dB, and the number of MIMO antenna can only be even.

Diversity techniques are also commonly used to enhance isolation in MIMO antenna systems.
Spatial diversity, as one of the techniques, is easy to perform, but larger spacing is needed between
elements. For example, spatial diversity is utilized for a 10-element MIMO antenna array in [13];
the isolation of more than 10 dB is obtained over 3.4–3.8 GHz, but the distance between antennas is
larger than 0.23λ0. Polarization diversity is also an effective way to improve the isolation between
antenna elements. Two different four-antenna array types placed symmetrically are used to form
an eight-element MIMO antenna in [14]. Orthogonal polarization is adopted to improve isolations
between two antenna array types, but the isolation is only about 12.5 dB over 2.5–2.6 GHz, and the
distance between two different four-antenna array types is about 0.12λ. A compact eight-element
MIMO antenna for a 5G mobile terminal is investigated in [15]. The elements are placed symmetrically,
and pattern diversity is utilized to improve the isolation, but the isolation is just 10 dB and the spacing
between the elements is larger than 14 mm.

The method of combining decoupling structure with diversity techniques to improve the isolation
has also been studied. As investigated in [16,17], the parasitic element and neutralization lines are
incorporated with pattern diversity, and isolations of 10 and 15 dB are increased, respectively. But
combination of the decoupling structures and pattern diversity lead to a complex design, and the
MIMO antenna system is not extensible.

In a word, decoupling structures usually require a certain space between antenna elements, which
limits the miniaturization of the antenna and increases the complexity of the MIMO systems. In
addition, diversity techniques (such as polarization diversity, etc.) generally have special requirements
for antenna design and arrangement, which also limits the expansibility of MIMO antenna for more
application. In order to solve these problems, a planar flexibly extensible MIMO antenna array is
proposed in this paper. The proposed MIMO antenna array allows extension in a number of elements,
which can meet the demands of future communications requiring multiple antennas. Meanwhile, the
proposed MIMO antenna exhibits high isolation without utilizing any extra decoupling structures,
and antenna elements are placed next to each other with a spacing of 0 mm. The absence of a
decoupling structure and spacing of 0 mm between elements help in achieving a compact MIMO
antenna configuration and reducing the complexity of the MIMO systems. To the best of the authors’
knowledge, there is no report on a planar flexibly extensible MIMO antenna with a self-isolation
property, which allows flexible extension in a number of elements, linear arrangements of elements
with spacing of 0 mm, and the absence of decoupling structure between elements.

Taking an eight-element MIMO antenna array as a test example, fabrication and test was carried
out. Eight identical elements were arranged adjacent to each other with a spacing of 0 mm in one row,
which is different from the orthogonal placement in previous MIMO antenna designs. The antenna
element contains a split loop monopole and a central slotted ground loaded with two reversed L-shape
strips. Two inverted-L shaped strips are used not only as the isolating element but also as radiating
elements. The fundamental properties of the proposed eight-element MIMO antenna array in terms of
S parameters, radiation pattern, efficiency, ECC, and total active reflection coefficient (TARC) have
been investigated in the following sections.
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2. Antenna Element Design

The proposed antenna element contains a split ring monopole and a central slotted ground with
two inverted L-shape strips, which evolved from a simple split ring monopole antenna; evolution of the
design process is depicted in Figure 1. The single antenna is designed on the substrate of Teflon with
loss tangent 0.02 and relative permittivity 2.65. The deep yellow areas in Figure 1 denote the ground
printed on the back of the substrate, while pale yellow areas indicate the split ring monopole printed on
the top of the substrate. A brief description of the stepwise modification is as follows: (1) The original
simple monopole antenna denoted by reference antenna A is shown in Figure 1a; (2) a slot is etched in
the middle of the ground, namely reference antenna B; (3) an inversed L-shape strip is loaded on the
left side of the ground on the basis of reference antenna B, which is represented by reference antenna
C; (4) the proposed single-element antenna is obtained by loading an inversed L-shape strip on the
right side of the ground on the basis of reference antenna C. The proposed single-element antenna is
simulated and optimized by using electromagnetism simulation software, and the optimized value of
the geometric parameters for the single-element antenna illustrated in Figure 3 are listed in Table 1.

Electronics 2019, 8, x FOR PEER REVIEW 3 of 13 

 

in terms of S parameters, radiation pattern, efficiency, ECC, and total active reflection coefficient 
(TARC) have been investigated in the following sections.  

2. Antenna Element Design  

The proposed antenna element contains a split ring monopole and a central slotted ground with 
two inverted L-shape strips, which evolved from a simple split ring monopole antenna; evolution of 
the design process is depicted in Figure 1. The single antenna is designed on the substrate of Teflon 
with loss tangent 0.02 and relative permittivity 2.65. The deep yellow areas in Figure 1 denote the 
ground printed on the back of the substrate, while pale yellow areas indicate the split ring monopole 
printed on the top of the substrate. A brief description of the stepwise modification is as follows: (1) 
The original simple monopole antenna denoted by reference antenna A is shown in Figure 1a; (2) a 
slot is etched in the middle of the ground, namely reference antenna B; (3) an inversed L-shape strip 
is loaded on the left side of the ground on the basis of reference antenna B, which is represented by 
reference antenna C; (4) the proposed single-element antenna is obtained by loading an inversed L-
shape strip on the right side of the ground on the basis of reference antenna C. The proposed single-
element antenna is simulated and optimized by using electromagnetism simulation software, and the 
optimized value of the geometric parameters for the single-element antenna illustrated in Figure 3 
are listed in Table 1. 

 

Figure 1. Development of the single-element MIMO antenna (a) Reference antenna A; (b) reference 
antenna B; (c) reference antenna C; (d) the proposed antenna element. 

Table 1. The dimensional values of the antenna element. 

Parameter Value (mm) Parameter Value (mm) Parameter Value (mm) 
L1 15.5 L2 14 L3 12.4 
L4 8 L5 20 Lt 26 
Ls 15 Lg 11.5 W1 2.8 
W2 2.2     

Figure 2 displays the simulated reflection coefficients of reference antenna A, B, C and the 
proposed single-element antenna. It can be seen that reference antenna A has two narrow working 
bands. The lower and higher working bands of reference antenna B are produced by etching a slot in 
the middle of the ground, and then impedance bandwidth (IBW) is broadened. For reference antenna 
C, the bandwidth is further widened by loading the inversed L-shape strip on the left side of the 
ground. Compared to the reference antenna C, the higher resonance of the proposed single-element 
antenna shifts to the lower frequency, while the bandwidths of both antennas are close to each other. 
However, it should be noted that the main difference between reference antenna C and the proposed 
single-element antenna is that the latter can be used to form an extensible MIMO antenna array. From 
Figure 2, we can conclude that the single-element antenna can achieve wide impedance bandwidth 
(IBW) of 74% (3.83–8.32 GHz). 

Figure 1. Development of the single-element MIMO antenna (a) Reference antenna A; (b) reference
antenna B; (c) reference antenna C; (d) the proposed antenna element.

Table 1. The dimensional values of the antenna element.

Parameter Value (mm) Parameter Value (mm) Parameter Value (mm)

L1 15.5 L2 14 L3 12.4
L4 8 L5 20 Lt 26
Ls 15 Lg 11.5 W1 2.8
W2 2.2

Figure 2 displays the simulated reflection coefficients of reference antenna A, B, C and the proposed
single-element antenna. It can be seen that reference antenna A has two narrow working bands. The
lower and higher working bands of reference antenna B are produced by etching a slot in the middle
of the ground, and then impedance bandwidth (IBW) is broadened. For reference antenna C, the
bandwidth is further widened by loading the inversed L-shape strip on the left side of the ground.
Compared to the reference antenna C, the higher resonance of the proposed single-element antenna
shifts to the lower frequency, while the bandwidths of both antennas are close to each other. However, it
should be noted that the main difference between reference antenna C and the proposed single-element
antenna is that the latter can be used to form an extensible MIMO antenna array. From Figure 2, we
can conclude that the single-element antenna can achieve wide impedance bandwidth (IBW) of 74%
(3.83–8.32 GHz).
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Figure 2. Simulated reflection coefficients of reference antenna A, B, C and the proposed single-element
antenna.

3. Eight-Element MIMO Antenna Design

In order to increase channel capacity and data rate, a multi-element MIMO antenna array is
needed in MIMO systems. In this section, based on the single-element MIMO antenna designed in
Section 2, an eight-element MIMO antenna array is formed by placing eight identical elements adjacent
to each other in one row with spacing of 0 mm. In addition, no extra decoupling element is loaded
between any adjacent element. The substrate of Teflon is utilized to fabricate the circuit board of the
eight-element antenna array, which is the same as the one used in a single-element antenna. Front
and bottom views of the eight-element MIMO antenna array are displayed in Figure 3, in which the
geometry of the antenna element is illustrated.
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Figure 3. (a) Front view of the eight-element MIMO antenna; (b) front view of the single-element
antenna; (c) bottom view of the single-element antenna; (d) bottom view of the proposed eight-element
MIMO antenna.

Owing to the reversed L-shape strips on the ground, high isolation can be realized. In order to
verify the isolation effect, a current distribution analysis on the eight-element MIMO antenna array is
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conducted. Figure 4 shows the surface current distributions at 4.5 GHz, in which Element 1 and 2 are
excited, respectively. When port 1 is excited, the other ports are connected with matching loads, and a
large part of the surface current is bounded around reversed L-shape strips. Likewise, when port 2
is excited, a great majority of the surface current is confined to the inverted L-shape strips. It can be
concluded that the reversed L-shape strips can significantly ameliorate isolation between the elements.
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Figure 4. Simulation current distribution at 4.5 GHz: (a) Port 1 is excited; (b) port 2 is excited.

4. Results and Discussion

To further validate the performance of the eight-element MIMO antenna array, the simulated and
measured results are discussed as follows: the simulation results of S parameters are firstly verified by
test results, followed by an analysis of the radiation pattern and efficiency.

The envelope correlation coefficient (ECC), which is calculated by the test results, is then presented
to assess the diversity performance of the eight-element MIMO antenna array. Finally, the TARC is
calculated to properly characterize the bandwidth of the MIMO antenna system.

An eight-element antenna prototype is thus manufactured and a photograph of the same is shown
in Figure 5. The simulated results of S-parameters are obtained based on electromagnetism simulation
software, which are validated by test results measured by the E8361 Agilent network analyzer. In the
process of measurement, two ports of the eight-element MIMO antenna are connected to the Agilent
network analyzer, while the other ports are terminated with 50 Ω matching loads. The simulation
reflection coefficients match well with the measured ones, which is displayed in Figure 6. Small
discrepancies observed may come from fabrication errors and deviation of dielectric constant. It
can be seen from the measured reflection coefficients that the -10dB impedance bandwidths (IBWs)
of the eight antennas cover a wide band of 3.76–7.25 GHz, which can cover the operating band of
5G communication.
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The simulated transmission coefficients between antenna elements agree well with the experimental
ones, which are displayed in Figure 7. Because isolations between nonadjacent elements are significantly
higher than 20 dB across the whole working band of 3.76–7.25 GHz, only the isolations between element 1
and other elements as well as isolations between remaining adjacent antenna elements are plotted. The low
transmission coefficients between elements imply a good isolation characteristic. From Figure 7, we can see
that the isolations between adjacent elements are higher than 18 dB across the whole working band, while
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Figure 7. The simulation and test transmission coefficients of the proposed eight-element MIMO antenna.
(a) Simulated and measured results of S21, S31, S41, S51; (b) simulated and measured results of S61, S71, S81;
(c) simulated and measured results of S32, S43, S54; (d) simulated and measured results of S65, S76, S87.
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The far-field characteristics of the eight-element MIMO antenna are measured using the STAIMO
Star Lab 6 GHz measurement chamber. When one antenna is excited, the remaining antenna elements
are connected to a matching load. Figures 8 and 9 display the measured and simulated radiation
patterns in yoz plane and xoy plane at 4.3 GHz and 5.5 GHz. It can be seen that the radiation patterns
of the prototype are relatively stable and the experimental results are coincident with the results of
numerical calculation. Slight distortion may be caused by the effect of testing cables and fabrication
imperfections. Moreover, the simulated 3D radiation beams of the array at 0, 30, and 60 scanning
angles are displayed in Figure 10, which shows that the radiation beam of the array changes with the
scanning angles.Electronics 2019, 8, x FOR PEER REVIEW 8 of 13 
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Figure 8. The simulation and test radiation patterns in the yoz plane (phi=90degree) and xoy plane
(theta=90degree) at 4.3 GHz of the proposed eight-element MIMO excited separately by various
antennas. (a) Ant 1; (b) Ant 2; (c) Ant 3; (d) Ant 4.

As limitations of the test conditions of anechoic chamber and wide application of the spectrum in
sub-6 GHz band of 5G communications, the measured efficiency of the eight antennas below 6 GHz are
presented in Figure 11. As shown in Figure 11, the measured efficiencies of Ant 1–Ant 8 are 52%–93%
over the operating band.
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Envelope correlation coefficient (ECC), as an important index, is calculated to evaluate the diversity
performance of the MIMO antenna. Here, typical ECC between element 1 and other elements and
ECC between the rest of the adjacent elements are calculated using the equation in [18]. As shown in
Figure 12, the results of ECC for any two elements are lower than 0.05 across the working band, which
can meet the specific criterion of value (<0.5) for MIMO applications.

Electronics 2019, 8, x FOR PEER REVIEW 10 of 13 

 

 
Figure 11. Measured efficiency of the eight-element MIMO antenna. 

Envelope correlation coefficient (ECC), as an important index, is calculated to evaluate the 
diversity performance of the MIMO antenna. Here, typical ECC between element 1 and other 
elements and ECC between the rest of the adjacent elements are calculated using the equation in [18]. 
As shown in Figure 12, the results of ECC for any two elements are lower than 0.05 across the working 
band, which can meet the specific criterion of value (<0.5) for MIMO applications. 

 

Figure 12. The measured ECC (a) between element 1 and other elements; (b) between the rest of the 
adjacent elements. 

In order to better characterize the bandwidth of MIMO antenna, the total active reflection 
coefficient (TARC) [19] needs to be calculated. TARC is defined as the ratio of the square root of total 
power divided by the square root of the total incident power [20]. For an eight-port MIMO system, 
TARC can be described using the method in [21], as shown in Equation (1): 

2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8| | | | | | | | | | | | | | | |

8
S S S S S S S S

TARC
+ + + + + + +

=  (1) 

Where  can be expressed as follows: 

Figure 12. The measured ECC (a) between element 1 and other elements; (b) between the rest of the
adjacent elements.

In order to better characterize the bandwidth of MIMO antenna, the total active reflection
coefficient (TARC) [19] needs to be calculated. TARC is defined as the ratio of the square root of total
power divided by the square root of the total incident power [20]. For an eight-port MIMO system,
TARC can be described using the method in [21], as shown in Equation (1):

TARC =

√
|S1|2+|S2|2+|S3|2+|S4|2+|S5|2+|S6|2+|S7|2+|S8|

2

√
8

(1)

where Si can be expressed as follows:

S1 = S11 + S12 + S13 + S14 + S15 + S16 + S17 + S18;
S2 = S21 + S22 + S23 + S24 + S25 + S26 + S27 + S28;
S3 = S31 + S32 + S33 + S34 + S35 + S36 + S37 + S38;
S4 = S41 + S42 + S43 + S44 + S45 + S46 + S47 + S48;
S5 = S51 + S52 + S53 + S54 + S55 + S56 + S57 + S58;
S6 = S61 + S62 + S63 + S64 + S65 + S66 + S67 + S68;
S7 = S71 + S72 + S73 + S74 + S75 + S76 + S77 + S78;
S8 = S81 + S82 + S83 + S84 + S85 + S86 + S87 + S88;

The TARC value of <0 dB is desirable for a MIMO system [21]. The simulated and measured
TARC curves in decibels are displayed in Figure 13. The measured results indicate that the value of
TARC for the proposed antenna is less than −10 dB within the band of 3.83–7.25 GHz.
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The performance comparisons between other multi-element MIMO antenna array in the previous
paper and the eight-element MIMO antenna design are listed in Table 2. When compared to previous
designs, the elements of the proposed design are placed adjacent to each other with a spacing of
0 mm, and high isolation is achieved without introducing any extra decoupling structure. Moreover,
the proposed design has a simple structure and flexibly extensible characteristic, which makes it
more appropriate for modern 5G communications. Due to the inverted L-shape strips loaded on the
ground, self-isolation property is achieved, which makes the proposed MIMO antenna extensible in one
direction (x-direction). In the next step, we hope to further design the antenna such that extensibility
and self-isolated property can be obtained in two directions (x-direction and y-direction), which can
further improve the performance of the MIMO antenna and expand its application scenarios.

Table 2. Performance comparison between the proposed design with previous multi-element MIMO
antenna designs.

Designs Decoupling Method Adjacent Space Isolation Extensibility Structure
Complexity

Ref. [14] Polarization
orthogonality >12.5 mm >12.5 dB No Simple

Ref. [22] Polarization diversity >19 mm >17.5 dB No Medium

Ref. [23] Polarization
orthogonality >6 mm >12.5 dB No Medium

Ref. [24] Neutralization line >8 mm 10 dB No Simple

Ref. [11] Neutralization line and
ground slot 17 mm >15 dB No Medium

Ref. [25] Pattern diversity >9 mm 15 dB No Medium
Ref. [15] Pattern diversity >14 mm <15 dB No Simple
Ref. [10] Decoupling structures >4 mm >15 dB No Complex

This work Self-isolation 0 mm >18 dB Yes Simple

5. Conclusions

In this manuscript, a planar wideband MIMO antenna array with flexibly extensible and
self-isolated characteristics is proposed and investigated. For a test example, an eight-element MIMO
antenna array was fabricated and tested, and the prototype shows a broad IBW of 65%(3.82–7.5 GHz).
Due to the inverted L-shape strips loaded on the ground, good isolation(>18 dB) between any two
elements in the proposed design are also achieved. Smaller ECC between any two elements indicate
that the proposed eight-element MIMO antenna array has good diversity performance. Unique



Electronics 2019, 8, 994 11 of 12

characteristics of extensibility and self-isolation make the eight-antenna array a prospective candidate
for future 5G applications.
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