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Abstract: The unprecedented growth of connected devices, together with the remarkable convergence
of a wide variety of technologies, have led to an exponential increase in the services that the internet
of things (IoT) can offer, all aimed at improving quality of life. Consequently, in order to meet
the numerous challenges this produces, the IoT has become a major subject of research. One of
these challenges is the reduction of energy consumption given the significant limitations of some
devices. In addition, although the search for energy efficiency was initially focused on hardware,
it has become a concern for software developers too. In fact, it has become an intense area of research
with the principal objective of analyzing and optimizing the energy consumption of software systems.
This research analyzes the energy saving that can be achieved when using a broad set of techniques
for writing energy-efficient code for Raspberry Pi devices. It also demonstrates that programmers
can save more energy if they apply the proposed techniques manually than when relying on other
automatic optimization options offered by the GNU compiler collection (GCC). Thus, it is important
that programmers are aware of the significant impact these techniques can have on an application’s
energy consumption.
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1. Introduction

The internet of things (IoT) has experienced exponential growth in recent years, and it is
increasingly improving the services it offers, thanks to the remarkable convergence of a wide variety of
technologies such as sensors, wireless communications and Internet protocols, among others. Thus, IoT
currently has an unlimited scope of application, and it is being implemented in all types of devices used
in areas as diverse as homes, businesses, industries, transport systems, and even wearable technology
and medical devices.

With the constant expansion of IoT applications into everyday use, single-board computers (SBC)
have become key devices that are being extensively used in all types of projects, since, although
its computing function is limited, they are highly suitable for implementing low-power mobile
systems in an inexpensive way due to their compact design, excellent cost/performance ratio, and low
energy consumption. Therefore, the amount of research into these types of devices has also grown
exponentially in recent years.

Raspberry Pi (RPi) [1] boards are among the most highly demanded SBC devices (25 million
units have been sold in the last seven years, without including official accessories, according to March
2019 data [1]). RPi are very cost-effective computers, with a high cost–benefit ratio and appropriate
size (3.5 × 2.3 × 0.76 inches), whose performance cannot be compared to that of high end servers,
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but which stands out due to their mobility and the computing power they offer per watt, allowing them
to execute important computational tasks with low energy consumption and making them suitable for
projects in which energy saving is a key issue.

Currently, RPi is being widely used in all kinds of research that looks for solutions in areas as
diverse as: health [2,3], industry [4], automotive sector [5], building [6] and domotics [7], education [8]
or chemistry [9], just to name a few.

Consequently, in order to meet the numerous challenges this produces, the IoT has become
a major subject of research. One of these challenges is the reduction of energy consumption given
the significant limitations of some devices. The concept of energy efficiency can be understood as the
performance achieved in relation to the performance achievable in an optimal situation. Although it
was initially focused on hardware, it has become a concern for software developers too [10]. In fact,
it has become an intense area of research with the main objective of analyzing and optimizing the
energy consumption of software systems.

In our previous work [11], we presented the analysis of a broad set of techniques for the efficient
writing of programming code in RPi devices, all of them focused on reducing execution time without
modifying neither the semantic of the program nor its results. The current research aims to analyze
the energy saving that can be achieved when using each of these techniques, with the objective of
demonstrating their effectiveness when writing energy-efficient code and confirming that, in this
case, the automatic help offered by the compiler is also insufficient in terms of energy saving. Thus,
this research evaluates the energy consumed when applying these techniques manually, compared to
the results obtained when using the automatic help offered by the GNU compiler collection (GCC) [12].
It demonstrates that programmers can save more energy if they apply the proposed techniques
manually than when relying on the optimization options provided by the compiler.

The rest of the paper is organized as follows: the next section outlines the scope of the
research together with the objectives taken into account in the approach; Section 3 discusses related
work; Section 4 contains a complete description of the infrastructure and methodology used during
the experiments; Section 5 covers the recommended techniques to write energy-efficient code; the
results are presented and discussed in Section 6, and current limitations and future work are addressed
in Section 7. Finally, Section 8 concludes and summarizes the contributions of the paper.

2. Scope and Objectives

The main objective of the current approach is to demonstrate that the optimization techniques
covered in [11] achieve not only significant reductions in execution times, but also meaningful gains
in terms of energy saving. These improvements become especially important when they are applied
to the code of programs that run uninterrupted throughout the year, something very common in IoT
devices. In the same way, it is also intended that IoT programmers be aware of the important impact
that even small and simple portions of code can have on the energy consumption of their applications.

Some approaches have demonstrated that there is a direct relationship between energy
consumption and running time [10,13,14], so that decreasing execution time can imply better energy
efficiency. This statement is based on two main points: firstly, the fewer instructions executed, the less
energy is used; secondly, the faster a task is accomplished, the sooner the processor sleeps and saves
power [15]. However, the fact that optimizations for speed may achieve important reductions in total
energy costs cannot be considered a general rule, as energy consumption also depends on a power
variable, modelled as follows:

Energy(J) = Power(W)× Time(s). (1)

For instance, in some circumstances, a code compiled for size optimization may be more efficient
than a code compiled for speed, for example, due to better use of the cache [15].

In this sense, it is important to highlight the impact that programmer skills have on the energy
efficiency of the code. Compilers often offer different levels of optimization that help reduce code
size, improve memory utilization, speed up executions or optimize the number of input/output
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operations. However, as demonstrated in [11] and in this research, if programmers apply several
specific techniques manually they can achieve better performances, not only regarding execution time
but also in energy consumption, with minimal effort by modifying the code. Therefore, the proposed
techniques are suitable for both expert programmers and beginners in IoT programming. In addition,
the results discussed in the current proposal can be extrapolated to other arm devices apart from the
models analyzed here, especially those related to the IoT.

All the techniques discussed in this approach are focused on C and C++ code, two of the most
popular programming languages, along with others such as Java or Python, that were omitted in
our previous work due to the need for them to be translated during runtime. In this sense, recent
efforts have focused on compiled languages whose translation overhead is incurred just once, and thus,
the expected improvements in execution time and energy saving can be greater. The results of the
current proposal may be extrapolated to other programming languages, but their analysis has not yet
been performed and will be addressed in further studies.

Although profilers and analysis tools were also discarded, they allow programmers to
identify inefficiencies that affect the performance of their applications and obtain information
about opportunities for energy-efficient improvements [16], often being the first step towards code
optimization [17]. In fact, future work is expected to extend the current research by using these kinds
of tools to analyze how some of the proposed techniques impact performance and energy efficiency in
greater depth.

3. Related Work

In [11] we provided a detailed review of the existing literature, specially focused on improving
source code optimization to achieve better execution times. The lack of proposals dedicated to writing
efficient code for IoT devices was especially noteworthy. Diverse approaches to optimize C and C++
code for other operating systems and architectures were found instead [14,18–30]. Descriptions of all
of them can be consulted in the aforementioned previous work.

Nevertheless, it is important to highlight that IoT may benefit from the existing literature on the
usage of low-power arm processors for high-performance computing (HPC) where energy efficiency
has become a key challenge to address Exascale needs [31], highlighting the importance of the
relationship between performance and energy consumption in the development of HPC systems.
A survey which includes a list of articles mainly focused on the use of Arm processors to reduce
the energy consumption of HPC infrastructure can be found in [32]. For instance, the role played
by hardware factors and by some software aspects in the energy-performance landscape of real-life
HPC applications is analyzed in detail in [33], and a combination of both architecture and software
improvements to optimize performance and energy consumption on arm-based platforms by using
dynamic voltage and frequency scaling (DVFS) techniques, multithreading and vectorization is
proposed in [34].

With regard to Raspberry Pi energy consumption, its efficiency has been evaluated in several
works with the objective of providing software developers and users with indicators for understanding
how much energy the device is consuming while running a software application [35,36]. For instance,
a research about how Raspberry Pi power drain is affected by the key functionalities that could be
performed by end-users on the platform can be found in [37]. This is compared against other types of
common personal computers, and techniques and practices that could reduce energy consumption are
recommended. In [38], the energy efficiency issue of an SBC-based cluster is addressed in the context
of big data applications. They correlate energy utilization for the execution time of several benchmarks
using workloads of different sizes.

Next, other proposals related to the scope of our research are described: an approach for power
and energy usage for scientific calculation with and without General-Purpose Unit (GPU) acceleration
on RPi devices can be found in [39]; energy and execution time of several wearable and mobile devices,
including RPi Zero, are compared in [40] with a benchmark to discuss offloading techniques to use for
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increasing quality of service (QoS) in IoT applications; a preliminary analysis and modeling of energy
consumption of evolutionary algorithms in different devices, including RPi, is introduced in [41];
an estimation of energy consumption in transferring data using an IoT protocol over different QoS
levels is presented in [42]; a linear IoT model to deploy processes and data to devices and servers in IoT
(considering a RPi as a fog node) reducing the total energy consumption of nodes is introduced in [43];
a study about the service distribution in multi-layer IoT architecture to minimize the total energy
consumption is presented in [44]; the evolution of the energy consumption of several RPi models is
compared to alternative platforms in [45].

However, the above-mentioned proposals are focused on analyzing and optimizing the energy
consumption of IoT and RPi devices, rather than on the energy saving that can be achieved when
writing energy-efficient code for RPi boards. Thus, the current manuscript aims to demonstrate
the effectiveness of 25 proposed techniques and confirm that, in many cases, the percentage of
energy-saving obtained by applying these techniques manually is much higher than those achieved
with the automatic optimizations offered by compilers such as GCC.

4. Materials and Methods

Five Raspberry Pi board models, whose features are shown in Table 1, were used to conduct the
experiments, all of them Model B devices: second-generation (2B) model, third-generation models
B and B+ (3B, 3B+), and the fourth-generation model with 1GB RAM (4B, released in September
2019). Model B was chosen over other RPi models because it had the fastest CPUs (apart from most
connectivity features), whereas other models have limited computational power. Therefore B boards
are usually more suitable for the kind of applications covered by this research [1].

Table 1. Raspberry Pi (RPi) comparison chart.

Model RPi 2 B RPi 3 B RPi 3 B+ RPi 4 B

SOC Type Broadcom BCM2836 Broadcom BCM2837 Broadcom BCM2837B0 Broadcom BCM2711

CPU Clock 4 × Arm Cortex-A7, 900 MHz 4 × Arm Cortex-A53, 1.2 GHz 4 × Arm Cortex-A53, 1.4 GHz 4 × Arm Cortex-A72, 1.5 GHz

RAM 1 GB 1 GB 1 GB 1 GB/2 GB/4 GB

GPU Broadcom VideoCore IV Broadcom VideoCore IV Broadcom VideoCore IV Broadcom VideoCore VI

USB Ports 4 4 4 4 (2 × USB 3.0 + 2 × USB 2.0)

Ethernet 100 Mbit/s base Ethernet 100 Mbit/s base Ethernet Gigabit Ethernet (max. 300 Mbps) Gigabit Ethernet (no limit)

Power over Ethernet No No Yes (requires separate PoE HAT) Yes (requires separate PoE HAT)

WiFi No WiFi 802.11n WiFi 802.11ac Dual Band WiFi 802.11ac Dual Band

Bluetooth No 4.1 4.2 BLE 5.0 BLE

Video Output HDMI/3.5 mm Comp./DSI HDMI/3.5 mm Comp./DSI HDMI/3.5 mm Comp./DSI micro-HDMI/3.5 mm Comp./DSI

Audio Output I2 S/HDMI/3.5 mm Composite I2 S/HDMI/3.5 mm Composite I2 S/HDMI/3.5 mm Composite I2 S/HDMI/3.5 mm Composite

Camera Input 15 Pin CSI 15 Pin CSI 15 Pin CSI 15 Pin CSI

GPIO Pins 40 40 40 40

Memory MicroSD MicroSD MicroSD MicroSD

Just as in our previous work, Raspbian operating system was used (as the Raspberry
Foundation [1] recommends) in its version Buster 4.19, with all its packages updated on 1 September
2019. All code was compiled using GCC 8.3.0 version (February 2019 released) contained in the last
stable version of GCC in the Raspbian8.3.0− 6 + rpi1 package. SanDisk Ultra microSDHC class 10
memory cards were also used in this case and the experiments were performed with an ambient
temperature of 22 ◦C, reaching the RPi’s maximum CPU temperature of 60 ◦C. In addition, automatic
pauses of 3 min were scheduled between each test and after each experiment to avoid possible
overheating problems during measurements. It is important to highlight that time results were similar
to those shown in our previous work (conducted with Raspbian Stretch 4.14 and GCC 6.3.0 version).

The rest of the details concerning the methodology employed to conduct the tests and measure the
execution times can be found in the previous work [11]. The same steps have been followed to perform
the experiments shown in the current work. It provides extensive information about the four levels
of automatic optimization offered by the GCC compiler and the methodology designed to conduct
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the experiments, including the general pseudocode followed in all the experiments, how the accuracy
of the tests is ensured, and even the stopwatch class used for the measurements (with a resolution of
around 10 milliseconds and a lack of overhead while running).

Very briefly, GCC offers four levels of automatic optimization [12]: default level O0, without
optimization for execution time (only the cost of compilation is reduced); level O1, which offers
optimization for code size and execution time; level O2, in which the compiler performs nearly all
supported optimizations that do not involve a space-speed trade-off; and level O3, which offers the
maximum level of optimization, but also significantly increases compilation time and may inhibit the
ability to debug the program.

In addition, each test is repeated with at least one hundred million iterations (with the objective
of obtaining a measurable value and also to discard the test function invocation cost) and ten different
measurements are taken (in order to obtain ten execution time samples and reduce the impact of cold
starts and cache effects, since random variations are cancelled out and the caches tend to converge
on a single value, without outliers). In the same way, variations due to background tasks and context
switching are avoided by starting the experiments through Secure Shell (SSH) network protocol,
and running only the required services (the rest are reduced as much as possible before performing
the experiments, as was described in [11]).

With regard to energy consumption, there are two main possibilities to measure it in an electronic
device: connecting a measuring instrument in series to its supply circuit or using a clamp meter
(with two jaws which open to allow clamping around the electrical cable to be measured). However,
although the use of clamps avoids the disadvantages of placing an ammeter in a circuit, they are
commonly designed to measure high-current circuits.

In addition, there are multiple ways to power RPi devices, of which the most common is to use the
5 V micro USB port and supply the energy with a power adapter or a portable battery. Supplying power
through the Ethernet port is also possible, but this option is not provided as standard (as indicated
in Table 1). Another option consists of using the General-Purpose Input/Output (GPIO) port of the
Raspberry, connecting the 5 V pins to a source to feed energy directly to the board. This type of supply
allows a multimeter to be connected in series, without having to modify the cable (that would be
connected to the micro USB port) or the board’s power connector.

In this way, data analysis of the energy consumed in each experiment was carried out using
an UNI-T UT61E digital multimeter (UNI-T Co., Dongguan, China), together with a constant voltage
source (DC power supply) to maintain stable power reliably. The positive pole of the source of current
should be connected to the positive (red) lead of the multimeter, whereas its ground connection (of the
power supply) is connected to pin number 6 of the GPIO (according to the technical specifications of
RPi [1], pins 9, 14, 20, 25, 30, 34 and 39 would also be valid for the same purpose. In the same way, the
negative lead of the multimeter should be connected to pin number 2 (or 4), thus closing the circuit
(see Figure 1)).

The results were obtained with the analysis software provided by the multimeter manufacturer
(UT61E Interface Program version 4.01), using a computer. The electrical energy consumed in
each experiment was continuously monitored during the executions, with a sample rate of two
measurements per second. In this way, current values were collected in real time and transmitted
through a serial cable connected to a serial-to-usb converter plugged into the computer and stored
into a log file which would later be analyzed to extract the results and calculate the average electric
current. The meter was set to measure up to a maximum of 10 A, since the instantaneous current
values were in a range between 200 mA and 800 mA during the experiments. In the meter, this range
implies a resolution of 1 mA with a margin of error of ±(0.5% + 10), and the measurement should be
displayed and registered in amps. However, in the experiments (discussed below) the current is shown
in milliamps for readability, in order to avoid the use of the five decimals that would be necessary to
represent the standard deviation if the result were expressed directly in amps.
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Figure 1. Current measuring circuit.

Electric power (measured in watts) is calculated by multiplying the voltage (5 V) by the electric
current, modelled as follows:

Power(W) = V × I, (2)

where V is voltage (in volts, V), I is electric current (in amperes, A) and Power is meant as average power
during the code execution. Then energy (measured in joules) can be calculated with the following
formula (mentioned in Section 2):

Energy(J) = P× t (3)

where P is electric power (average power during the code execution, in watts, W) and t is time
(in seconds, s).

5. Techniques to Write Energy-Efficient Code

The following techniques were selected from the literature [18–27] with the objective of using
them in an extensive range of programming routines and tasks. They have been analyzed for the
current proposal with the aim of demonstrating that, in addition to their suitability for reducing
execution times (as demonstrated in [11]), they can also be recommended for writing energy-efficient
code for Raspberry Pi boards.

A complete description of each of these techniques, together with the source code of all the
designed tests, can be found in [11] along with supplementary materials. Next, a brief excerpt is shown
as follows:

T1 Bit fields: a bit field structure holds a sequence of a certain number of bits to improve the use of
memory space. However, using an integer instead is recommended.

T2 Boolean return: returning boolean variables at the end of a function is not recommended. It is
preferable to convert them into a single unsigned int along with the use of associated flags to
perform the checks with a single logical operation.

T3 Cascaded function calls: it is advisable to avoid the use of cascaded function calls that return
pointers or references.

T4 Row-major accessing: there are two ways of traversing a two-dimensional array. In C and C++
the leftmost index should be incremented first, in order to achieve better cache hit ratio, since
data are stored in a contiguous by row-major order.

T5 Constructor initialization lists: it is recommended to use initialization lists to set the initial values
of the variables when defining constructors.

T6 Common subexpression elimination: it consists of avoiding the repetition of identical expressions
which can be modified so that a single variable holds their computed values.
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T7 Mapping structures: in the case of mapping tables, it is recommended to use loops to traverse
them, instead of nested i f statements.

T8 Dead code elimination: this well-known and widely used technique consists of eliminating
instructions that are totally unreachable or do not affect the result (e.g., never used variables).

T9 Exception handling: in order to significantly improve energy efficiency, some exceptions can be
replaced by continue or break statements when they are located within loops.

T10 Global variables within loops: as far as possible, the use of assignments to global variables within
loops should be avoided. Local variables can be used instead until the end of the loop is reached.

T11 Function inlining: in many cases, overhead caused by call and return statements can be avoided
by directly inserting the code for the function instead of calling it. This technique is considered
one of the most important code optimization techniques [21] and has significant advantages over
the use of #de f ine macros [19].

T12 Global variables: the heavy use of global variables is not recommended, due to their associated
overhead. In addition, their values can be modified through the program, opening the possibility
of collateral problems later.

T13 Constants inside loops: it is recommended to avoid continuous access to constants within loops,
even the risk of poor readability.

T14 Initialization versus assignment: variables should be directly initialized, instead of using
a subsequent assignment, with the objective of avoiding the assignment of the instantiation.

T15 Division by a power-of-two denominator: division expressions with power-of-two denominators
can be changed by shift expressions.

T16 Multiplication by a power-of-two factor: as in the previous technique, multiplication expressions
with power-of-two factors can also be changed by shift expressions.

T17 Integer versus character: for arithmetic operations integers should be used instead of characters
because in C and C++ char values are converted to integers before operating.

T18 Loop count down: a loop can be traversed in the opposite direction when the order of its counter
is not determinative. Traversing the loop in this way implies a faster process, because less
instructions are required.

T19 Loop unrolling: some small loops can be unrolled with the objective of decreasing the number
of iterations. However, one should be careful to use this technique without reducing the
performance of the cache due to an increase in code size, among other reasons.

T20 Passing structures by reference instead of value: it is recommended to pass structures by reference
on function calls whenever possible, with the objective of avoiding the overhead of copying all
the structures when they are passed by value.

T21 Pointer aliasing: due to the possibility that the same address may be pointed to by two pointers,
some optimizations offered by the compiler cannot be automatically applied. For instance,
common subexpression should be eliminated manually by the programmer.

T22 Chains of pointers: when using chains of pointers, performance can be improved by the
utilization of intermediate local variables to access the final links instead of following the entire
chain every time.

T23 Pre-increment versus post-increment: in the case of data types with classes that overload
increment operators, it is recommended to use the pre-increment instead of the post-increment
operator to avoid the previous copy of the object.

T24 Linear search: while statements are recommended to control loop iterations when using linear
search method, since they imply a single comparison (while(list[i]! = searched)) instead of the
usual two comparisons (one to control the iterations and another to find the desired key).

T25 Invariant IF statements within loops: it is advisable to take invariant conditional expressions out
of the loops whenever possible, although this means an increase in the number of loops.

With the objective of demonstrating the effectiveness of these 25 techniques, and following
the measurement algorithm that we introduced in [11], two specific tests were performed for each
technique: one test with a standard code, and a second with the result of applying the corresponding
efficient technique.
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It is important to remember that although all the experiments were based on C++ code, they
apply equally to C, and the objective of this research is to demonstrate that the proposed techniques
should be taken into account in order to write energy-efficient code.

6. Experimental Results and Discussion

Tables 2–5 show the energy saving results related to the application of the proposed techniques in
the different RPi devices (2B, 3B, 3B+ and 4).

Optimization levels 1 and 2 have been omitted in the tables, since their values do not
improve the results and they are not particularly representative for the objectives of the current
approach. Nevertheless, complete results of the experiments conducted can be consulted in the
Supplementary Materials.

Table 2. Energy results and percentages of improvement in Raspberry Pi 2B.

Technique
Energy Consumed (Without Optimization) Energy Consumed (Optimization Level 3)

Standard (nJ) Efficient (nJ) Improvement (%) Standard (nJ) Efficient (nJ) Improvement (%)

1 Bit fields 121.96 66.07 45.82 51.22 48.54 5.24
2 Boolean return 56.72 52.39 7.62 28.04 27.99 0.18
3 Cascaded function calls 1121.10 573.22 48.87 705.75 116.99 83.42
4 Row-major accessing 13,890.62 13,943.61 0.00 1951.87 522.36 73.24
5 Constructor initialization lists 1487.91 1462.10 1.73 1418.83 1353.56 4.60
6 Common subexpression elimination 98.03 74.06 24.46 48.72 47.12 3.28
7 Mapping structures 732.29 1117.32 0.00 638.66 627.11 1.81
8 Dead code elimination 44.74 34.12 23.74 23.64 23.53 0.44
9 Exception handling 13,250.96 58.27 99.56 12,868.40 14.13 99.89

10 Global variables within loops 745.19 572.42 23.18 119.66 121.63 0.00
11 Function inlining 77.21 49.79 35.52 28.02 27.96 0.19
12 Global variables 2126.28 1659.54 21.95 980.14 822.56 16.08
13 Constants inside loops 673.31 473.71 29.64 315.76 316.25 0.00
14 Initialization versus assignment 80.44 39.64 50.73 76.50 13.95 81.76
15 Division by a power-of-two denominator 49.98 49.81 0.36 27.98 27.86 0.42
16 Multiplication by a power-of-two factor 49.96 49.83 0.25 27.92 27.81 0.37
17 Integer versus character 81.54 73.90 9.37 27.82 28.05 0.00
18 Loop count down 2061.13 2503.40 0.00 511.80 503.34 1.65
19 Loop unrolling 1058.70 678.36 35.92 121.24 105.82 12.72
20 Passing structures by reference 572.92 61.22 89.31 547.43 13.89 97.46
21 Pointer aliasing 164.54 154.48 6.12 99.02 94.18 4.88
22 Chains of pointers 112.10 83.87 25.19 34.17 34.06 0.29
23 Pre-increment versus post-increment 3706.04 3805.12 0.00 991.48 990.06 0.14
24 Linear search 3378.41 2740.79 18.87 969.45 530.29 45.30
25 Invariant IF statements within loops 2990.67 2067.03 30.88 185.21 185.20 0.01

Table 3. Energy results and percentages of improvement in Raspberry Pi 3B.

Technique
Energy Consumed (Without Optimization) Energy Consumed (Optimization Level 3)

Standard (nJ) Efficient (nJ) Improvement (%) Standard (nJ) Efficient (nJ) Improvement (%)

1 Bit fields 105.17 58.49 44.38 47.40 46.06 2.83
2 Boolean return 61.20 47.56 22.30 23.94 24.08 0.00
3 Cascaded function calls 998.58 550.24 44.90 592.80 97.03 83.63
4 Row-major accessing 12,681.55 12,696.56 0.00 1903.67 267.23 85.96
5 Constructor initialization lists 1211.80 1162.43 4.07 1191.65 1150.58 3.45
6 Common subexpression elimination 90.73 69.58 23.31 48.40 46.34 4.26
7 Mapping structures 754.68 1022.39 0.00 649.29 715.81 0.00
8 Dead code elimination 39.63 28.93 27.02 21.20 20.77 2.02
9 Exception handling 10,676.17 51.53 99.52 10,861.19 12.86 99.88

10 Global variables within loops 703.81 522.70 25.73 147.87 144.62 2.20
11 Function inlining 71.35 45.14 36.73 23.98 24.10 0.00
12 Global variables 1743.59 1449.88 16.84 1023.41 925.87 9.53
13 Constants inside loops 635.06 442.52 30.32 281.49 272.23 3.29
14 Initialization versus assignment 76.89 36.17 52.96 71.22 12.66 82.23
15 Division by a power-of-two denominator 44.38 44.50 0.00 23.99 23.90 0.39
16 Multiplication by a power-of-two factor 44.42 44.37 0.11 23.97 23.94 0.11
17 Integer versus character 75.89 67.23 11.41 23.83 23.81 0.09
18 Loop count down 1919.36 2402.28 0.00 549.88 393.33 28.47
19 Loop unrolling 993.81 623.35 37.28 94.94 105.22 0.00
20 Passing structures by reference 592.78 56.22 90.52 498.65 12.76 97.44
21 Pointer aliasing 153.20 143.67 6.22 90.72 86.33 4.83
22 Chains of pointers 108.18 80.63 25.47 31.60 31.50 0.32
23 Pre-increment versus post-increment 3476.96 3564.70 0.00 1065.11 1046.03 1.79
24 Linear search 3112.78 2473.12 20.55 865.26 578.88 33.10
25 Invariant IF statements within loops 2839.55 1922.75 32.29 129.04 129.64 0.00
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Table 4. Energy results and percentages of improvement in Raspberry Pi 3B+.

Technique
Energy Consumed (Without Optimization) Energy Consumed (Optimization Level 3)

Standard (nJ) Efficient (nJ) Improvement (%) Standard (nJ) Efficient (nJ) Improvement (%)

1 Bit fields 149.45 82.73 44.65 66.54 64.53 3.03
2 Boolean return 86.61 67.22 22.39 33.68 33.76 0.00
3 Cascaded function calls 1401.71 769.40 45.11 827.05 134.82 83.70
4 Row-major accessing 18,009.01 18,051.36 0.00 2658.73 375.46 85.88
5 Constructor initialization lists 1689.81 1617.21 4.30 1651.05 1591.84 3.59
6 Common subexpression elimination 128.22 97.78 23.74 67.65 64.60 4.51
7 Mapping structures 1068.11 1421.71 0.00 906.92 995.19 0.00
8 Dead code elimination 55.53 40.30 27.42 29.71 28.95 2.54
9 Exception handling 14,790.17 72.01 99.51 15,265.70 17.88 99.88

10 Global variables within loops 987.25 730.92 25.96 205.91 200.43 2.66
11 Function inlining 100.34 63.23 36.98 33.79 33.96 0.00
12 Global variables 2427.07 2012.82 17.07 1426.08 1288.63 9.64
13 Constants inside loops 887.88 617.33 30.47 392.18 379.02 3.36
14 Initialization versus assignment 107.27 50.60 52.83 99.65 17.75 82.18
15 Division by a power-of-two denominator 62.61 62.64 0.00 33.84 33.75 0.28
16 Multiplication by a power-of-two factor 62.92 62.79 0.21 33.87 33.69 0.52
17 Integer versus character 106.43 94.60 11.12 33.56 33.64 0.00
18 Loop count down 2683.04 3353.65 0.00 761.17 541.75 28.83
19 Loop unrolling 1386.73 868.13 37.40 132.23 147.56 0.00
20 Passing structures by reference 751.48 79.48 89.42 692.32 17.61 97.46
21 Pointer aliasing 215.79 201.78 6.49 126.51 120.05 5.11
22 Chains of pointers 152.42 113.12 25.79 44.42 44.31 0.25
23 Pre-increment versus post-increment 4843.87 4946.66 0.00 1474.57 1442.73 2.16
24 Linear search 4346.57 3483.12 19.87 1201.38 799.32 33.47
25 Invariant IF statements within loops 3995.83 2700.42 32.42 180.29 180.58 0.00

The general pseudocode followed in all the experiments is shown in Algorithm 1. As can be
observed it is a linear time algorithm with complexity O(n), where n is the number of iterations
of the loop. As described in Section 4, each test is repeated one hundred million times. Thus, the
initial measurements should be divided by the number of iterations (to extract the data for a single
execution). The internal complexity of each test varies depending on each technique, although, as
shown in the source code of the tests (available at [46]) the complexity is constant or linear in most
cases except in the row-major accessing technique (T4) due to the double nested loop used to traverse
the two-dimensional array generating a quadratic complexity (O(n2)) since it is a square matrix.

Table 5. Energy results and percentages of improvement in Raspberry Pi 4B.

Technique
Energy Consumed (Without Optimization) Energy Consumed (Optimization Level 3)

Standard (nJ) Efficient (nJ) Improvement (%) Standard (nJ) Efficient (nJ) Improvement (%)

1 Bit fields 93.08 40.84 56.12 29.38 29.57 0.00
2 Boolean return 43.99 34.30 22.02 18.64 18.65 0.00
3 Cascaded function calls 755.31 806.87 0.00 707.72 77.15 89.10
4 Row-major accessing 18,990.96 16,691.18 12.11 2377.83 516.61 78.27
5 Constructor initialization lists 944.10 925.12 2.01 1430.88 1282.51 10.37
6 Common subexpression elimination 62.98 59.27 5.88 27.98 31.84 0.00
7 Mapping structures 880.96 1133.15 0.00 814.32 855.69 0.00
8 Dead code elimination 24.48 18.36 24.97 18.72 17.53 6.38
9 Exception handling 9795.13 44.62 99.54 9510.51 19.93 99.79

10 Global variables within loops 486.16 437.48 10.01 131.38 131.05 0.25
11 Function inlining 56.82 32.16 43.41 18.58 18.71 0.00
12 Global variables 1300.58 1163.04 10.58 912.82 822.38 9.91
13 Constants inside loops 403.26 338.58 16.04 231.32 229.93 0.60
14 Initialization versus assignment 54.48 25.63 52.97 53.83 17.78 66.98
15 Division by a power-of-two denominator 29.27 32.00 0.00 18.55 19.40 0.00
16 Multiplication by a power-of-two factor 29.51 31.98 0.00 18.62 20.54 0.00
17 Integer versus character 64.53 58.91 8.71 18.40 18.62 0.00
18 Loop count down 3735.86 3788.18 0.00 564.20 552.82 2.02
19 Loop unrolling 1922.48 917.66 52.27 143.33 126.70 11.61
20 Passing structures by reference 409.63 45.26 88.95 378.96 18.63 95.08
21 Pointer aliasing 103.04 105.81 0.00 71.62 62.04 13.37
22 Chains of pointers 78.29 89.63 0.00 25.91 26.54 0.00
23 Pre-increment versus post-increment 7309.77 7349.94 0.00 1077.51 1068.81 0.81
24 Linear search 2382.02 1684.48 29.28 641.00 591.53 7.72
25 Invariant IF statements within loops 4031.94 3760.77 6.73 170.33 170.32 0.00
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Algorithm 1 Test execution
1: procedure
2: start time
3: for j← 0, 100000000 do
4: execute test
5: end for
6: get time
7: end procedure

In addition, as mentioned above, each procedure was executed ten times, in order to obtain
the average result of those ten measurements. The standard deviation was also calculated in order
to quantify the dispersion of the measurements. In this sense, it is noteworthy that the standard
deviations obtained (that can be consulted in the Supplementary Materials) were very small (mean
deviation of 0.28%), indicating that the results tended to be close to the averages shown in the tables.

In addition, as mentioned in the previous section, two tests were implemented for each
technique. Thus, the tables show the energy consumed in nanojoules of both tests (standard code and
energy-efficient code) for each technique, applying and not applying the automatic optimization offered
by the compiler (optimization levels three and zero respectively). Tables also show the percentage of
improvement between the execution of the standard code and the efficient one.

With the objective of enhancing the understanding of the data, Figures 2 and 3 are provided to
summarize the previous tables.

Figure 2. Percentages of energy saving achieved by writing energy-efficient code (without
compiler optimization).
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Figure 3. Percentages of energy saving achieved by writing energy-efficient code (with compiler
optimization level 3).

Both figures show on the horizontal axes the numbers that identify each of the applied techniques,
whereas the percentages of energy saving achieved (with respect to the standard code versions) when
applying each technique are shown on the verticals. The four models of RPi used in the experiments
are represented: 2B (yellow bars), 3B (orange), 3B+ (blue) and 4 (green). Figure 2 shows the results
when using optimization level zero (0), that is, no automatic optimization of the compiler is used,
whereas Figure 3 represents the data obtained when the tests are compiled with optimization level 3.

It is important to take into account the results obtained with the optimization level zero, since in
these cases, unlike in the rest of the optimization levels offered by the compiler, the ability to debug
the programs remains unaltered and the expected results can be obtained. Thus, as shown in Figure 2,
the use of the proposed techniques is especially recommended for cases in which the debugging
processes takes considerable time.

In terms of energy saving, the percentages of improvement obtained are similar to those achieved
in terms of decreasing execution time in our previous work [11]. The RPi 4, which did not exist when
our previous work was published, demonstrates that the more advanced the Raspberry Pi model is,
the shorter its execution times are.

As can be seen in Figures 2 and 3 and Tables 2–5, the application of these techniques achieve
energy savings of up to 99.56%. Especially noteworthy are the improvements obtained when applying
two widely known techniques: exception handling (T9) and passing structures by reference instead of
by value (T20), as in the analysis of execution time conducted in [11].

In general, the improvement percentages are similar when applying a technique in the four
models of RPi, although there are some significant differences produced mainly by the RPi 4 tests.
For instance, in the case of the optimization level zero (0) (see Figure 2), the following techniques
achieve a greater energy saving (up to 10 percentage points more) with the RPi 4 than with the other
models: bit fields (T1); row-major accessing (T4); function inlining (T11); loop unrolling (T19); and
linear search (T24).

In contrast, the percentage of energy saving with this model is much lower (even non-existent) in
the following cases (when compared to the results of the other three models): cascaded function
calls (T3); common subexpression elimination (T6); global variables within loops (T10); global
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variables (T12); constants inside loops (T13); pointer aliasing (T21); chains of pointers (T22); and
invariant IF statements within loops (T25).

With regard to optimization level 3 (see Figure 3), the RPi 4, achieves better energy results than the
rest of the models when applying these techniques: cascaded function call (T3); constructor initialization
lists (T5); dead code elimination (T8); and pointer aliasing (T21). Whereas, the improvement is
smaller for the following techniques: bit fields (T1); common subexpression elimination (T6); global
variables (T12); initialization versus assignment (T14); loop count down (T18); and linear search (T24).

Returning to the energy savings obtained without the help of the automatic optimizations
of the compiler (see Figure 2), and now considering all the RPi models used, there are several
techniques that produce no or very limited improvement. This means their energy efficient code
did not consume less energy than the corresponding standard code. This occurs when applying the
following techniques: row-major accessing (T4); mapping structures (T7); division by a power-of-two
denominator (T15); multiplication by a power-of-two factor (T16); loop count down (T18); and
pre-increment versus post-increment (T23). The other nineteen techniques demonstrated their
efficiency in writing energy-efficient code when compiler optimization is set to default (i.e., with
level zero), achieving an average energy saving of 33.66%, considering the four different models of RPi.

When using optimization level 3 together with the application of the energy-efficient techniques,
the automatic help offered by the compiler achieve significant results in most of the tests performed
(see Figure 3). However, writing efficient code manually is still recommended with regards to the
following techniques, which achieve an average energy saving of 51.33%: cascaded function calls (T3);
exception handling (T9); initialization versus assignment (T14); loop count down (T18); passing
structures by reference (T20); and linear search (T24). Next, these techniques are analyzed in greater
depth using RPi models 3B+ and 4, because these devices achieve better execution times. In addition,
RPi 3B+ will remain in production until at least January 2026, and RPi 4 has been recently released
(in September 2019).

6.1. Cascaded Function Calls (T3)

Results achieved when applying this technique have demonstrated here that avoiding cascaded
function calls that return pointers or references is recommended. The role of the programmer is
especially important for this technique, since he or she, unlike the compiler, are able to know if the
reference returned by a function remains unchanged during the execution of a particular code fragment.
This can be observed in the tests (see Listing 1) which were developed to analyze the percentage of
energy saving achieved when using this technique. The standard test consists of a loop that traverses
an array and calls a function in each iteration. In the energy-efficient test, just one call is made outside
the loop and the value returned by the function is stored in an auxiliary variable which is checked
inside the loop in each iteration.

Listing 1. Cascaded function calls. Standard and energy-efficient code.
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(T12); constants inside loops (T13); pointer aliasing (T21); chains of pointers (T22); and invariant IF
statements within loops (T25).

With regard to optimization level 3 (see Figure 3), the RPi 4, achieves better energy results than
the rest of the models when applying these techniques: cascaded function call (T3); constructor
initialization lists (T5); dead code elimination (T8); and pointer aliasing (T21). Whereas the
improvement is smaller for the following techniques: bit fields (T1); common subexpression elimination
(T6); global variables (T12); initialization versus assignment (T14); loop count down (T18); and linear
search (T24).

Returning to the energy savings obtained without the help of the automatic optimizations
of the compiler (see Figure 2), and now considering all the RPi models used, there are several
techniques that produce no or very limited improvement. This means their energy efficient codes
do not consume less energy than the corresponding standard codes. This occurs when applying the
following techniques: row-major accessing (T4); mapping structures (T7); division by a power-of-two
denominator (T15); multiplication by a power-of-two factor (T16); loop count down (T18); and
pre-increment versus post-increment (T23). The other nineteen techniques demonstrated their
efficiency in writing energy-efficient code when compiler optimization is set to default (i.e., with
level zero), achieving an average energy saving of 33.66%, considering the four different models of RPi.

When using optimization level 3 together with the application of the energy-efficient techniques,
the automatic help offered by the compiler achieve significant results in most of the tests performed
(see Figure 3). However, writing efficient code manually is still recommended with regards to the
following techniques, which achieve an average energy saving of 51.33%: cascaded function calls
(T3); exception handling (T9); initialization versus assignment (T14); loop count down (T18); passing
structures by reference (T20); and linear search (T24). Next, these techniques are analysed in greater
depth using RPi models 3B+ and 4, because these devices achieve better execution times. In addition,
RPi 3B+ will remain in production until at least January 2026, and RPi 4 has been recently released (in
September 2019).

6.1. Cascaded Function Calls (T3)

Results achieved when applying this technique have demonstrated here that avoiding cascaded
function calls that return pointers or references is recommended. The role of the programmer is
especially important for this technique, since he or she, unlike the compiler, are able to know if the
reference returned by a function remains unchanged during the execution of a particular code fragment.
This can be observed in the tests (see Listing 1) which were developed to analyse the percentage of
energy saving achieved when using this technique. The standard test consists of a loop that traverses
an array and calls a function in each iteration. In the energy-efficient test, just one call is made outside
the loop and the value returned by the function is stored in an auxiliary variable which is checked
inside the loop in each iteration.

Listing 1. Cascaded function calls. Standard and energy-efficient codes.

void standardCode ( Type ∗argument ) { void energyEff ic ientCode ( Type ∗argument ) {
for ( i n t i =0 ; i <N; i ++) i n t v a r i a b l e = argument−>funct ion ( ) ;

i f ( argument−>funct ion ( ) = = 1 ) for ( i n t i =0 ; i <N; i ++)
a [ i ] = 0 ; i f ( v a r i a b l e ==1)

} a [ i ] = 0 ;
}

As shown in Figure 4, energy savings of up to 95 % are achieved thanks to this technique, with an
improvement of 89.04 % when using an array of just 20 elements (that is, with just 20 loop iterations).
In addition, energy savings vary depending on the size of the array. The improvement of 51.37 %
reached when using an array size of 3 elements (just three loop iterations) is also noteworthy. From

As shown in Figure 4, energy savings of up to 95% are achieved thanks to this technique,
with an improvement of 89.04% when using an array of just 20 elements (that is, with just 20 loop
iterations). In addition, energy savings vary depending on the size of the array. The improvement of
51.37% reached when using an array size of 3 elements (just three loop iterations) is also noteworthy.
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From 100 or more calls, the energy saving stabilizes at around 90%. This demonstrates the effectiveness
of a technique which should be applied whenever the above conditions are met.

Figure 4. Cascaded function calls. Percentage of energy saving according to the number of calls to the
function (number of iterations of the loop) in RPi 3B+ and 4B.

6.2. Row-Major Accessing (T4)

Some languages support two-dimensional arrays stored in a contiguous by column-major order,
whereas others such as C and C++ use a row-major one, that is, row-by-row, so that the element x + 1
is stored right next to x. Therefore, two-dimensional arrays should be traversed in the order they were
stored, that is, the leftmost index should be incremented first, with the objective of achieving higher
rates of cache hits during the accesses. In standard code the array is traversed by iterating over each
column first (the outer loop processes the columns whereas the rows are processed by the inner one).
Instead, row-major iteration is used for traversing the energy-efficient code (see Listing 2).

The percentages of energy saving achieved by applying this technique grow depending on the
array size by up to 85.52%, so that greater percentages of improvement are obtained as the size of the
vector increases, principally due to the work increment of the cache (see Figure 5). In this way, as the
test is developed by using arrays that represent square matrices, the improvement is influenced by the
size of both dimensions. Therefore, a deeper analysis of the effects produced by variations in array
sizes will be addressed in future work.

Listing 2. Row-major accessing. Standard and energy-efficient code.
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possible errors in the same way that exceptions do, but with lower cost (see Listing 3).438
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The objective is to demonstrate that significant energy efficiency improvements can be444
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technique to control unexpected errors within loops whenever possible under the above conditions.448

Figure 5. Row-major accessing. Percentage of energy saving according to the matrix size in RPi 3B+
and 4B.
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The difference between the results of both models, due to fact that the Cortex-A72 of the model 4
features a larger cache which leads to a reduction in the miss penalty when applying standard code,
is also noteworthy. In this way, from 40 or more elements, the percentage stabilizes around an
improvement of 80% in RPi 3B+ and 60% in RPi 4. This fact also strongly influences the results
obtained with an array size of 30 elements, where the cache hit ratio increases.

6.3. Exception Handling (T9)

Although exceptions are needed to detect and manage unexpected errors, they involve significant
time penalties which also involve energy consumption. They are produced by successive calls to the
exception handler passing a parameter as an argument. When its type and the type of parameter
specified by the handler match, the handler takes control of the execution flow.

In some cases when these exceptions are within loops, it is possible to replace them with other
statements, such as continue and break, which allow changing the flow of execution and control
possible errors in the same way that exceptions do, but with lower cost (see Listing 3).

As expected, the percentage of energy saving depends on the number of exceptions thrown and
the structure of the data, so there are infinite possible variations that can be applied and analyzed
in this experiment. Therefore, the evaluation in greater depth of the conditions that influence these
improvements has been omitted, along with the comparative graph, especially given the differences
obtained between the different RPi models were not significant (as shown in Figure 3).

The objective is to demonstrate that significant energy efficiency improvements can be
achieved when this technique is applied. In the standard test, 100 simple exceptions were thrown
and, although they did not have any content apart from its declaration (class myexception :
public exception {} myex;), energy saving reached 99%. Thus, it is recommended to apply this
technique to control unexpected errors within loops whenever possible under the above conditions.

Listing 3. Exceptions. Standard and energy-efficient code.
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Listing 3. Exceptions. Standard and energy-efficient codes.
449

i n t standardCode ( ) { i n t energyEff ic ientCode ( ) {450

i n t v a r i a b l e = 1 0 0 ; i n t v a r i a b l e = 1 0 0 ;451

for ( i n t i =0 ; i <1 ; i ++){ for ( i n t i =0 ; i <1 ; i ++){452

t r y { i f ( v a r i a b l e != 100) {453

i f ( v a r i a b l e == 100) { continue ;454

throw myex ; }455

} }456

} catch ( except ion& e ) { return 0 ;457

} }458

}459

return 0 ;460

}461462

6.4. Initialization versus assignment (T14)463

Whatever the type of data, it is highly advisable to initialize variables directly when they are464

declared, since a subsequent instantiation implies an unnecessary assignment that can be avoided.465

The tests (see Listing 4) analyse the energy savings achieved by using complex double numbers and466

compare direct initialization (energy-efficient code) with the alternative use of a subsequent assignment467

(standard code). Energy savings of up to 52.97 % are achieved using this technique (as shown in Figure468

3).469

With regard to this technique, the percentage of energy saving depends on the data types, so there470

are many possible variations that can be applied and analysed in this experiment (considering primitive,471

derived and abstract or used-defined data types, along with datatype modifiers, e.g., unsigned or long).472

Thus, in this case, the evaluation in greater depth of the conditions that influence these percentages of473

improvement has also been omitted, along with the comparative graph, since the differences obtained474

between the different RPi models were not significant.475

Listing 4. Initialization versus assignment. Standard and energy-efficient codes.
476

void standardCode ( ) { void energyEff ic ientCode ( ) {477

std : : complex<double> mycomplex ; s td : : complex<double> mycomplex ( 3 . 1 4 ) ;478

mycomplex = ( 3 . 1 4 ) ; }479

}480481

6.5. Loop count down (T18)482

Those loops in which the order of its counter is not determinative can be traversed in the opposite483

direction (instead of traversing it forward). The reason lies in the fact that it is faster to process “i- -”484

(energy-efficient code) than i = 0; i < 100 (standard code) as a loop condition, since traversing it485

forward implies more steps (see Listing 5). These include subtraction, evaluation of the result, iterator486

increment (if the result is not zero) and continue. It is worth noting that the loop termination clause also487

has an important impact on the improvement, since they have to be evaluated an extensive number of488

times.489

As shown in Figure 6, energy savings from 20 % to 30 % can be achieved when applying490

this technique using model 3B+ and arrays with more than 20 elements, whereas in model 4 the491

improvement is almost nil (between 1.29 % and 2.86 %).492

To understand this, it is important to highlight that runtime results are significantly lower in the493

RPi 4, so that even the execution time of the standard code on the model 4 is up to 50 % faster than494

the execution time of the efficient code on the RPi 3B+ (as can be consulted in the Supplementary495

Materials). Thus, this significantly reduces the chances of further improving the results by applying496

6.4. Initialization versus Assignment (T14)

Whatever the type of data, it is highly advisable to initialize variables directly when they are
declared, since a subsequent instantiation implies an unnecessary assignment that can be avoided.
The tests (see Listing 4) analyze the energy savings achieved by using complex double numbers
and compare direct initialization (energy-efficient code) with the alternative use of a subsequent
assignment (standard code). Energy savings of up to 52.97% are achieved using this technique
(as shown in Figure 3).

With regard to this technique, the percentage of energy saving depends on the data types, so
there are many possible variations that can be applied and analyzed in this experiment (considering
primitive, derived and abstract or used-defined data types, along with datatype modifiers, e.g.,
unsigned or long). Thus, in this case, the evaluation in greater depth of the conditions that influence
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these percentages of improvement has also been omitted, along with the comparative graph, since the
differences obtained between the different RPi models were not significant.

Listing 4. Initialization versus assignment. Standard and energy-efficient code.
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Listing 3. Exceptions. Standard and energy-efficient codes.
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i n t standardCode ( ) { i n t energyEff ic ientCode ( ) {450

i n t v a r i a b l e = 1 0 0 ; i n t v a r i a b l e = 1 0 0 ;451

for ( i n t i =0 ; i <1 ; i ++){ for ( i n t i =0 ; i <1 ; i ++){452

t r y { i f ( v a r i a b l e != 100) {453

i f ( v a r i a b l e == 100) { continue ;454

throw myex ; }455

} }456

} catch ( except ion& e ) { return 0 ;457

} }458

}459

return 0 ;460

}461462
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Listing 4. Initialization versus assignment. Standard and energy-efficient codes.
476

void standardCode ( ) { void energyEff ic ientCode ( ) {477

std : : complex<double> mycomplex ; s td : : complex<double> mycomplex ( 3 . 1 4 ) ;478

mycomplex = ( 3 . 1 4 ) ; }479

}480481

6.5. Loop count down (T18)482

Those loops in which the order of its counter is not determinative can be traversed in the opposite483

direction (instead of traversing it forward). The reason lies in the fact that it is faster to process “i- -”484

(energy-efficient code) than i = 0; i < 100 (standard code) as a loop condition, since traversing it485

forward implies more steps (see Listing 5). These include subtraction, evaluation of the result, iterator486

increment (if the result is not zero) and continue. It is worth noting that the loop termination clause also487

has an important impact on the improvement, since they have to be evaluated an extensive number of488

times.489

As shown in Figure 6, energy savings from 20 % to 30 % can be achieved when applying490

this technique using model 3B+ and arrays with more than 20 elements, whereas in model 4 the491

improvement is almost nil (between 1.29 % and 2.86 %).492

To understand this, it is important to highlight that runtime results are significantly lower in the493

RPi 4, so that even the execution time of the standard code on the model 4 is up to 50 % faster than494

the execution time of the efficient code on the RPi 3B+ (as can be consulted in the Supplementary495

Materials). Thus, this significantly reduces the chances of further improving the results by applying496

6.5. Loop Count Down (T18)

Those loops in which the order of its counter is not determinative can be traversed in the opposite
direction (instead of traversing it forward). The reason lies in the fact that it is faster to process “i- -”
(energy-efficient code) than i = 0; i < 100 (standard code) as a loop condition, since traversing it forward
implies more steps (see Listing 5). These include subtraction, evaluation of the result, iterator increment
(if the result is not zero) and continue. It is worth noting that the loop termination clause also has an
important impact on the improvement, since they have to be evaluated an extensive number of times.

As shown in Figure 6, energy savings from 20% to 30% can be achieved when applying
this technique using model 3B+ and arrays with more than 20 elements, whereas in model 4 the
improvement is almost nil (between 1.29% and 2.86%).

To understand this, it is important to highlight that runtime results are significantly lower in the
RPi 4, so that even the execution time of the standard code on the model 4 is up to 50 % faster than
the execution time of the efficient code on the RPi 3B+ (as can be consulted in the Supplementary
Materials). Thus, this significantly reduces the chances of further improving the results by applying
energy-efficient code. This is due not only to the out of order execution and the larger cache of the
model 4 (which leads to a reduction in the miss penalty when applying the standard code, reducing
the difference with the energy-efficient one), but because of the specific improvements introduced
in the Cortex-A72 of the model 4 (that add power and performance optimizations to the previous
A53 design of the model 3B+ including an improved branch prediction algorithm, increased dispatch
bandwidth, lower-latency execution units, and higher bandwidth L2 cache) there is a performance
improvement from 10 to 50% according to Arm [47], especially regarding floating-point workloads.
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6.6. Passing Structures by Reference (T20)

Regarding function calls, structures passed by value imply significant overhead produced by the
need for a complete copy of each structure (including constructor and destructor classes). Instead,
this overhead can be avoided if the structures are passed by reference (see Listing 6). However, it is
important to take into account the fact that, unlike value arguments, reference arguments can alter the
original instance. Therefore, it is advisable that pointers to structures be declared as constants if the
intention is not to modify their pointed values.

The percentage of energy saving produced by this technique depends on the data structures used,
therefore there are infinite number of possible variations that can be applied and analyzed in this
experiment. Thus, the evaluation in greater depth of the conditions that influence these improvements
has also been omitted, along with the comparative graph, since, in addition, the differences obtained
between the different RPi models were not significant.

As can be observed, the structure used to demonstrate the effectiveness of this technique consists
of a class with two string members and a data substructure formed by an array of 10 elements
and an integer variable that serves as an index. The class constructor consists of three assignments
(corresponding to the initialization of the two string attributes and the index of the substructure).
In addition, the getIndex function simply returns the value of the index.

In the standard code, the class is passed by value (implying a complete copy of its structure) and
the index is directly accessed (value.getIndex), whereas in the energy-efficient code the class is passed
by reference so that the index is accessed through a pointer (re f erence–>getIndex()). This simple
modification resulted in an improvement of around 90.54% in the four RPi models.

Listing 6. Passing structures by reference. Standard and energy-efficient code.

Version October 11, 2019 submitted to Electronics 17 of 21

by reference so that the index is accessed through a pointer (re f erence–>getIndex()). This simple531

modification resulted in an improvement of around 90.54 % in the four RPi models.532

Listing 6. Passing structures by reference. Standard and energy-efficient codes.
533

typedef s t r u c t { i n t array [ 1 0 ] ; i n t index ; } S t r u c t u r e ;534

535

c l a s s Class {536

private :537

s t r i n g a t t r i b u t e _ a ;538

s t r i n g a t t r i b u t e _ b ;539

S t r u c t u r e s t r u c t u r e ;540

public :541

Class ( s t r i n g a t t r i b u t e 1 , s t r i n g a t t r i b u t e 2 , i n t i ) ;542

i n t getIndex ( ) ;543

} ;544

545

i n t standardCode ( Class value ) { i n t energyEff ic ientCode ( Class ∗ r e f e r e n c e ) {546

return value . getIndex ( ) ; return re ference−>getIndex ( ) ;547

} }548549

6.7. Linear search (T24)550
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elements until founding a match or reaching the end of the list with an unsuccessful outcome. This554

energy-efficient technique consists of replacing the f or loop with a while statement (see Listing 7). In555

this way, only one comparison (list[i]! = search) is required within the loop. In addition, it should also556

be noted that the array size should be increased by one element to insert the target value at the end to557

avoid potential problems arising if the search value is not contained within the list. In this way, when558

the found index corresponds to the last position it means that the target value is not contained in the559

array. The arrays of both codes (standard and energy-efficient) were initialized by placing the target560

element in the last position.561

As shown in Figure 7, improvements from 20 % to 33 % with array sizes between 20 and 30562

elements are achieved when applying this technique using the RPi 3B+, whereas with model 4 the563

percentage of improvement is significantly reduced and only reaches 7.63 %. It is also important564

to highlight that although there are faster algorithms, linear search is practical when using short565

lists or performing single searches in un-ordered lists. In addition, it is a well-known and widely566

used algorithm which is especially recommended for beginners in programming, since it is simple to567

implement.568

Listing 7. Linear search. Standard and energy-efficient codes.
569

i n t standardCode ( i n t ∗ l i s t , i n t N, i n t search ) { i n t energyEff ic ientCode ( i n t ∗ l i s t , i n t N,570

i n t search ) {571

i n t i ; i n t i ;572

for ( i = 0 ; i < N; i ++) l i s t [N] = search ;573

i f ( l i s t [ i ] == search ) i = 0 ;574

return i ; while ( l i s t [ i ] != search )575

return −1; i ++;576

} i f ( i == N)577

return −1;578

}579580

6.7. Linear Search (T24)

In general, two comparisons are required to conduct a common linear search for finding an element
within a list: the first comparison to control the loop iterations, and a second one to check if the current
element matches the targeted value. In this way, the algorithm sequentially checks all the elements until
founding a match or reaching the end of the list with an unsuccessful outcome. This energy-efficient
technique consists of replacing the f or loop with a while statement (see Listing 7). In this way, only one
comparison (list[i]! = search) is required within the loop. In addition, it should also be noted that the
array size should be increased by one element to insert the target value at the end to avoid potential
problems arising if the search value is not contained within the list. In this way, when the found index
corresponds to the last position it means that the target value is not contained in the array. The arrays
of both types of code (standard and energy-efficient) were initialized by placing the target element in
the last position.
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As shown in Figure 7, improvements from 20% to 33% with array sizes between 20 and 30 elements
are achieved when applying this technique using the RPi 3B+, whereas with model 4 the percentage of
improvement is significantly reduced and only reaches 7.63%. It is also important to highlight that
although there are faster algorithms, linear search is practical when using short lists or performing
single searches in un-ordered lists. In addition, it is a well-known and widely used algorithm which is
especially recommended for beginners in programming, since it is simple to implement.

Listing 7. Linear search. Standard and energy-efficient code.
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Figure 7. Linear search. Percentages of energy saving according to the array size (number of elements)
in RPi 3B+ and 4B.

In this case, runtime is also significantly lower in the RPi 4 so that even the execution time of the
standard code on the model 4 is up to 50% faster than the execution time of the efficient code on the
RPi 3B+ (as can be consulted in the Supplementary Materials). Thus, this significantly reduces the
chances of further improving the results by applying energy-efficient code (as discussed in Section 6.5).

In general, the application of these twenty-five techniques achieves significant energy savings
and their improvements are similar in the four models of Raspberry Pi used. However, it should also
be noted that in some experiments (discussed in greater depth in Sections 6.2, 6.5 and 6.7), model 3B+
achieves better energy savings than model 4, due to the differences between the efficiency-focused
Cortex-A53 of the model 3B+ and the performance-oriented Cortex-A72 of the model 4.

7. Limitations and Future Work

An extensive number of different tests could have been designed to demonstrate the effectiveness
of each energy-efficient technique, since there are infinite possible variations which could have been
applied and analyzed in each of the experiments. These variations, together with the wide range
of possible workloads, may significantly influence the improvement percentages discussed above.
In addition, although the discussed results can be extrapolated to other IoT devices, their percentages of
improvement will be also conditioned by the programming language and hardware architecture used.

Consequently, future work is expected to expand the current research to other IoT devices,
regardless of architecture, with the objective of analysing the range of potential applications available
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for these techniques. In addition, the use of other programming languages and different compilers,
apart from GCC, will also be addressed.

With regard to the techniques that have achieved the best results, we hope to evaluate in greater
depth various aspects that may improve energy efficiency, such as data types or workloads that need
to be considered when writing energy-efficient code. In the same way, conducting a detailed analysis
of the improvements that could be achieved by combining some of the proposed techniques will also
be considered.

It is also hoped that in the future the current proposal can be extended and applied to
energy-efficient networked computing architectures [48], and thus help resolve the challenges that the
unpredictable large volume of data generated by Internet of Everything currently faces.

8. Conclusions

A set of twenty-five techniques have been analyzed to demonstrate their effectiveness for writing
energy-efficient code for Raspberry Pi boards. They were previously selected from the literature with
the objective of being used in an extensive range of programming routines and tasks. All of them are
focused on transformations aimed at reducing running time and energy consumption while preserving
the semantics of the program without altering the algorithm.

The application of these techniques achieves energy savings of up to 99.56% and their
improvements are similar in the four models of Raspberry Pi used, although in some experiments,
model 3B+ achieves better energy savings than model 4, due to the differences between the
efficiency-focused Cortex-A53 of the model 3B+ and the performance-oriented Cortex-A72 of the
model 4. In addition, this proposal analyzes the energy consumed through the manual application of
these techniques compared to the result of directly applying the automatic optimizations offered by the
GCC compiler. In this way, it has been demonstrated that the role of the programmer is essential when it
comes to achieving the best energy savings, since the compiler does not obtain the same improvements
that a programmer can achieve when applying theses energy-efficient techniques manually.

Therefore, programmers should be aware of the important impact that even small and simple
portions of code can have on energy consumption. Applying energy-efficient techniques analyzed
here is recommended, especially given that these improvements become important when they are
applied to code in programs that run non-stop, very common in IoT devices.

Seven of the twenty-five techniques were analyzed in greater depth, with the objective of
evaluating the conditions that influence energy efficiency improvements. In addition, the results
discussed in the current research can be extrapolated to other devices with similar Arm architectures,
especially those related to the IoT.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-9292/8/10/1192/
s1, Spreadsheet S1: complete experimental results.
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